MATH 111A HOMEWORK 3 SOLUTIONS

4) If n = 2k is even and $n \ge 4$, show that $z = r^k$ is an element of order 2 which commutes with all elements of D_{2n} . Show also that z is the only nonidentity element of D_{2n} which commutes with all elements of D_{2n} . [cf. Exercise 33 of Section 1.]

Solution. We shall use the following facts (see p. 25 of the textbook):

$$|r| = n$$
 $r^{i}s = sr^{-i}$ for $0 \le i \le n-1$ $D_{2n} = \{1, r, r^{2}, ..., r^{n-1}, s, sr, sr^{2}, ..., sr^{n-1}\}$

(We will prove this without using Exercise 33.) There are three things to prove.

(1) r^k has order 2: Notice that $(r^k)^2 = r^n = 1$ and $r^k \neq 1$ because |r| = n. It follows that $|r^k| = 2$.

(2) r^k commutes with all elements in D_{2n} : Clearly

$$(r^{k})(r^{i}) = r^{k+i} = r^{i+k} = (r^{i})(r^{k})$$

for all i = 0, 1, ..., n - 1. On the other hand, for $0 \le i \le n - 1$ we have

$$(r^{k})(sr^{i}) = (r^{k}s)(r^{i})$$

= $(sr^{-k})(r^{i})$ (since $r^{k}s = sr^{-k}$)
= $(sr^{k})(r^{i})$ ($r^{2k} = 1$ implies $r^{k} = r^{-k}$)
= $(sr^{i})(r^{k})$ ($r^{k}r^{i} = r^{i}r^{k}$)

and so r^k commutes with all of the sr^i also. Thus, r^k commutes with every element in D_{2n} .

(3) r^k is the only nonidentity element in D_{2n} which commutes with all elements in D_{2n} : Suppose that $x \in D_{2n}$ and $x \neq 1$. If $x = r^i$, $1 \leq i \leq n-1$ and $i \neq k$, then x does not commute with s, for otherwise

$$r^i s = sr^i = r^{-i}s \implies r^i = r^{-i} \implies r^{2i} = 1.$$

This implies $2i \ge n$ since |r| = n. Now, observe that $r^{2i-n} = 1$ also, but

$$n \le 2i \le 2n - 2 \implies 0 \le 2i - n \le n - 2.$$

So, by definition of the order of r, we deduce that 2i - n = 0 and so i = k, which is a contradiction. On the other hand, if $x = sr^i$, $1 \le i \le n - 1$, then x does not commute with r, for otherwise

$$(r)(sr^{i}) = (sr^{i})(r)$$

$$\implies sr^{-1}r^{i} = sr^{i}r \qquad (rs = sr^{-1})$$

$$\implies r^{i-1} = r^{i+1}$$

$$\implies r^{2} = 1.$$

But $|r| = n \ge 4$ so we have a contradiction. Therefore, indeed r^k is the only nonidentity element that commutes with all elements in D_{2n} .

14) Let p be a prime. Show that an element has order p in S_n if and only if its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be true if p is not prime.

Solution. Since *id* does not have order *p* and the cycle decomposition of *id* is not a product of *p*-cycles, we do not have to consider *id* in our proof. So let $\sigma \in S_n \setminus \{id\}$ and $\sigma = \sigma_1 \cdots \sigma_r$ be its cycle decomposition, with $l_i = |\sigma_i| \ge 2$ for every *i* (we need $\sigma \neq id$ in order to have this). Then, we know that

$$|\sigma| = \operatorname{lcm}\{l_1, \dots, l_r\}$$

Now suppose that σ has order p. Then $p = \operatorname{lcm}\{l_1, ..., l_r\}$, and so $l_i = p$ for all i, since p is prime and $l_i \neq 1$ by hypothesis. This shows that the cycle decomposition of σ is a product of p-cycles (they commute as they are disjoint by construction). Conversely, suppose that $l_i = p$ for all i. Then clearly $|\sigma| = \operatorname{lcm}\{l_1, ..., l_r\} = p$, which proves the claim.

This need not be true if p is not prime. For example, take p = 6, we have that

$$|(12)(345)| = 6$$

and yet (12)(345) is not a product of 6-cycles.

2) If $\varphi : G \to H$ is an isomorphism, prove that $|\varphi(x)| = |x|$ for all $x \in G$. Deduce that any two isomorphic groups have the same number of elements of order n for each $n \in \mathbb{Z}^+$. Is the result true if φ is only assume to be a homomorphism?

Solution. From Exercise 1 $\varphi(x^n) = \varphi(x)^n$ for all $n \in \mathbb{Z}$ (when n = 0 we have $\varphi(1_G) = 1_H$). If |x| = m is finite, then $x^m = 1_G$ and so $\varphi(x)^m = 1_H$, which shows $|\varphi(x)| \le |x|$. So $|\varphi(x)| = k$ is finite also. Now,

$$\varphi(x)^k = 1_H \implies \varphi(x^k) = 1_H \implies x^k = 1_G$$

since φ is injective. This shows that $|x| \leq |\varphi(x)|$ and hence in fact $|\varphi(x)| = |x|$. On the other hand, if $|x| = \infty$, then $|\varphi(x)| = \infty$ also, for otherwise $\varphi(x)^k = 1$ for some $k \in \mathbb{N}$. The same calculation above shows that $x^k = 1_G$, which comtradicts that $|x| = \infty$.

Fix $n \in \mathbb{Z}^+$. Let $A = \{x \in G \mid |x| = n\}$ and $B = \{y \in H \mid |y| = n\}$. We want to show that $\operatorname{card}(A) = \operatorname{card}(B)$, i.e. there exists a bijection between A and B. Consider the map

$$\tilde{\varphi}: A \to B$$
 defined by $\tilde{\varphi}(x) = \varphi(x)$,

i.e. $\tilde{\varphi}$ is obtained by restricting the domain of φ to A and the codomain to B. Since |x| = n implies $|\varphi(x)| = n$, this is well-defined (the image $\tilde{\varphi}(x)$ indeed lies in B). Injectivity follows from that of φ . For surjectivity, suppose that $y \in B$. Let $x \in G$ be such that $\varphi(x) = y$ (which exists since φ is surjective). Then $|x| = |\varphi(x)| = |y| = n$. Hence, $x \in A$ and $\tilde{\varphi}(x) = y$, proving surjectivity. Thus, $\tilde{\varphi}$ is a bijection.

This result need not be true if φ is only a homomorphism. Let $\varphi : \{-1,1\} \to \{1\}$ be the trivial homomorphism. We have |-1| = 2 but $|\varphi(-1)| = |1| = 1$.

⁴⁾ Prove that the multiplicative groups $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$ are not isomorphic.

Solution. Notice that $i \in \mathbb{C} - \{0\}$ has order 4. By Exercise 2, if $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$ were isomorphic, then there would exists $x \in \mathbb{R} - \{0\}$ with |x| = 4. This would imply $x^4 = 1$ and so $x = \pm 1$. But |1| = 1 and |-1| = 2, so we have a contradiction.