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Abstract

We present an accurate and efficient numerical method to the solve
the microstructure-flow problem that constitutes the coupling of the
molecular-based Doi-Marrucci-Greco (DMG) model to the Cauchy
equation of motion and continuity equation. We also provide a general
introduction to the problem of the flow of complex fluids. Preliminary
investigations of the predictive capabilities of the DMG model show
that with increasing shear rate, in accordance with both experimental
observations and other theoretical predictions, the model was found to
exhibit three flow regimes: steady linear shear flow at low shear rate,
steady roll cells at intermediate shear rates, and irregular flow and
orientation patterns at high shear rates. Given sufficiently high shear
rates, the irregular flow structure was accompanied by the formation of
±1 and ±1/2 strength disclinations. Furthermore, at shear rates large
enough to inhibit the tumbling of the average molecular orientation,
the solution no longer contains disclinations or roll cells, but retains
some structure in the flow direction that has the visual appearance of
stripes.
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1 Introduction

One of the most interesting and important new areas for computational re-
search is the application of numerical methods to problems involving the flow
of complex fluids. In this paper, we will summarise recent research in this
area that has been developed at UCSB under the sponsorship of an NSF-
funded Integrative Graduate Education and Research Traineeship (IGERT)
program in the area of Computational Science and Engineering.

We assume that many readers of this paper, and many of those in the
audience at the CTAC meeting where this work was presented in an invited
talk, will not be familiar with the general problem area. Thus, our paper
will be organised as follows: first, we will provide an overview of what the
general problem is all about, why it is important and why, from a compu-
tational point of view, it is interesting and challenging in Sections 2 and 3;
then, in Sections 4 through 7, we will discuss the governing equations and
computational developments for a specific example problem concerned with
the motion of liquid crystalline polymers in a simple shear device; and fi-
nally we will summarise the results we have obtained to date in Section 8.
Once our work on the problem has been completed, a more comprehensive
presentation of results will then be forthcoming in a separate paper.
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2 The General Problem of the Flow of Com-

plex Fluids

The generic name “complex fluids” was coined relatively recently in the
physics community, though research involving this class of materials has
been carried out for many years, not only in physics, but to an even greater
extent in the engineering and materials communities under such titles as
rheology, polymer physics, and colloid and interface science. It is intended
to encompass a broad class of materials that are capable of flow such as
polymer solutions and melts, colloidal suspensions, liquid crystalline mate-
rials (either small-molecule or polymeric), many surfactant solutions above
the critical micelle concentration, emulsions and immiscible blends, foams,
and even granular materials and powders (an overview of the structure and
rheology of complex fluids can be found in [19]). This class of fluids is distin-
guished qualitatively from Newtonian fluids in the sense that if a disturbance
were to cause the system to be in a non-equilibrium configuration, the re-
laxation back to an equilibrium micro-structural state occurs on long time
scales, from milliseconds to seconds in most cases, whereas the corresponding
time scales in fluids that we model as Newtonian are typically on the order
of microseconds.

One reason that complex fluids are interesting and important is because
they are the precursor for many advanced materials applications. In particu-
lar, although the ultimate “product” may be a solid, it is typically produced
via some type of processing system that involves flow of the original mate-
rial as a liquid. Because the relaxation times are so long, when we subject
the material to flow, the product of the deformation rate (inversely related
to the shear-rate) and the relaxation time will frequently be O(1) or larger.
This means that when the material undergoes a flow, this will often induce
large changes in the microstructural state of the material, and thus also
large changes in its macroscopic properties. One consequence of this is that
complex fluids are typically non-Newtonian, viscoelastic liquids. The vis-
coelasticity of the fluid may change a processing flow, and will change the
stress distribution within such a flow, and either of these changes can lead
to instabilities that limit the rate of production. A second consequence is
that changes in the properties of the material will occur during the processing
steps. This may, in principle, be used to advantage in inducing improvements
in some desirable property of the finished product. For example, polymers
that are sold as “electrically conducting” will typically have a very low con-
ductivity in the equilibrium state, but if the polymer chains are strongly
stretched and oriented in a common direction during processing, the result
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may be a material that has a high enough conductivity to become commer-
cially viable. On the other hand, a processing flow may also sometimes induce
undesirable changes in the microstructure and thus too in the macroscopic
properties. This occurs, as we will explain in more detail later, when a liquid
crystalline polymer (LCP) is pushed into a mold.

Although empiricism has served us relatively well in the design and de-
velopment of systems for processing of complex fluids, a future goal must
be to improve or even re-design many processes to minimise the impact of
instabilities on processing rates (and material properties), as well as optimis-
ing desirable properties of some finished material product. Here empiricism
will exhibit rapidly diminishing returns, and there is a need to develop a
predictive theoretical basis for making the changes that may contribute to
these two objectives. An obvious pre-cursor is that we must be able to pre-
dict flows; which is partly an issue of developing effective models for the
fluid, and partly an issue of developing numerical methods that enables us
to use these models to actually predict the flow behaviour of the material.
It should be noted that, in contrast with the established methods of compu-
tational fluid dynamics (CFD) for Newtonian fluids, successful theory here
requires not only prediction of the pressure and velocity fields, but also the
coupled changes in the material microstructure. It should also be noted that
the development of material models and computational methods are strongly
coupled. The governing equations for almost all of the complex fluid models
are nonlinear, and the only way of comparing predictions with experimental
observations (in all but the simplest rheometer flows) is to use numerical
methods to solve the resulting theoretical problem.

It is the objective of our IGERT group on complex fluids to contribute
to the development of effective methods and models for the prediction of
complex fluid flows.

3 Generic Theoretical Structure of Flow Prob-

lems for Complex Fluids

Although the details of the theoretical models are different for all of the
different types of complex fluids, there is a basic generic structure that applies
to all of them. This provides a convenient framework to discuss some of the
qualitative issues associated with the solution of flow problems. The fact
that such a framework exists also suggests that progress in the development
of numerical methods for one specific type of material may carry over to the
complete class of complex fluids.
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Historically, the formulation of governing equations was focused largely
on the case of polymeric liquids, with constitutive equations for the stress
derived via the general framework of continuum mechanics in the form of re-
lationships between the stress and the macroscopic velocity gradient. Partly
because this process was not very successful, but also because it became
increasingly obvious that it was important to predict not only the veloc-
ity, pressure, and stress, but also the spatial and temporal evolution of the
microstructural state, the emphasis in more recent years has been on the de-
velopment of dynamical models based upon a mechanical description of the
material at the level of the individual polymer molecules, suspended particles,
drops etc. depending on the microstructural nature of the fluid.

In the typical microstructural fluid model, the structure of the fluid is
specified by a statistical distribution function ψ(a;x, t) where a represents
the multidimensional configuration space, which we represent here symboli-
cally as a vector, though it may be a vector, tensor etc. depending upon the
complexity of the particular material. For a suspension or solution of rigid
rods, as one example, a is simply a unit vector that specifies the orientation
of a rod. If the material were a dilute emulsion, on the other hand, a would
have to represent the shape of a drop. If the deformation were small, the
shape would be ellipsoidal, and this can be represented by a second order
tensor. For all complex fluids other than liquid crystals, and liquid crys-
talline polymers, the equilibrium state of the material is isotropic. This is
either because the structure is statistically isotropic, even though the indi-
vidual components are non-spherical (as in the case of a rigid-rod suspension
or solution, where the equilibrium state is one of random orientations), or
because the individual elements reach a spherically symmetric state (as in
the case of an emulsion of immiscible drops, or a dilute solution of flexible
polymers where the equilibrium state is one of random coils). In the case of
liquid crystals (rigid rods with a nematic, that is non-isotropic, potential),
the equilibrium state is non-isotropic with a statistically uniform orientation
as a function of spatial position, and a distribution around this orientation
that represents a balance between rotational diffusion and the nematic align-
ment potential.

The distribution function changes in flow via a competition between
flow-induced deformation away from the equilibrium state, and relaxation
(via Brownian motion or other mechanisms) back toward equilibrium. This
change in ψ can be represented via a Fokker-Planck equation (a generalised
convection-diffusion equation),

Dψ

Dt
= f (ψ,∇v) . (1)
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The right hand side represents the balance between the deformation process
due to the velocity gradient ∇v and the relaxation process, which produces
a time-dependent change in ψ at a given material point (hence we use the
convected or material time derivative). This equation for ψ is a multidi-
mensional partial differential equation (the dimensionality depending on the
dimensionality of the configuration space) at each material point. Alterna-
tively, the problem for ψ could be represented via a stochastic differential
equation for ȧ, with ψ determined as an ensemble average.

Macroscopic properties at any material point depend on the microstruc-
tural state at that point. However, in virtually all cases, the macroscopic
property of interest turns out to depend not on ψ directly, but rather on
moments of the distribution function. For example, the macroscopic stress
typically depends on the second and fourth moments of ψ, i. e.

σ = σ (A,Q) , (2)

where

A = 〈aa〉 =

∫
ψaada; Q = 〈aaaa〉 =

∫
ψaaaada. (3)

Finally, for a flow problem, we must solve the Cauchy equation of motion,
and the continuity equation

ρ
Dv

Dt
= −∇p+∇ · σ; ∇ · v = 0 (4)

provided the fluid can be approximated as incompressible.
Starting from some initial condition, a symbolic procedure to solve such

a flow problem would involve: first solving the multidimensional convec-
tion diffusion (Fokker-Planck) equation to determine ψ at a large number
of material points; second, calculating the moments of ψ that are needed to
determine the stress; third, determining the divergence of the stress ∇ · σ;
and fourth, solving the equations of motion to determine v, p, and thence
returning to step 1 to calculate the distribution function and so on to steady
state. Although this simplistic sequential series of steps is intended only for
illustrative purposes, it is clear that this is a very large problem, and since
both (1) and (2) are nonlinear in the dependent variables, it is also highly
nonlinear. Clearly, the phrase “large number of material points” means that
ψ and the moments of ψ must be calculated at enough material points to
obtain an accurate approximation for ∇ · σ. Furthermore, the equations of
motion and continuity must be solved with sufficient spatial resolution that
accurate estimates of ∇v can be achieved for solution of (1). Finally, it is
important to note that the differential equation (1) is itself a significantly

6



large problem, being a multidimensional, time-dependent partial differential
equation at each material point.

Because of the fact that the problem for ψ is quite formidable, and also
because we actually need to know only the second and fourth moments of
ψ rather than ψ itself, it is common practice to attempt to calculate the
moments of ψ directly, rather than first calculating ψ and then calculating
the moments. For complex fluids, the procedure for obtaining governing
equations for the moment tensors is known as the Prager procedure [28].
However, it is really quite straightforward. To obtain an equation for A =
〈aa〉, we simply multiply equation (1) by the dyadic product aa and then
integrate over the complete a-space (as in equations (3)). Symbolically,∫

aa
Dψ

Dt
da =

∫
aaf (ψ,∇v) da =⇒ DA

Dt
= f (A,Q) (5)

Although the moment equation is much simpler (a set of coupled ODEs for
the components of A), we see that this equation is not closed in the sense
that the governing equation for the second moment involves the fourth mo-
ment. Similarly, if we were to write an equation for the fourth moment, it
would involve the sixth moment, and so on. Thus, a closure approximation is
needed. Although this step is not completely understood from a mathemat-
ical or physical point of view, it has, until now, generally been necessary to
proceed with the approximate closure-based problem, rather than trying to
solve the full problem (1)–(4). The question of whether the model problem
is a useful approximation of the real problem is then partly a question of
the physical assumptions that have been made in deriving (1) and (2), and
partly a question of whether the closure approximation is good enough. In
practice, it is often very difficult to separate these two questions.

In spite of the fundamental issues related to the procedures described
above, it is fair to say that quite considerable progress has actually been
made over the past 20 years or so, especially in the development of numer-
ical methods to solve the closure based class of problems for dilute poly-
mer solutions (especially the so-called Boger fluids), and to some extent for
the other types of complex fluids. Specifically, significant progress has been
made in resolving the so-called “high Deborah number problem”, which was
a name adopted by many of the early researchers to describe the fact that all
numerical methods of the time (which incorporated the most sophisticated
of known methods for Newtonian fluid CFD) failed to converge beyond a
Deborah number De of O(1) for any non-trivial flow problem using essen-
tially any constitutive model for polymeric liquids. A reasonable summary
of the current state of the art can be found in the recent book of Owens and
Phillips [27]. In spite of this progress, however, much remains to be done.
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First of all, current computational algorithms are still limited to a range of
Deborah numbers that has only been increased by about one order of mag-
nitude (of course this depends on the problem, the model etc). Secondly, the
vast majority of work to date has still focused on models that are intended for
dilute polymer solutions. Third, though a great deal of attention has been
paid to closure approximations, especially for the latter class of problems,
this is still a largely unresolved problem.

The work that we will discuss in the remainder of this paper has been
done as part of a new IGERT-based project in Scientific Computation at
UCSB. In this program, graduate students are working jointly with faculty
from at least two departments as their thesis advisors (e.g. mathematics
and engineering). The general research objectives within the complex fluids
part of this activity are: (1) Develop efficient solution methods for both the
closure approximated model equations and the un-approximated problem
(the focus of any one project is a specific type of complex fluid, but the
problems are reasonably generic as we have just attempted to illustrate, and
so the lessons learnt for one material will carry over to other systems); (2) Try
to better understand the approximation inherent in the closure assumptions,
and develop improved more systematic methods for dealing with this aspect
of the modelling problem; (3) Utilise numerical solutions to try to better
understand the mechanisms of microstructure-flow interactions. Of course
the “materials” that we study are only mathematical models. However, they
are idealised but physically realisable materials, and they are designed to
incorporate the key physical mechanisms of the real material. Of course,
this remains to be demonstrated by comparison with the behaviour of the
real material and this comparison can only be done via comparison between
experimental observation and numerical flow calculations.

4 Nematic Liquid Crystalline Polymers

The specific subject of this current project is the flow behaviour of liquid
crystalline polymers (LCPs). This class of materials can be envisioned as
being comprised of anisotropic rod-like molecules, which are liquid-like in
the sense that there is no positional order at equilibrium (i.e. the centres of
mass are randomly scattered), but are crystalline-like in the sense that they
do exhibit orientation order at equilibrium with a strong tendency to align
in some common direction. The latter is a consequence of excluded volume
interactions. There are two types of such materials, one called lyotropic which
is a solution that exhibits a transition between isotropic and nematic (non-
isotropic) structures when the concentration is increased sufficiently, and the
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other called thermotropic which are melts and thus exhibit the isotropic to
nematic transition at a critical temperature. The distinction between these
systems is not important for the current study. It may also be noted that real
LCPs are often not a single rod-like molecule but will exhibit some flexibility,
including most of the systems that have been generated synthetically, which
are typically copolymers with rigid mesogenic units separated by flexible
spacers. However, the focus of the current study will be a model in which the
molecules are envisioned as rigid rods, and the qualitative comparisons that
we have made are also with real systems where this is at least a qualitatively
correct description.

An obvious question is why study the flow properties of LCPs? One
motivation is that LCPs are a potentially interesting source of light weight,
high tensile strength materials, but that to date they have only been processed
into fibres (e.g., Kevlar produced by DuPont, and spider silk produced by
spiders). Why fibres? It is the strong tendency of LCPs to align at the
molecular level that is (in part) responsible for their potential as high mod-
ulus materials, and the spinning process required to produce fibres tends to
enhance this natural tendency for alignment. Unfortunately, all processing
flows other than fibre spinning disrupt the natural alignment in a profound
way, thus reducing the LCP to a material that is isotropic from a macroscopic
point of view, and thus exhibits properties that are similar to other conven-
tional, but much cheaper polymers. For example, experimental observations
have shown that if we subject a uniformly aligned sample to a shear flow (as
occurs if we pump the fluid into a mold), it develops a series of hydrodynamic
and microstructural instabilities that begin with a hydrodynamic instability
to roll cells aligned in the flow direction, followed (or accompanied by) the
formation of orientational defects that are known as disclinations. The latter
proliferate in the flow, and eventually lead to a “polydomain structure” in
which alignment is preserved in tiny microdomains but these are randomly
oriented, yielding a macroscopically isotropic material. For an overview of
the field, we refer the reader to the book by Donald and Windle [7].

The objectives of our theoretical study are to predict and understand
structure-flow interactions for the simplest of all possible flow domains, namely
the flow between two parallel plane walls one of which is moving in its own
plane to create what would be a simple shear flow if this were a Newtonian
fluid. In particular, in the present study we attempt to simulate (and un-
derstand) the development of disclinations, and ultimately, the proliferation
to the polydomain structure (of course, this is a test of both the model that
we have chosen to study, as well as our ability to develop an effective com-
putational approach). Finally, assuming that this step is successful, we may
look down the road to where this study may ultimately lead. The next step
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is to try to understand the relationship between disclination formation and
flow type. We know from comparing the behaviour in simple shear flow, and
in the extensional flow associated with fibre spinning, that the tendency to
form disclinations definitely depends on the flow type. In fact, it is generally
presumed that formation of disclinations is a consequence (in some unknown
way) of the presence of tumbling. Finally, earlier work in our group has
shown that tumbling can be suppressed even if there is only a weak exten-
sional component superposed on a simple shear flow [3], and thus, as an
example, it may be possible that rather minor changes in the geometry of a
mold could be sufficient to largely suppress disclinations. Thus, the ultimate
goal (which we are still far from approaching) is to utilise the knowledge we
will gain of the effects of flow type on tumbling to design processing flows
that minimise the formation of disclinations (and everything that follows).
In view of these long-range objectives, this paper is just a progress report.

5 A Model for Nematic LCPs

We idealise LCPs as a suspension (or solution) of axisymmetric rigid-rod
shaped Brownian particles with a mean-field interaction between molecules
that favours uniform alignment both locally and via the suppression of spatial
gradients of alignment. In particular, we adopt the Doi model [5], with a non-
local interaction potential suggested originally by Marrucci and Greco [26]
(we call this the DMG model). A detailed description, including the deriva-
tion of an equation for the stress tensor, was given recently by Feng, Sgalari
and Leal [12].

The orientation of a single rod is represented in terms of a unit vector, u.
Thus the configuration space in this case is two-dimensional, representable
as a point on the surface of a unit sphere in terms of an azimuthal angle ϕ
and a polar angle θ, and the distribution function specifies the probability of
a particular orientation at a point in space and time,

ψ = ψ (u;x, t) = ψ (ϕ, θ;x, t) . (6)

The evolution equation (1) in this case takes the form

Dψ

Dt
= R ·Dr

(
Rψ +

ψ

kBT
Rφ

)
−R · (u̇ψ) . (7)

where R is the rotational operator , R = u×(∂/∂u), that corresponds to the
gradient operator in rotational diffusion [1], kB is the Boltzmann constant,
T is the absolute temperature, Dr is the rotational diffusivity, and φ is the
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mean-field nematic potential. The first term on the right hand side represents
the effect of rotational Brownian diffusion, the second is the nematic term
and is specified in terms of a slightly simplified form of the Marrucci-Greco
nematic potential function

φ = −3kBT

2
U

(
A : uu +

`2

24
∇2A : uu

)
, (8)

while the third term in (7) represents the effect of hydrodynamic rotation
of the rod-like particles/molecules. In this term, the angular velocity of
the unit vector u̇ is determined by the general equation for rotation of an
axisymmetric particle in a general linear flow, i.e.

u̇ = Ω · u + λ (E · u− E : uuu) , (9)

where E is the rate of strain tensor and Ω is the vorticity tensor at point x(t).
The parameter λ depends on the shape of the particle. For axisymmetric
ellipsoids of aspect ratio r this parameter is just λ = (r2 − 1) / (r2 + 1). In
the Doi model, it is assumed that λ = 1.

The nematic potential function (8) contains two terms. The first describes
the energy penalty associated with alignment of a particular rod away from
the mean orientation at a particular point, and is known in the liquid crys-
talline literature as the Maier-Saupe potential [25] (this term is often called
the local elastic effect, and is associated with viscoelastic effects in the fluid).
The second term is the energy penalty for the formation of spatial gradients
in the DMG model (it is known as the non-local or gradient elasticity effect,
and introduces Frank elasticity [4] into the model). One special feature of
LCPs is that they generally exhibit some preferred direction of alignment
at the boundaries of the flow domain. The nematic potential means that
this boundary alignment tends to be maintained as we move away from the
boundaries. A full specification of the microstructure problem must then
include not only the preceding equations, including the vorticity and rate
of strain tensors for the flow, but also the so-called “anchoring” condition
at the boundaries of the flow domain. It should be noted that there is a
characteristic length scale associated with the non-local term in (8), which
is a measure of the distance over which gradient elastic effects are felt. In
addition, the form of the second term is simplified compared to the original
Marrucci-Greco theory, essentially adding the assumption of an equal en-
ergy penalty for the three forms of orientation gradient, namely bend, splay,
and twist. This simplification is expected to have a quantitative rather than
qualitative change in the predicted behaviour of the DMG model LCP [30].
Finally, we note that there is one additional (dimensionless) parameter in (8),
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namely the nematic strength parameter U . In a lyotropic system, U will in-
crease with increasing concentration, while it will increase with decreasing
temperature in a thermotropic system.

If the flow were known, the equations (7)–(9) are sufficient to determine
how the statistical microstructure of the material evolves in time. Indeed,
a number of studies have been carried out using this model, or its simpler
original Doi form with ` = 0, for fixed flows, especially for simple shear
flow [17, 22, 9, 3]. In fact, even with the flow fixed, the behaviour predicted
by these model equations is quite complex, though apparently qualitatively
reasonable. There is an isotropic to nematic transition in the absence of flow
at U = UI−N . For values of U that are smaller than this critical value, the
model shows dynamics in flow that are qualitatively similar to a Brownian
suspension with no nematic interaction. Thus, for example, in a steady sim-
ple shear flow, the orientation distribution function oscillates in time imme-
diately after start-up of the flow, but then eventually achieves a final steady
state distribution of orientations that is time independent [15]. For larger
values of U, on the other hand, the nematic potential favours having the rods
all rotate together in the flow, and in this case, the orientation distribution
may remain time-dependent representing the collective tendency for all of the
rods to rotate together. This phenomenon of collective rotation is known as
“tumbling” in the liquid crystalline literature. In fact, the behaviour of the
distribution function at a point where the flow is specified depends in quite
a sensitive way on the initial conditions. However, if the mean orientation is
initially in the plane of a simple shear flow, and U is held fixed, the model
exhibits tumbling at modest flow strengths (i.e. for De less than a critical
value that depends on U in the case ` = 0), with a transition to a time-
independent distribution function (which is known in the LCP literature as
“flow aligning”) occurring as the shear rate in the flow is increased above
some critical value.

In reality, of course, the flow is not fixed but must be determined along
with the microstructure of the LCP. Hence, one must solve the equations of
motion and continuity

∇2v −∇p+∇ · σ = 0; ∇ · v = 0 (10)

with the polymer contribution to the stress, represented here by σ, deter-
mined from the microstructural distribution function in a way that is specified
below. We may note: (1) the equations (10) are written in the natural form
for a suspension (or lyotropic LCP), in which the Newtonian contribution
is separated from the stress contribution that is directly attributed to LCP;
(2) we have written (10), and will write all of the additional equations, in a
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nondimensionalized form, with gap width across the shear cell as the charac-
teristic length scale, lc = H, the characteristic shear rate γ̇ = V/H, and the
pressure and stress scaled scaled by ηV/H; and (3) fluid inertia is negligible
compared with the viscous stress since the time scale for viscous dissipation
is much shorter than that for the evolution of the flow (the latter time scale
is associated with rotational diffusion). Feng et. al. [12] have shown that the
stress for a DMG model LCP is related to the second and fourth moments
of the distribution function

σ =
c

β
E : Q +

c

De

[(
A− δ

3

)
+ U (A ·A−A : Q)

]
− 1

S2
eqEr

[
∇2A ·A−Q : ∇2A +

∇A : (∇A)T −∇∇A : A

4

]
,

(11)

c = νkBT/2ηDr is the concentration parameter (ν being the number density
of rods), β is known as the crowdedness parameter [6], and Seq ≤ 1 is the
equilibrium value of the scalar order parameter. The dimensionless groupsDe
and Er, known as the Deborah number and Ericksen number, respectively,
will be defined in the following paragraphs.

Finally, though the model specification is now complete, (7)-(11), we seek
solutions at this time only via an approximation of this model, with a closure
approximation introduced to allow direct calculations in terms of the second
moment tensor A instead of the full distribution function ψ. We may first
note that the Prager procedure in this case leads from equation (7) to an
equation for the second moment tensor A,

DA

Dt
= (∇v)T ·A + A · ∇v − f

De

(
A− δ

3

)
+
fU

De
(A ·A−A : Q)

+
f

2cS2
eqEr

(
∇2A ·A + A · ∇2A− 2∇2A : Q

)
,

(12)

where the function f = 4
9
(1−A : A)−2, proposed by Doi [5], accounts for

increased rotational diffusivity with increased local order. We use the so-
called Bingham closure [2] to approximate the terms A : Q, and E : Q
that appear in (11) and (12). As we have suggested earlier, the whole issue
of closure approximations is still a research question. The motivation for
this particular closure approximation has been spelt out in earlier papers to
which we refer the interested reader [2, 10]. We will simply note here that
the Bingham closure does not violate any thermodynamic constraints [32].
Furthermore, it is one of the simplest closure approximations that preserve
tumbling in the original Doi model with λ = 1.

13



There are a number of dimensionless parameters in the DMG model.
However, the two key dimensionless numbers that characterise the relative
strength of the elastic (nematic) contributions relative to the flow strength
are the Deborah number, defined as

De ≡ γ̇

6Dr

, (13)

and the Ericksen number, which we define here as

Er ≡ ηV H

K

[
=

(
24H2

cU`2S2
eq

)
De

]
, (14)

where K = 1
8
νkBTU`

2S2
eq is the elastic constant [12]. Since (L/`)2 � 1, it

follows from the definition (14) that Er � De. When Er ≥ O(1), the flow is
strong enough to induce spatial gradients in the mean orientation. In fact, in
the limit of finite Er, but De ≈ 0, we can approximate the second moment
tensor as

A = Seq

(
nn− δ

3

)
+

δ

3
, (15)

where n is known as the “director”, and the DMG model reduces to the well-
known Leslie-Ericksen (LE) model [8, 24]. In this case, the director n is a
function of (x, t) and the material exhibits elasticity (which is known as Frank
elasticity in the LE model) but no viscoelasticity. On the other hand, De
provides a measure of the strength of viscoelastic effects which occur when the
flow is strong enough to produce distortions in the shape of the distribution
function. Since Er � De, it is clear that one can have flow-induced changes
in the mean orientation with no distortion in the shape of the distribution
function (for example, tumbling, in which the mean orientation becomes
time-dependent, but the degree of alignment about the mean orientation
remains the same as in the equilibrium (no flow) state). The natural problem
to study theoretically is to increase Er, holding the ratio of Er and De fixed,
since ` and U may be viewed as material parameters that will not vary with
the shear rate. Similarly, the parameters c and β will generally be held fixed
for the same reason.

6 Numerical Solution Procedures

The problem of simulating the motion of the DMG model for LCPs, subject
to the closure approximation discussed above and appropriate boundary con-
ditions, is then to solve (12) for some initial specification of the microstruc-
ture and flow to determine the second moment of the distribution function
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Figure 1: Schematic of the two-dimensional shear flow domain. The flow
field is bounded along the spanwise direction by parallel plates separated
a distance H and along the wall-normal direction by periodic boundaries
separated a distance W . V is the relative velocity between the two plates.

at a large number of points (these may either be material points in a La-
grangian formulation, or we may convert the time derivative to an Eulerian
formulation with a large number of fixed points in the flow domain); from A
to use (11) to calculate the stress at these same points and thence the diver-
gence of the stress; and then finally solve (10) for the velocity and pressure
fields. As indicated above we would like to do this for a wide range of Er
values ranging from modest Er with De small, to values of Er that are large
enough to reach moderate to large values of the Deborah number.

This problem was initially addressed in our group using methods that
were different from those used here [29], with modest success in terms both of
the accuracy of the resulting solutions and the range of parameters for which
solutions could be achieved. A schematic of the flow domain is presented in
Figure 1. In both these initial calculations and in the new calculations that
have been carried out to date, two simplifications have been introduced to
reduce the size of the numerical problem. One is that we assume that the flow
and microstructure are all periodic in the cross-channel direction (i.e. the
y-direction), and thus truncate the width of the channel to some finite value.
The second is to assume that there are no gradients in the flow direction (i.e.
the x-direction). The flow is fully three-dimensional in the sense that all three
velocity components are nonzero, and we consider a completely general form
for the distribution function at each point. The assumption of zero gradients
in the flow direction means that we can have roll-cells in the flow direction
(as observed experimentally) and we can also have disclinations aligned in
the flow direction (as also inferred in experimental observations), but these
will extend indefinitely in the flow direction. This is not only inconsistent
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with what is observed, but may also change the dynamics in the sense that
all disclination lines must be open, rather than closing on themselves to
form loops as occurs for certain types of disclinations in the real system.
The periodicity assumption has been partially explored in the present work,
in the sense that we have considered flow cells of several different widths
to assess the effect that this has on the flow structure. The inclusion of
gradients in the flow direction greatly increases the size of the problem, and
we are currently working to implement a parallel version of the present code
to allow this assumption to be relaxed (as well as to enable calculations in
more complex flow domains).

As is the case with most viscoelastic flow calculations, the fact that large,
localised stress gradients (whose locations are not necessarily known a pri-
ori) are ubiquitous, even for cases involving somewhat trivial flow geometries,
highly-accurate and robust numerical methods are necessary for modelling
the flow behaviour of LCPs. The current solution algorithm is based upon
the use of spectral collocation of the velocity, pressure and second moment
tensor components in the y-direction, with derivatives in the y-direction eval-
uated using fast Fourier transforms. Derivatives in the z-direction are evalu-
ated using a sixth-order compact finite difference formulation. The evolution
equation for the configuration tensor (12) is integrated using the third-order
Runge-Kutta TVD (total variational diminishing) scheme proposed by Van
der Vorst [31].

The sixth-order compact finite difference stencil, taken from [23], that is
used to approximate the first derivative in the interior of the domain is

αf ′j−1 + f ′j + αf ′j+1 =
b

4h
(fj−2 − fj+2) +

a

2h
(fj−1 − fj+1) , (16)

where α = 1/3, a = 14/9, and b = 1/9. The prime in this expression and
those that follow denotes the derivative with respect to z. Evaluation of the
first derivatives at the points just inside of the upper and lower boundaries,
where j = 2, nz−1, requires the use of a three-point stencil. For these points
a fourth-order form of equation (16) is used, where α = 1/4, a = 3/2, and
b = 0. The fourth-order sided-difference equations used for the boundary
points j = 1, nz are given by

f ′1 + 3f ′2 =
1

h

(
−17

6
f1 +

3

2
f2 +

3

2
f3 −

1

6
f4

)
, (17)

f ′nz + 3f ′nz−1 = −1

h

(
−17

6
fnz +

3

2
fnz−1 +

3

2
fnz−2 −

1

6
fnz−3

)
. (18)
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To approximate the second derivative, we use a sixth-order compact finite
difference stencil of the form:

αf ′′j−1 +f ′′j +αf ′′j+1 =
b

4h2
(fj−2 − 2fj + fj+2)+

a

h2
(fj−1 − 2fj + fj+1) , (19)

where α = 2/11, a = 12/11, and b = 3/11. For points j = 2, nz− 1, we use a
fourth-order form of equation (19), where α = 1/10, a = 6/5, and b = 0. The
third-order sided-difference equations used for the boundary points j = 1, nz
are given by

f ′1 + 11f ′2 =
1

h2
(13f1 − 27f2 + 15f3 − f4) , (20)

f ′nz + 11f ′nz−1 =
1

h2
(13fnz − 27fnz−1 + 15fnz−2 − fnz−3) . (21)

Both difference formulations require the solution of tridiagonal systems of
equations. We solve the resulting linear systems efficiently using the Thomas
algorithm [14].

The steady Stokes form of the equations of motion together with the con-
tinuity equation is solved using the Uzawa Bi-Conjugate Gradient Stabilised
method. The discrete counterparts to equations (10) can be written as

Lv −Gp = −g, (22)

Dv = 0, (23)

where L, G, and D are discrete analogues of the Laplacian, gradient, and
divergence operators, respectively, and g represents the divergence of the
polymeric stress σ. Given that L is nonsingular for the discretisation used in
this study, we can multiply equation (22) by L−1 and substitute the resulting
expression into equation (23) to obtain the following linear system for p:

Ap = f, (24)

where A = DL−1G is the Stokes form of the discrete Uzawa operator and
f = DL−1g. We should note that, as a result of the use of sided-difference
equations used in evaluating wall-normal derivatives, the linear system for p
is nonsymmetric.

For Stokes flow, the linear system for p is well-conditioned, i.e., the con-
dition number of the discrete Uzawa operator A is O(1). Given its smooth
convergence behaviour and the fact that the method does not require the ex-
plicit evaluation of AT , we have chosen to solve (24) using the Bi-Conjugate
Gradient Stabilised (BiCGSTAB) method [31]. The pseudocode for the
Uzawa BiCGSTAB algorithm, an adaptation of the Uzawa Conjugate Gra-
dient method [16], is presented in Figure 2. Note that in order to satisfy the
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Compute v(0) = L−1
(
Gp(0) − g

)
for some initial guess p(0)

Set r(0) = Dv(0)

Choose r̃ (for example, r̃ = r(0))
for i = 1, 2, . . .

ρi−1 = r̃T r(i−1)

if ρi−1 = 0 method fails
if i = 1
q(i) = r(i−1)

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
q(i) = r(i−1) + βi−1

[
q(i−1) − ωi−1w

(i−1)
]

end if
solve Lz1 = Gq(i)

w(i) = Dz1

αi = ρi−1/r̃
Tw(i)

s = r(i−1) − αiw
(i)

solve Lz2 = Gs
t = Dz2

ωi = tT s/tT t
p(i) = p(i−1) + αiq

(i) + ωis
v(i) = v(i−1) + αiz1 + ωiz2

r(i−1) = s− ωit
check convergence; continue if necessary
for continuation it is necessary that ωi 6= 0

end

Figure 2: Pseudocode for Uzawa Bi-Conjugate Gradient Stabilised method.
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no-slip condition for the velocity, homogeneous Dirichlet conditions are im-
posed on z1 and z2. The formulation of the Poisson solver used to determine
z1 and z2 is presented in below.

The Uzawa BiCGSTAB algorithm requires the solution of Poisson equa-
tions for the velocity search directions z1 and z2. Given that both systems
are of the same form, we will simply discuss the solution of these systems in
terms of the variable ζ. We start with the continuous form for the Poisson
equation given by

∇2ζ = f . (25)

Since we have periodic boundary conditions in the spanwise direction we can
take the Fourier transform of (25) to obtain

−k2ζ̂ + ζ̂ ′′ = f̂(k, z), (26)

where k is the spanwise wavenumber, and the prime and carat denote the
derivative with respect to the z-direction and transformed variables, respec-
tively. Thus, for each point in z, given by the index j, we have

ζ̂ ′′
j = k2ζ̂j + f̂j. (27)

The compact finite difference stencil (19) presented above yields the penta-
diagonal system

Cζ̂j−2 +Bζ̂j−1 + Aζ̂j +Bζ̂j+1 + Cζ̂j+2 = αf̂j−1 + f̂j + αf̂j+1, (28)

where A = −(b/2+2a)/h2−k2, B = a/h2−αk2, and C = b/(2h)2. The para-
meters a, b, and α associated with the fourth- and sixth-order approximations
are the same as those used in the appropriate forms of equation (19). The
sixth-order, five-point stencil is used for points j = 3 . . . nz−2. For the points
next to the boundary (j = 2, nz − 1), we use the fourth-order, three-point
stencil. The pentadiagonal system is solved using the generalised Thomas
algorithm [14].

7 The Behaviour of a Real Material (Exper-

imental Observations)

Although there have been many experimental investigations of the behaviour
of LCPs in flow, the most comprehensive, in terms of observations over a
wide range of shear rates (and thus also a wide range of Ericksen and Deborah
numbers) is the study of Larson and Mead [20, 18] in which a nematic liquid
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crystalline poly(γ-benzyl-glutamate) solution was subjected to shear flows in
torsional and planar cells.

Larson and Mead [18] observed that this LCP exhibited two distinct
regimes when subjected to shear flow, which are now believed to be generic
to all LCPs. These two regimes are referred to as the Ericksen number and
Deborah number cascades. The Ericksen number cascade corresponds to the
regime of shear rates where Er ≥ O(1) and De � 1. It is characterised by
instabilities that arise at low shear rates as a consequence of the competition
between the viscous stress imposed by the flow and long-range (gradient)
elasticity. The result at moderate Ericksen numbers is the formation of roll
cells with their axis in the flow direction, followed, as the shear rate is in-
creased, by increasingly complex time-dependent flows, and ultimately, the
evolution of disclinations that proliferate with time and lead to a polydomain
structure in which the system is only aligned in small microdomains but is
isotropic on larger length scales. During this whole series of flow regimes,
the Deborah number remains small, though the Ericksen number can achieve
quite large values of O(104 − 106).

However, as the shear rate is increased further, the Deborah number
reaches O(1) (and even larger) values, meaning that the time scale of the
flow (i.e. γ−1) becomes comparable to (or larger than) the relaxation time
scale of the polymer, and viscoelastic effects become important. The various
transitions that occur once the Deborah number reaches O(1) values is what
Larson and Mead termed the Deborah number cascade. In this regime, as De
is increased, the polydomain structure at first becomes increasingly refined,
but eventually, at high enough shear rates, viscoelasticity appears to stabilise
the system, the complex polydomain structure disappears and there is again
the visual appearance of bands (due to modulations in the mean orientation)
in the flow direction, followed at higher shear rates by what is apparently
a monodomain structure (no birefringence). The stabilisation of the flow is
presumably related to the transition from tumbling to flow aligning, which
is known to occur for De in the range from 1 − 10 (depending on the value
of the nematic strength U).

8 Summary of Computational Results

A complete presentation of results that we have obtained in the present study
is currently being prepared for publication elsewhere. Here, we briefly and
qualitatively summarise these results.

First, we consider the parameter values that have been studied to date.
With regard to the fixed parameters, we used the following values: β = 200,
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c = 100, U = 6, and `/H = 8.5× 10−3. The value used for the crowdedness
parameter is typical of lyotropic systems. For a discussion of representative
values of c, we refer the reader to the work of Feng and Leal [11]. In determin-
ing the appropriate choice for the nematic strength U , we chose a value such
that the DMG model exhibited dynamics consistent with those observed of
Larson and Mead [21]. Larson and Mead reported that the PBG solution
used in their investigations underwent a tumbling-to-wagging transition at
De ≈ 2, followed by a wagging-to-flow-aligning transition at De ≈ 5. For
the case of the unapproximated Doi theory, these transition De values corre-
spond to U = 6 [10]. The nondimensional interaction length scale was chosen
such that, for the parameter values presented here, Er/De = 103. Therefore,
for the results presented here, the only parameters varied were Er and De.
For comparison to experiments in which the polymer is sheared between two
parallel plates, with a fixed separation distance, this is equivalent to changes
in the shear rate when the ratio Er/De is held constant.

The present calculations assumed no-slip conditions for the velocity com-
ponents at z = 0, 1, i.e. v = (z 0 0)T . With regard to boundary conditions
for the configuration tensor A, the polymer configuration is anchored at the
upper and lower boundaries of the domain such that A remains fixed in its
uniaxial equilibrium form (i.e. equation (15) with Seq at the equilibrium
value, which can be shown from equation (12), with no flow and U = 6,
to be 0.74454. Initial conditions for the velocity are linear shear flow. A
random-phase perturbation , with an O(10−6) amplitude, is introduced into
the polymer configuration, with an initial orientation along the y-axis.

We have considered a range of Ericksen numbers from approximately 40
to 11,000 (and thus of Deborah number from 0.04 to 11). In the previous
work of Sgalari et. al. [29] it was not possible to obtain solutions down to
sufficiently low Ericksen number to provide an unequivocal comparison with
the earlier computations of Feng et. al. [13] which used the Leslie-Ericksen
theory (strictly valid in the limitDe→ 0, as discussed earlier). In the present
calculations, we were able to demonstrate that the DMG model produces
results that closely mimic the qualitative behaviour observed by Larson and
Mead, as well as reducing to the LE results of Feng et. al. at the lowest
Ericksen numbers. In particular, at the lowest Ericksen numbers, there is a
transition from steady shear flow to flow with roll cells in the flow direction,
with a decrease in the aspect ratio (i.e. width to height) with increasing
Er that agrees with the measured data of Larson and Mead as well as the
LE calculations of Feng et. al. This steady roll cell structure persists from
Er ≈ 45 up to Er ≈ 250.

Beyond Er ≈ 250, the roll cell structure becomes unstable, and the result
is a time dependent quasi-periodic oscillatory flow structure. An instanta-
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Figure 3: Velocity and director profiles for Er = 300 [τ = 200 (strain units)].
The vector plot represents the secondary flow components vy and vz. The
overlying contour plot is the angle θ between the director and the y-z plane.
The relative magnitudes of vy and vz, with respect to the shear component
vx are O(10−2).

neous “snapshot” of this flow in the vorticity-velocity gradient plane is shown
in Figure 3. At first, there are no disclinations formed in this rather complex
flow, but as the Erickson is increased, the flow continues to become more
complex (smaller scale structures that evolve more rapidly) and at Er ≈ 450
there is the first appearance of ±1 disclinations (where the sign and strength
of the disclination denote the relative rotation of the director on a path encir-
cling the disclination core). It is not a surprise to see this type of disclination
form. We know that the DMG model reduces to the classical Leslie-Ericksen
model at low De, and we also know from the calculations of Feng et. al. that
±1 disclinations are seen when this same flow is studied using the Leslie-
Ericksen theory. In fact, the ±1 disclinations that we see are formed by the
same “ridge-splitting” mechanism that was first identified by Feng et. al. In
the case of the LE model calculations, we only see ±1 disclinations because
these can escape a true orientational singularity by rotating at their core
into the flow direction without any change in the degree of alignment (i.e.
without any change in the distribution function except for changes in mean
orientation). However, the other type of disclination that is commonly seen
experimentally, namely ±1/2, is not possible for a pure Leslie-Ericksen fluid
because it would produce a true orientational singularity as long as it is not
possible to distort the form of the distribution function. Indeed, it is believed
that the core of ±1/2 disclinations are actually isotropic, and that local dis-
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tortion of the distribution function to this isotropic state is the mechanism
for avoiding a true singularity in this case. So, it is not surprising that we
see only ±1 disclinations when the Ericksen number is small enough that the
Deborah number is still less than unity. However, the obvious question is
whether we begin to see the ±1/2 disclination once the Deborah number ap-
proaches O(1) values where we might expect to begin to see some significant
distortions of the distribution function.

The answer is “yes”. At Deborah numbers of O(1) (specifically for Er ≥
700) we begin to see both ±1/2 and ±1 disclinations appearing simultane-
ously in the flow. One interesting question that we will try to answer when
enough solutions are available is the relative population of these two fami-
lies of disclinations, and how this depends on Er (and/or De). Simplistic
“energy” arguments based on the energy associated with true ±1/2 and ±1
disclinations show that the energy required to form a ±1 disclination is 4
times that for ±1/2 disclinations, and thus we might eventually expect to
see a preponderance of ±1/2. However, these arguments do not take into
account the actual microstructure in the vicinity of the core for these two
types of disclinations, and this presumably negates this whole picture.

Finally, another obvious question is whether the DMG model can repro-
duce the Deborah number cascade? As we continue to increase Er (and thus
De), we encounter an increasingly fine-scale structure and accurate solutions
require more and more resolution. In fact, there is an intermediate region
between Er = 1000 and Er ≈ 10, 000 where we have not obtained solutions
because we were not willing to bear the extremely high cost with our current
code, and non-parallel computing facilities. However, we have obtained a
solution at Er = 11, 000 (De = 11). This is well above the transition in
a simple shear flow between tumbling and flow aligning, and we find in the
present case that we obtain a solution that is no longer contains disclina-
tions or even role cells. However, it does retain some structure in the flow
direction, and this has the visual appearance of stripes, as also seen experi-
mentally in the midst of the Deborah number cascade. At the moment, we
have not obtained solutions at either higher or lower values of the Deborah
number in this regime.

9 Conclusions

We have developed a numerical technique that allows for solutions of the
DMG model equations for LCPs for both high and low values of the Ericksen
number. By means of this technique, we have been able to demonstrate that
the DMG model predicts the formation of both ±1 and ±1/2 disclinations
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in a simple shear cell, with the former appearing at lower Ericksen number
by a mechanism that is the same as identified earlier by Feng et. al. via
calculations using the Leslie-Ericksen model, and the latter appearing at
higher Ericksen numbers when the Deborah number is O(1). The model
also shows a transition at even higher Ericksen number, when the Deborah
number is above the tumbling to flow-aligning transition, to a relatively stable
flow with a stripped pattern in the flow direction. Future work will fill in
the details of this qualitative picture, and particularly also focus on the
development of a parallel version of this code so that computations can be
done which allow also for gradients of the flow or microstructure in the flow
direction.
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