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Abstract

The coalescence of two equal-sized deformable drops in an axisymmetric flow is studied, 

using a boundary-integral method. An adaptive mesh refinement method is used to 

resolve the local small-scale dynamics in the gap and to retain a reasonable speed of 

computation. The thin film dynamics is successfully simulated, with sufficient stability 

and accuracy, up to a film thickness of  times the undeformed drop radius, for a 

range of capillary numbers, Ca, from  and viscosity ratios from 

4(10 )O

4(10 10 )O 1 (0.1 10)O .

The results are compared with experimental results from our earlier studies as well as the 

simple scaling theory for film drainage. The collisions for time-independent flow 

simulating head-on collisions in the experimental studies show two distinctively different 

regimes. At lower capillary numbers, the interfaces of thin film between the colliding 

drops remain almost spherical up to the point of film rupture, and the dimensionless 

drainage time scales as . At higher capillary numbers, the film becomes 

dimpled at an early stage of the collision process, and the rate of the film drainage 

significantly slows down after the dimple was fully formed. In this case, the drainage 

dt G Ca
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time scales approximately as . The simulation, using a Hamaker constant 

with a fixed value calculated via Lifshitz theory, qualitatively predicts the experimental 

results for the higher capillary numbers but not for the lower capillary numbers. The 

critical conditions for head-on collisions are also examined when the internal circulation 

within the drop, caused by the external flow, arrests the film drainage. Collisions in a 

time-dependent flow are also examined to simulate glancing collisions. Although the 

simulations predict many aspects of the experimental results, the results are only 

quantitatively accurate, in comparison with the experimental data, for the lowest viscosity 

ratio of 0.19. The interfaces of the thin film locally bulge outward when the drops are 

being pulled apart due to the suction pressure. This local deformation causes a secondary 

(or primary for larger offsets) minimum in the film thickness when . At the 

larger offsets, the coalescence angle continuously increases with Ca  up to the separation 

angle ( ), for . At smaller offsets, however, the local deformation 

cannot induce film rupture, as is observed in both the glancing and time-dependent flow 

collision experiments for the higher viscosity ratios. 

3/ 2
dt G Ca
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1. INTRODUCTION 

The interaction and motion of drops in a flow has long been the subject of 

experimental and theoretical studies due to their fundamental importance in a variety of 

multi-phase flow systems, such as liquid-liquid extraction, emulsification and polymer 

blending. Studies of the dynamics, deformation and breakup of single drops was 

pioneered by Taylor [1, 2]. Youngren and Acrivos [3] were the first to use boundary-

integral methods for single drops in axisymmetric extensional flows, and they were 

followed by Rallision and Acrivos [4]. Theoretical and experimental studies on the 

dynamics and breakup of single drops have a rich history and are well reviewed by Stone 

[5].

The physics of the interaction and coalescence of two or more drops is more complex 

than the dynamics of a single drop and more difficult to study, either theoretically or 

experimentally. Most of the experimental investigations for coalescence have been 

performed by measuring the evolution of the drop size distribution of an emulsion or 

blend subjected to steady or transient flow. The trajectories of a pair of drops in both 

shear [6] and extensional flow [7] were also studied, but coalescence was not observed 

due to the relatively large sized drops that were used. Recently, however, the coalescence 

of two equal-sized drops in the size range, diameter < 100 m, has been investigated 

using the four-roll mill at the individual drop level of resolution by our group [8-12]. The 

fluids were polymeric, but Newtonian under the flow conditions relevant to coalescence, 

and we considered systems both with and without copolymer surfactant.  These studies 

revealed a number of interesting and often unexpected phenomena. However, an intrinsic 

limitation of these experiments is that one cannot visualize the details of the thin film 
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region between the drops, and thus, we can only speculate on the mechanisms for many 

of these phenomena. This is where theory can play an extremely useful role. At the same 

time, comparisons between experimental data and predicted results for measurable 

quantities, such as the film drainage time, or the coalescence angle, can provide a check 

on the accuracy of the underlying physical assumptions in the theory; chief among these, 

of course, are the continuum approximations in governing equations and boundary 

conditions that are applied within the thin film, which can become extremely thin before 

rupture occurs due to van der Waals forces in the case that the two drops coalesce. 

There have been numerous theoretical studies focused on numerical simulation of the 

interactions of drops either in a flow or in buoyancy driven motion, with or without van 

der Waals forces. For the asymptotic limit of a small capillary number ( ), 

Yiantsios and Davis [13] have investigated the thin film dynamics for buoyancy driven 

collisions, within a matched asymptotic framework. A number of numerical studies of the 

local film drainage have been reported, using a similar asymptotic analysis for various 

types of collisions, with or without surfactants at the interface [14-17]. A recent thin film 

study by Baldessari and Leal [18], using a slightly modified asymptotic framework, has 

shown that the small overall drop deformation of  due to the external flow can 

play an important role in the film drainage process, especially in the counter-intuitive 

case when the capillary number is asymptotically small ( ). The thin film 

studies referenced above only considered the local motion within the drops that is driven 

via coupling with the tangential motion within the thin film. In effect, this assumes that 

the external flow field affects drop coalescence only via the overall deformation of the 

drop, which affects the shape and thickness of the thin film, and the hydrodynamic force 

1Ca
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that pushes the drops together. However, recently, both  a numerical study of the full drop 

collision problem by Cristini et al. [19] and an asymptotic analysis by Nemer et al. [20] 

have shown that the film drainage process can also be affected by the recirculating flow 

that is induced inside the drop by the external flow, especially when the capillary number 

is not too small. The collision of two fully deformable drops has also been studied using 

three-dimensional boundary-integral methods [19, 21-24]. In this case, however, the 

capillary numbers investigated were relatively large. Furthermore, the thin film drainage 

and rupture process  was not studied systematically since the van der Waals force was not 

considered in most cases, due to the high computational cost.  

Motivated by these proceeding studies and the availability of quantitative and often 

puzzling experimental data [9, 11, 12], we investigate here the axisymmetric interaction 

of two equal-sized deformable drops in a bi-axial extensional flow in the creeping flow 

limit, using the boundary-integral method. An axisymmetric flow was chosen so that 

relatively fast calculations over broad parameter ranges could be performed to examine 

the thin film drainage, as well as the overall deformation, with accurate resolution. An 

adaptive mesh refinement method was used to resolve the local small-scale dynamics 

within the thin film, while still retaining a reasonable speed of computation.  

Computations for collisions in a time-independent flow were carried out to simulate 

head-on collisions for Ca  of  and viscosity ratios of , which is 

the same range as studied experimentally. Computations were also carried out for 

collisions in time-dependent flows with the objective of simulating glancing collisions. 

The results were compared with the experimental results from our earlier studies [9, 11, 

12], as well as the scaling theories for thin film drainage [9, 25]. The rationale for 

4(10 10 )O 1 (0.1 10)O

5



comparing these axisymmetric simulations with the experimental data will be addressed 

partially in the next paragraph, and partially at the beginning of Section 4. 

A primary goal of this numerical study is to investigate the thin film dynamics, 

which is crucial to understanding the complex and often unexpected experimental results 

of our earlier studies [9, 11, 12]. An axisymmetric collision allows for a robust and 

accurate local resolution of the thin gap region where the important physics evolves. 

However, an obvious question is whether the axisymmetric thin film drainage problem is 

an adequate approximation of the full three-dimensional (3D) collision process. 

 The assumptions underlying this approach are two-fold. First is the idea that a fully 

3D collision trajectory can be described via the superposition of a relative translational 

motion along the line of centers, and a rotation of the line of centers. This description is 

exact if Ca = 0 so that the drops are perfectly spherical, and it is approximately true in an 

asymptotic sense provided . In this case, one can study the film drainage process 

for a 3D “glancing collision by studying a head-on collision with the velocity gradient 

changing as a function of time so that the force along the line of centers is the same as it 

would be in the glancing collision. The second assumption is that the axisymmetric film 

for the biaxial flow is an adequate approximation of the film geometry in the 2D straining 

flow that is obtained in the 4-roll mill. Again, it can be shown that this assumption is 

asymptotically correct in the limit . Recently, experiments in our group [12] were 

carried out to probe the “decomposition” of the collision process, by comparing 

coalescence times for glancing collisions and for head-on collisions with the shear rate 

varied with time as described above. The results were experimentally indistinguishable 

over the full range of capillary number that was covered in the coalescence experiments. 

1Ca

1Ca
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The only way to “exactly” check The only way, potentially, to quantify the 

approximation inherent using the axisymmetric extensional flow instead of the 2D flow 

that is used in the experiments would be by comparison of computational results for these 

two cases. The comparsons that have been carried out show no significant difference for 

 [24, 26], though we are doubtful that the existing 3D simulations have enough 

resolution to maintain accuracy all the way to film rupture. 

1Ca

  A secondary objective is to assess the relevance of a classical continuum theory in 

describing the coalescence process, which occurs with a minimum film thickness of 

 for the fluids considered here. There are three basic areas of assumption: the 

fluids are Newtonian with the same properties in the thin film as in the bulk fluid domain; 

the interface is sharp and characterized by a constant interfacial tension; and the van der 

Waals force across the film can be approximated as a disjoining pressure based on the 

local film thickness and a Hamaker constant that is fixed at the value given by Lifshitz 

theory. In the absence of a molecular theory for the thin film region, the best test that we 

can make is to compare theoretical predictions of the coalescence process based on the 

continuum theory with experimentally measured values of the same quantities. The 

present work represents the first attempt to study the flow-induced coalescence process 

based upon a continuum model, with predictions at the same parameter values where 

experiments were carried out in the four-roll mill. 

(100A)O

2. NUMERICAL METHOD 

The primary objective of this study is to examine the details of the evolution of drop 

deformation and relative position from the prescribed initial separation up to the event of 
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the film rupture. A schematic of two deformable drops in a linear axisymmetric flow is 

shown in Fig. 1. The viscosities of the suspending fluid and the drop fluid are e  and d

respectively. Both fluids are Newtonian, and the densities are matched. Each drop has an 

undeformed radius R. The undisturbed external flow at infinity is the biaxial extensional 

flow with the strain rate, ,G

1 0 0

0 1 0
2

0 0 2

Gu x

2

. (1) 

2.1. Boundary integral formulation 

When the Reynolds number is small, the hydrodynamics of the colliding drops 

become a Stokes flow problem. Boundary integral methods provide us with a 

representation of the flow in terms of a distribution of point forces on the interface of the 

drops [4, 27]. The velocity  at each interfacial point  can be written, in 

dimensionless form, in terms of integrals over the surfaces of the two drops  as

0( )u x 0x

1S S

1 2

1 2

0 0 0

0

2 1
( ) ( ) ( , ) ( ) ( )

1 4 (1 )

1 1
( ) ( , ) ( ) ( ).

4 1

e S S

S S

dS

dS

u x u x G x x f x x

u x T x x n x x
                               (2)  

Here  is the viscosity ratio ( d e ),  is the spatial variable of integration on the drop 

surfaces,  is the jump of the stress across the interface (

x

( )f x e d n ),  is the unit 

outward normal vector, and  

n

0 3
( , )

r r

I rrG x x , (3)
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0 5
( , ) 6

r

rrrT x x . (4) 

The tensor G  is known as the Stokeslet (free-space Green’s function of Stokes flow), 

is the stresslet, r = , =T 0x x r r , and I  is the unit tensor. The first integral term in 

Eqn. (2) is referred to as the single-layer potential, whereas the second integral term is 

known as the double-layer potential. In the present simulations, we assume that the 

attractive van der Waals force across the thin film can be approximated via a disjoining 

pressure. Retardation effects for the van der Waals interaction are also considered [18, 

28]. Hence, when the interfacial tension is constant (i. e. clean interface), and the drop is 

neutrally buoyant (i. e. e d ), can therefore be expressed in the form ( )f x

,

3
( ) 2 ( ) ( ) ( ) ( )

6 ( )
H effA

f
h

f x x n x x n x
x

, (5) 

where  is the interfacial tension, ( )x  is the mean curvature of the interface (  = 

, where

2 ( )x

( )s n x s  is the surface gradient operator), ,H effA  is the effective Hamaker 

constant including retardation effects, and  is the local minimum distance to the 

other interface.

( )h x

The above boundary-integral formulation, although formally exact, contains 

singularities when . However, methods have been developed to obtain second 

order numerical approximations. Starting with this standard boundary-integral 

formulation for the interfacial velocity, the leading order singularity and near-singularity 

are removed by a suitable subtraction that uses two stokes flow identities [21, 22, 27]. 

The resulting integrals are then approximated by the trapezoidal rule. It is important to 

note that this “singularity subtraction” only removes the leading order singularity but 

0x x
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leaves an infinite number of singularities that affect all the higher derivatives of the 

integrand. Thus, to construct approximations to the boundary integrals with accuracy 

more than two it is necessary to account for this subtle singular behavior. Here we 

employ the second order approximation. Also, to facilitate the solution of the integral 

equation (2).  The marginal eigenvalues at 0  and   are removed by 

Wielandt’s deflation [23, 27, 29]. The result of the leading order singularity and near 

singularity subtraction and the Wielandt’s deflation is the following expression for a 

modified interfacial velocity 

1 2

1 2

*
0 0 0

0

0 0

2 1
( ) ( ) ( , ) ( ) ( ) ( ) ( )

1 4 (1 )

1 1
( ) ( ) ( , ) ( ) ( )

4 1

1
( ) ( ) .

1

S
e S S

S S

S S

f f dS

dS

w x u x G x x n x x x x

w x w x T x x n x x

w x w n n x w

 (6) 

The interfacial velocity, , is related to the modified velocity, , according to  0( )u x 0( )w x

0 0

1
( ) ( )

2
u x w x w  (7) 

Referring back to Eqn. (6), the index  in S  refers to either surface of drop 1 or 2, 

is a fixed point on one of the drop surfaces ( or ), is  for integration on the 

drop surface containing  (leading order singularity subtraction), and for integration on 

the other drop surface,  is the point on the surface that is closest to  (near leading 

order singularity subtraction). The leading order singularity subtraction is made possible 

by the identities [21, 27], 

0x

1S 2S *x 0x

0x

*x 0x
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 (8) 0
0 0

0

4 , ( )
( , ) ( ) ( ) 0, and ( , ) ( ) ( ) .

0, ( )
S S

S
dS dS

S

I x x
G x x n x x T x x n x x

x x

The quantity  in the last term of Eqn. 0( )w x (6) comes from the leading order 

singularity subtraction of the double-layer potential. The quantities w n  and w ,

which come from Wielandt’s deflation, are area averages for the surface of the drop 

containing .  0x

We can now non-dimensionalize using the following characteristic scales 

, ,c c c el R w R t R . (9) 

The modified interfacial velocity in dimensionless form is then given by  

1 2

1 2

*
0 0 0

0

0 0

2 1
( ) ( ) ( , ) ( ) ( ) ( ) ( )

1 4 (1 )

1 1
( ) ( ) ( , ) ( ) ( )

4 1

1
( ) ( ) .

1

S

S S

S S

S S

Ca f f dS

dS

w x u x G x x n x x x x

w x w x T x x n x x

w x w n n x w

. (10) 

In this equation, Ca  is the capillary number ( eCa GR ), u is the applied bi-axial 

extensional flow, which can be defined in cylindrical coordinates as

1
(
2 rr zu e )ze , (11) 

and  is( )f x

*
,

3
( ) 2 ( )

( )
H effA

f
h

x x
x

, (12) 

where *
,H effA = 2

, 6H effA R  is the dimensionless van der Waals interaction parameter. 

2.2. Numerical scheme 
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2.2.1. Azimuthal integrations 

For a given axisymmetric flow, a further simplification can be made by analytical 

integration around the axis of symmetry using cylindrical coordinates. The resulting 

formulation takes the form of line integrals. The single-layer and double layer potential 

terms are then expressed as  

*
0

*
0

( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( )

S

ij jC

f f dS

M n f f dl

G x x n x x x x

x x x x x x
 (13) 

 (14) 

*
0

0 0

( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( *) ( )

S

ijk k j ijk k jC

dS

Q n w Q n w dl

w x w x T x x n x x

x x x x x x x x x

where the line integral contour, C , is taken over the circumferential surfaces of the drops 

in the =0 half-plane. 

The components of ijM  and  are available in Pozrikidis [27], and the components 

of  are given in Davis [26]. The components involve the complete elliptic integrals of 

the first and second kind. These elliptic integrals are calculated using the polynomial 

approximations of Abramowitz and Stegun [30] and the asymptotic expansions of Lee 

and Leal [31], as indicated in Davis [26]. The numerical integrations of Eqn. 

ijkQ

ijkQ

(13) and 

(14) are carried out using the trapezoidal rule, along the discretized trace C  of the drops. 

2.2.2. Discretization: Adaptivity through dynamic parametrizations and mesh 

refinements 

We employ an adaptive spatial discretization to achieve accurate resolution of the 

widely different length scales of the coalescence problem while attempting to minimize 
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the computational cost.  The adaptivity is obtained by dynamically changing the 

parametrization of the interface (which controls the distribution of computational points 

on the interface) as in [32-34] and by mesh refinement. The curve C  is represented at all 

times in parametric form by ( , ) ( ( , ), ( , ))t r t z tx , where 0 1  and all the 

variables in physical space are expressed in terms of . The parameter  is discretized 

uniformly into  points. The spacing of these marker points on the interface is 

controlled by the infinitesimal arclength metric is given by  

1n

2( , )
s

s t r z 2 . (15) 

We can select the parameterization [32-34] so that  

( , ) ( ) ( )s t P L t , (16) 

where ( ) 0P  and satisfies the constraint 

1

0
( ) 1P d . (17) 

In Eqn. (16),  is the total length of the curve C  at time t, i.e.   ( )L t

1 1 1

0 0 0
( ) ( ) ( ) ( ) ( )

s
L t d P L t d L t P d . (18) 

Note that if ( ) 1P  then all the interface markers (nodes) will be equally distributed in 

arclength. Instead of this choice, we select ( )P  based on the geometry of the drop 

surfaces to obtain the required non-uniform node distribution. Specifically, when the 

deformation of the interfaces in the gap region is not large (i.e. the interfaces are not 

dimpled) ( )P  is set to be similar to a step function. It has small constant value ( )

near the defined gap region and a large constant value ( ) away from the gap. This 

minP

maxP
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function was constructed analytically by connecting smoothly the specified  and 

using a third order polynomial [35]: 

minP maxP

min

min max min

max

0

( ) ( ) ( )

1

P

P P P P Q

P

, (19) 

where  is the width of the region across which P = , and minP  is the width of the 

transition region across which ( )P  changes according to 

4 5 6( ) 35 84 70 20Q 7 . (20)

The polynomial ( )Q  is such that: = 0 and =1, and its three derivatives vanish 

at

(0)Q (1)Q

= 0 and 1. Note that not all of the parameters in Eqn. (19) are independent. Using the 

constraint (17) it follows that 

min
max

1 ( 0.5

1 ( 0.5 )

P
P

)
. (21) 

Now, the spacing between two consecutive nodes i  and 1i  in the region where 

( )P  assumes the constant value , i.e. the minimum node spacing  satisfies: minP mins

1

min min

1
( ) ( ) ( )

i

i

s L t P d L t P
n

. (22) 

We select  to be 70% of the minimum film thickness  and hence mins minh

min min0.7
( )
n

P h
L t

. (23) 

The parameter  can be defined by matching the region across which  to the end 

of the pre-defined thin gap (

minP P

gaps ):

min min0
( ) ( ) ( ) ( )gap gaps L t P d L t P s L t P . (24) 
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To define the thin gap region ( 0 gaps s ), gaps  is chosen by either the position where 

the meridian curvature ( ) is maximum or where the radial extent is . The 

parameter 

m
1/ 2(O Ca )

 was set to 0.3. 

       In order to maintain an adequate resolution globally we set the maximum allowed 

node spacing (outside the node region) maxs  to be 0.01-0.02. This was achieved by 

controlling the number of nodes . Because n

max max

1
( )s L t P

n
, (25) 

we can use the constraint (17) to determine the required .n

When the interface is dimpled, to adjust to the geometry of the interface, we employ 

different ( )P  that connects smoothly four values, , , centerP minP gapP , and . Here 

 and 

maxP

centerP gapP  correspond to the values of P  at the center and at the end of the gap, 

respectively. More specifically, in this case ( )P  is defined as 

min min
min

min
min min min min

min
max min min

max min

( ) ( ) 0 ,

( ) ( ) ,
( )

( )
( ) ( )

1,

center center

gap gap
gap

gap
gap gap gap gap

gap

P P P Q

P P P Q
P

P P P Q

P

,

 (26) 

and we set 

0.7
( )center center

n
P h

L t
, (27) 

min min0.7
( )
n

P h
L t

, (28) 
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0.7
( )gap gap

n
P h

L t
, (29) 

where  and centerh gaph  are the thickness of the film at the center of the gap and at the end 

of it, respectively. Again,  is fixed to 0.3, maxs  is set to 0.01-0.02, and required  is 

determined from the constraint 

n

(17). Figure 2 shows typical examples of ( )P  profiles 

for two cases of (19) and (26).

Initially, the simulation is run with uniform node spacing (n = 200 on one-half of a 

drop) until the drops are in close proximity. Then, the non-uniform node spacing is 

introduced. Usually mesh refinement in  was conducted 3 – 8 times during a simulation, 

based on the film thickness. The interpolation of the shape was carried out spectrally 

using the fast-Fourier transform (FFT) [36]. Figure 3 shows a typical example of the 

evolution of the interface shape in the gap region as well as the non-uniform node 

distribution constructed using the methods described above. The nodes are plotted every 

4 points in the figure.

The first procedure of the calculation is to compute all geometric interfacial 

quantities from the known position of the interface. Next, the velocity components are 

calculated by solving Eqn. (10) iteratively. To accelerate the convergence we employ 

extrapolated values from previous time steps as initial estimates. A simple first order 

extrapolation was used for each velocity component [26, 36]. The interface position is 

then updated by the kinematic condition, 

Au
t

x u t , (30) 
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where  is the interfacial velocity obtained via the boundary-integral calculation, and 

 is an auxiliary tangential velocity, used to maintain the desired distribution of nodes 

at the interface while the interface shape remains unaltered [21-23]. This auxiliary 

velocity [36] is calculated at each node (

u

Au t

j ) using

, 0
( )

j

A j j j m m

s s
u P du t u n u n , (31) 

where

1

0m m

s s
du n u n . (32) 

A second-order Rugge-Kutta method is used to integrate the kinematic condition, 

Eqn. (30). The stability criterion for time integration [37] is  

mint s , (33) 

where the dimensionless time, t , is defined earlier as et R , and  is the 

minimum separation between the nodes. This criterion can be expressed as  

mins

min( )t G Ca s . (34) 

      The meridian curvature ( ), azimuthal curvature (m ), and components of the 

normal vector (  and ) arern zn

3(m r z z r s) / , (35) 

/rn r , (36) 

/ , and /r zn z s n r s , (37) 

where the subscript  stands for differentiation with respect to that variable [32-34]. The 

mean curvature is one-half the sum of the meridian and azimuthal curvatures: 
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1
(

2 m ) . (38) 

For the end points on the axis of symmetry, m . It is crucial to resolve accurately 

above mentioned geometric quantities. For this reason, we adopted spectral methods. The 

first and second derivatives of the coordinates with respect to  were calculated pseudo-

spectrally using FFT for calculating the geometric properties. The details of the spectral 

methods are available in Baldessari [36]. 

2.2.3. Convergence tests 

The convergence of the boundary-integral method was tested by varying the node 

spacing. The Hamaker constant, HA , is assigned the value 3.199 10-21 J, which makes it 

possible to directly compare this study with our earlier experimental studies [9, 11, 12]. 

The Lifshitz theory is used to estimate the Hamaker constant, using the refractive index 

of polybutadiene (PBd, PBdn =1.515) and polydimethylsiloxane (PDMS, PDMSn =1.403)

and the main electronic absorption frequency ( e = 15 13 10 s ) [18, 28, 38]. The 

estimated Hamaker constant is a typical value for a polymer/polymer system [38]. Three 

different viscosity ratios of 0.19, 1.2, and 6.8 were studied, and a range of drop radius 

from 1 – 70 m. For a fixed capillary number, the drop size only affects the 

dimensionless Hamaker constant ( * 6H
2A A R ), as shown earlier in the governing 

equation of the boundary-integral method (cf. Eqn. (10)). The drops are initially 

positioned with a center-to-center distance of 4 . The experimentally measured 

interfacial tensions are used [11] (

R

= 4.6, 4.8, and 5.0 mN/m for = 0.19, 1.2, and 6.8 

respectively). 
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Figure 4 shows the evolution of the thin film for Ca = 0.015, = 0.19, and =

4.99 10

*A

-11 ( = 27.2 m and R = 4.6mN/m). The minimum film thickness, , the film 

thickness at the center of the film, , and the radius of the thin film (or dimple), , as 

a function of time are plotted in the figure. The data shown in the figure are the results of 

three different types of calculation: one pair of solutions using a uniform node spacing (n 

= 500 and 1000); a second set of three solutions using the step-function shaped node 

distributions having three different 

minh

centerh a

s  in the thin film region (referred as the step 1 for 

= 0.002, step 2 for = 0.001, and step 3 for s s s = 0.0005), and a single interpolation 

at  0.03; and a pair of solutions using the adaptive method (adaptive 1 for re-

meshing 7 times up to =0.0005 and adaptive 2 for re-meshing 8 times up to 

=0.0003).

minh

s

s

As shown in Figure 4, a  of 0.0005 was necessary to retain enough accuracy in 

the region where the interface ruptures. This value of 

s

s  approximately corresponds to 

the critical film thickness for coalescence. The computation speed of the boundary-

integral method is proportional to . Therefore, the typical small critical film 

thickness (or small dimensionless Hamaker constant) combined with the small capillary 

number is a restrictive condition for numerical studies of the coalescence process. On the 

other hand, when the van der Waals force was not included, a 

2( )O n

s  of 0.002 was enough to 

obtain the converged result up to the film thickness of . We view the solution 

with =0.0005 and a single interpolation at 

4(10 )O

s minh  0.03 (i.e. the calculation labeled 

“step 3”) as the most accurate, but it took a very long time to compute since the very 

small mesh size is carried over more than two decades of film width from 0.03 to O(10-4).
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The convergence test results are summarized in Table 1, including the coalescence time, 

, and the error of  relative to the  of step 3. The volumes of drops for 

the axisymmetric simulations remained constant to 0.04 % for the adaptive methods. The 

adaptive method speeds up the calculation by more than 10 times compared to step 3, 

while still maintaining accuracy.  

coaltG coaltG d coalt G

3. RESULTS FOR HEAD-ON COLLISIONS 

In this section we present numerical results for collisions with a time-independent 

flow, which simulate the “head-on collision” experiments. The results provide the details 

of the flow-induced collision process, including the thin film dynamics, which was 

impossible to observe in the four-roll mill experiments. We first discuss and illustrate 

qualitatively the evolution of the overall drop shape and the thin-film shape for the case 

of = 0.19. Then, we compare experimental data with predictions of drainage time as a 

function of capillary number and viscosity ratio for a fixed drop size of R = 27.2 m, 

discussing the general behavior of the collision process. The effect of drop size and the 

critical film thickness for coalescence are also discussed for all three experimental 

viscosity ratios. 

3.1. Drop shape evolution 

The evolution of the drop shape, from the prescribed initial separation up to the event 

of coalescence, was calculated. The results were also compared with the experimental 

data of our earlier studies [9, 11]. To briefly summarize the experimental studies, we 

measured the drainage time, , which is the period from the point when the center-to-

center distance is one drop diameter (

dt G

2d R ) to the instant of coalescence. However, we 
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could not experimentally study the dynamics of the thin film formed by the colliding 

drops.

Figure 5 shows a comparison between an experimentally measured collision 

trajectory and a calculated trajectory. The center-to-center distance ( d R ) as a function 

of dimensionless time ( ) is plotted for Ca = 0.0207, tG = 0.19, and = 4.99 10*A -11 

( = 27.2 m and R = 4.6mN/m). This capillary number is one of the largest values that 

we considered in our previous experiments. The insets show the calculated overall drop 

shape at  and the steady drop shape at tG = 2.041. The experimental data and the 

numerical calculation show excellent agreement for the drainage time as well as the 

deformation of the drops.  

2d R

The dynamics of the thin film between colliding drops plays an important role in 

coalescence, since the film must drain to a critical film thickness (or at least achieve an 

unstable shape) for the film to rupture. The interface of the drops may either remain 

spherical, flattened, or dimpled near the area of apparent contact during the film drainage 

process, depending on the magnitude of the hydrodynamic force relative to the magnitude 

of capillary forces due to the interfacial tension. Therefore, the flow-induced coalescence 

of drops is strongly governed by the capillary number.

Figure 6(a) shows the evolution of the local minimum film thickness, , the film 

thickness at the center of the film, , and the radial extent of the film, a , for Ca =

0.015,

minh

centerh

= 0.19, and = 4.99 10*A -11. The same type of data without the van der Waals 

force ( ) are also presented by dotted lines. Figure 6(b) shows the evolution of the 

thin film shape at the points indicated in Fig. 6(a) by the open circles. As time progresses, 

the film thickness decreases, the shape of the film becomes flattened, and eventually a 

0HA
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dimple is formed. After the dimple is fully formed, the rate of the film drainage is 

significantly slowed, as shown in Fig. 6(a). At this stage, the thin film pressure reaches 

the maximum value of the capillary pressure ( (2 )O R ). The pressure becomes 

relatively uniform over the majority of the gap region, with the pressure gradient only 

occurring near the rim of the dimpled region [18]. As the film thins, the strength of the 

van der Waals force increases. Finally, the evolution of the film shape (mostly ) starts 

to deviate from the case without the van der Waals force, and eventually the film ruptures 

at the rim of the dimple. The drainage time, , is indicated in Fig. 6(a). 

minh

dt G

The mean curvatures for the entire drop are plotted in Fig. 7, at the moments 

indicated earlier in Fig. 6. The variations in curvature occur over the front half of the drop 

near the gap region, and the deformation of the back of the drop remains almost constant. 

After the dimple is fully formed (beyond the 4th plot), the interface is almost flat ( 0 )

near the center of the film, and the deformation increases only near the rim of the dimple.  

On the other hand, when the capillary number is relatively small, the thin film 

dynamics are quite different from the case of the higher capillary number. Figure 8 shows 

the same types of data for Ca = 0.0008, = 0.19, and = 4.99 10*A -11. In Fig 8(a), 

presented by dotted lines are the data without the van der Waals force ( ). First, the 

initial film thickness (i. e. the thickness when the center-to-center distance is 2 ) is 

much smaller than the case of the higher capillary number (the 3

0HA

R

rd point in Fig. 8(a)). The 

thin film remains almost spherical almost all through the film drainage, due to the smaller 

capillary number. The drainage time is much shorter than in the higher capillary number 

case, where the film drainage process dominantly occurs with the dimpled configuration.  
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The mean curvatures for the entire drop are plotted in Fig. 9, at the moments 

indicated in Fig. 8. The back of the drop remains almost spherical ( ), and the 

variations in curvature occur only near the gap region. Both the front and back half of the 

drop are almost spherical for the first plot (

2 1

min 0.2h ). As the film thins, the deformation 

near the small gap region increases (the interfaces are flattened), and the interface 

eventually becomes dimpled right before the film rupture. The inset in the figure shows 

the mean curvature of the drop at 2d R  (3rd plot in the main figure).  

3.2. Drainage time for R = 27.2 m

In this section, we will present the predicted and experimentally measured drainage 

time data for a fixed drop size of = 27.2 m at various viscosity ratios and discuss the 

general behavior of the collision process. The drainage time as a function of Ca  for =

27.2 m at viscosity ratios of 0.19, 1.2, and 6.8, is shown in Fig. 10. The results of the 

simulations and experiments are shown by the solid symbols and open symbols 

respectively. The drainage times are scaled by the radius of the drop raised to the 5/4 

power in order to allow for direct comparison with the experiments, where this scaling 

was found empirically to reduce the drainage times for different size drops to a single 

curve [9, 11]. The experimental data, in fact, contain sets of data for different drop sizes 

including = 27.2 m. Also shown in Fig. 10 are straight lines with various slopes, 

which we explain below.

R

R

R

It was suggested in our previous studies that the experimental data increased with 

 as . This appeared to be consistent with predictions from a very simple scaling 

theory, which assumes that thin film is a flat disk, and leads to the prediction [9, 25], 

Ca 3/ 2Ca
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3/ 2 1
( )d

c

t G f Ca
h

, (39) 

where  is the dimensionless critical film thickness (ch / )ch R  for film rupture, and ( )f

is a known function that depends only weakly on  as 0.1( ) .f [9]. As long as the 

critical film thickness is independent of Ca  the previously proposed scaling is valid. 

From a scaling standpoint, the critical film thickness will be reached when the magnitude 

of the van der Waals force (i.e. the disjoining pressure) becomes comparable to the 

capillary force (i.e. the capillary pressure) at least locally. The disjoining pressure is 

approximately 3/HA h , where HA  is the Hamaker constant, and h is the dimensional 

film thickness. When the drop is dimpled, the minimum film thickness will occur near the 

rim of the thin film. The magnitude of the stabilizing capillary pressure, on the other hand 

is / c , where is the interfacial tension and  is the local radius of curvature. The 

ratio of these two pressures is 

c

3
H

c

A h
A . (40) 

If c R , A  is just 6 times the dimensionless Hamaker constant  that appeared 

previously in Eqn. 

*A

(12). The onset of film rupture is expected when  and then(1),A O

1/3 1/31/3
1/3*

2
c cH

c
c

Ah
h

R R R R
A . (41)

The scaling theory of Chesters [25] assumed c R  so that  is independent of .

However, it is clear from results like Fig. 6 that  at the rim of the film is much smaller 

than R. We have not been able to establish a rigorous asymptotic argument for the 

ch Ca

c
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appropriate scaling. A most conservative guess is that  has the same scaling as the 

radius of the dimple, 

c

1/ 2
c RCa . Quite possibly, the power on Ca  should be larger than 

1/2. In any case, if we adopt this assumption, we see 

1/3*
c

c

h
h A

R
1/ 6Ca  (42) 

It then follows from (33) that  

4 /3 * 1/3( )dt G f Ca A . (43) 

This suggests that the dimensionless drainage time should scale as  rather than 4/3Ca

3/ 2.Ca

A line with a slope of 4/3 is also shown in Fig. 10. It is difficult to determine whether 

the data matches  (dashed line) better than  (solid line). In fact the slope 

changes with Ca  (we will discuss the data for the smallest values of Ca  shortly), and 

there is also reason to believe that the slope will change again at larger Ca  once the 

internal circulation driven by the external flow becomes strong enough to affect the film 

drainage process [20]. We will return to question of whether h is independent of Ca  or 

dependent on Ca  as suggested by Eqn. 

4/3Ca 3/ 2Ca

c

(42) shortly. 

First, however, we note the distinct change in the dependence of drainage time on 

 that occurs for the lowest values of Ca . In this regime, drops near the contact point 

remain almost spherical during the film drainage, as shown earlier. The transition occurs 

when the film drainage in the dimpled configuration is no longer a significant fraction of 

the total drainage time. In this case, the influence on the drainage process of the weak 

Ca
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( ) overall deformation of the drops due to the external flow increases [18]. The 

drainage time from the simulation data scales as .

( )O Ca

dt G Ca

On the other hand, a simple scaling theory for a non-dimpled drop predicts [9] 

1/ 2

0

1
( )dt G h

f
, (44) 

where  is the dimensionless initial film thickness (0h 0h R ) at 2d R , assuming that 

. If each drop deformed as though it were an isolated drop, the initial film 

thickness should scale with the capillary number as  according to the small 

deformation theory of Taylor [2]. Thus the drainage time would expected to scale as 

. Due to hydrodynamic interactions between the drops,  calculated by the 

boundary-integral simulation actually shows a weaker dependence, , for the 

entire range of capillary numbers, as shown in Fig. 11.  

0 ch h

0h Ca

1/ 2
dt G Ca 0h

0.8
0h Ca

The experimental data also show a transition in behavior at the lower values of the 

capillary number. The simulation result correctly predicts the capillary number at which 

the transition occurs. However, the dependence of the experimental data is not Ca  or 

. The experimental drainage time becomes nearly independent of the capillary 

number. Especially when 

1/ 2Ca

= 0.19, the drainage time appears to reach a plateau for the 

lower capillary numbers. One thing to note is that since the drops remain almost spherical 

at the lower capillary numbers, the experimental error in the determination of the initial 

point, when , may have a significant effect on measured value of the relatively 

short drainage time. It is possible that experimental error may be at least part of the 

2d R
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reason for the difference in the experimental and theoretical results for the lowest 

capillary number range.  

The dimensionless lateral extent of the dimpled region, a , as a function of capillary 

number is shown in Fig. 12. Over most of the range of Ca , the film radius scales with 

 as , which is consistent with the prediction of the scaling theory using a quasi-

steady force balance, 

Ca 1/ 2Ca

1/ 2( )a f Ca . (45) 

In these cases, a  attains a steady state value (cf. Fig. 6) and it is this value that is plotted 

in Fig. 12. There is a deviation from  for the lower capillary numbers since the 

film ruptures at the center of the drops, and this happens before the dimple is fully 

formed, as shown earlier in Fig. 8. In this case, a  is time-dependent and we report the 

largest value attained, which appears just before rupture. 

1/ 2a Ca

The numerical results for all three viscosity ratios are shown in Fig. 12. As the 

viscosity ratio increases, the transition from “dimpled” to “not dimpled” shapes occurs at 

smaller values of the capillary number. The thickness of the thin film just prior to the 

onset of dimpling (where it is nearly flat) is shown in Fig.13, for all three viscosity ratios, 

as a function of Ca . After the dimple is fully formed, the rate of the film drainage 

significantly slows down. Therefore, the regime of capillary number where the majority 

of the film drainage process occurs with a dimpled configuration, starts at a lower 

capillary number as the viscosity ratio increases.  

The scaling theory [9] is predicated on the assumption that a dimple will form when 

the pressure in the thin film becomes the same order as the capillary pressure ( 2 R ).

This suggests 
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( )dimpleh f Ca . (46) 

The numerical results in Fig. 13, however, show that the onset of dimpling occurs at a 

film thickness that scales as  for 1.1Ca = 6.8,  for 0.95Ca = 1.2, and  for 0.83Ca = 0.19. 

We cannot explain the weaker dependence of  on for the lower viscosity ratio 

systems. 

dimpleh Ca

As we already saw in Fig. 10, the simulation slightly overestimates the drainage time 

for the higher viscosity ratios for a drop of radius R = 27.2 m. The drainage time as a 

function of viscosity ratio for = 27.2 m and Ca = 0.004 is shown in Fig 14. The solid 

and open symbols are the simulations and experiments respectively. The simulation 

results predict that the drainage time scales as 

R

dt G . This result is also consistent with 

the scaling theory, as shown in Eqn. (39), but is significantly different from the 

experimental observations, where 0.8
dt G . The molecular weight of polybutadiene 

(drops) was changed to increase the viscosity ratio in the experiment. Hence, one might 

suppose that this is a source of the difference. There is a measurable change in the 

interfacial tension as noted earlier, but this is already accounted for in the comparisons 

shown in Fig 10. However, the van der Waals interaction does not change due to a 

change in the molecular weight, and the molecular weights used here are below the 

threshold where measurable slip occurs at the interface [39]. Hence, at this point, we 

simply do not know how to explain the discrepancy in the viscosity ratio dependence of 

the drainage time. 

3.3. Drainage time as a function of the drop radius, R
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We next examine the effects of the drop size on the drainage time. For a fixed 

capillary number, a change in the drop radius only affects the dimensionless Hamaker 

constant ( * 6H
2A A R ) as mentioned earlier. In particular, decrease of the drop 

radius results in an increase of the dimensionless Hamaker constant.  

Figure 15 shows the drainage time as a function of Ca  for various values of  at *A

= 0.19. The radius of the drop ( = 1 – 70 m) and the corresponding dimensionless 

Hamaker constant ( = 3.69 10

R

*A -8 – 7.53 10-12) are indicated in the figure. Also shown 

are the experimental data for = 27.2, 40.1, and 45.4 m. In this case, the drainage times 

are not scaled by the radius of the drop. The predicted drainage time increases with a 

decrease of  (or an increase of R ). This is in qualitatively accord with expectations 

from Eqn. 

R

*A

(43), though we shall see shortly that the scaling is slightly different. For the 

larger drop size (or smaller values of ) there is a clear transition in slope from 

( ) to Ca  at an intermediate value of Ca . However, for the smallest drops (i. e. the 

largest ), the drainage time is proportional to Ca  for almost the full range of Ca

values. This is because the 

*A mCa

1m

*A

dimensionless critical film thickness is increased with increase 

of  (in qualitatively accord with Eqn. *A (42)), and hence coalescence occurs via the nose 

rupture mode, before a dimple can form. 

For the smallest drops, = 1 m, the dimple-shaped film drainage is only dominant 

(i. e. takes up over 70% of the drainage time), if . On the other hand, for the 

largest drops, = 70 m, the dimple-shaped film drainage becomes dominant (over 70% 

of ) when . At the same time, the scaling  for the dimpled 

configuration is valid only as long as the drainage process is not affected significantly by 

R

0.05Ca

R

dt G 0.004Ca 4/3Ca
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the internal circulation within the drops that is driven by the external flow. Indeed, Nemer 

et al. [20] have shown that there is a value of Ca  beyond which drainage can be 

completely inhibited by the coupling to this flow. If this occurs when , coalescence 

is impossible.  

ch h

    Therefore, for = 1 m, there is only a small range of the capillary numbers 

( ) where , before the internal circulation due to the 

ambient flow affects coalescence. In contrast, a relatively wider range of capillary 

numbers ( ) exists for R = 70 m. In this region, the drainage 

time scales with the capillary number as , and the exponent m  appears to be a 

weakly increasing function of the drop size. m

R

(0.05)O Ca (0.1)O 4/3
dt G Ca

(0.004)O Ca (0.015)O

m
dt G Ca

1.26  for = 1 m;  for = 3 

m;  for = 10 m; 

R 1.26m R

1.28m R 1.34m  for = 27.2 m; R 1.38m  for = 70 m. The 

experimental data also show this slight change in the dependence on Ca  with change in 

. It will be noted that these values for m  are quite near the value 4/3 suggested by the 

scaling theory, especially for the larger drops. The small drops may be affected by 

internal circulation before reaching the full 4/3 value.

R

R

The experimental drainage times and the calculated drainage times are precisely 

matched only for R = 27.2 m. The experimental drainage times for R = 45.4 m are 

even longer than those of the simulation for R = 70 m. The experimental data show a 

much stronger dependence on the drop size than the simulation. As mentioned in the 

previous section, the experimental data for the lower capillary numbers do not show any 

agreement with the calculated values for any size of the drops.  
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Figures 16 and 17 show the same type of data for various drop sizes at = 1.2 and 

6.8 respectively. The results qualitatively show the same behavior as described above for 

= 0.19. At the lower capillary numbers, the drainage time scales as 

independently of the drop size. At the higher capillary numbers, for 

dt G Ca

= 1.2, the slopes of 

 versus  are 1.30, 1.34, 1.36, 1.36, and 1.42, with the increasing drop size 

indicated in the figure. For 

dt G Ca

= 6.8, the slopes are 1.32, 1.36, 1.35, and 1.38, with the 

increasing drop size. The drainage time scales with the slightly higher exponent of Ca

than = 0.19.

3.4. The critical film thickness 

The critical film thickness for coalescence is an important length scale from a scaling 

point of view. For present purpose, we view the critical film thickness as representing the 

length scale at which the van der Waals forces become important, but there is clearly 

some arbitrariness in extracting this length scale from the computational results. In the 

present work, we do this by comparing the time evolution of the film thickness with and 

without the van der Waals forces. Specifically, as shown in Fig. 6(a), the critical film 

thickness is defined by the crossing point of the vertical line at d coal
t G  with the curve 

representing the time evolution of the minimum film thickness without the van der Waals 

force [16, 25]. Three different sets of results are shown in the following figures 

representing the dependence of  on ch , , and .Ca *A

First in Fig. 18, we plot  versus ch  for four different drop sizes (i. e. four different 

values of ), all measured at Ca = 0.008 where we expect the scaling theory outlined in *A
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Eqn. (39) - (43) to be valid for all four values of . It is suggested in Eqn. R (42) that 

increases very weakly with 

ch

. Since 0.1( )f , it follows that . We see from 

Fig. 18, however, that there is a slight, but consistent increase as 

0.017
ch

0.07
ch . If we refer to 

Eqn. (39), this would imply that 0.98
dt G  instead of the result expected from the 

scaling relations Eqn. (42), . Clearly, these are indistinguishable (cf. Fig. 14), 

but both differ from the experimental result 

1.033
dt G

0.8 .

Next, in Fig. 19, we plot  as a function of Ca  for ch = 0.19 and several different 

drop sizes ranging in radius from 1 – 70 m. We are specifically interested in the scaling 

behavior for the range of capillary number which is large enough that the film drainage 

dominantly occurs in the dimpled film configuration, but small enough that the influence 

of the internal circulation (driven by the exterior flow) on the film drainage rate is 

negligible. Based on our previous discussions, it is clear that the relevant range of Ca

depends on the drop size, corresponding to larger Ca  for smaller drops and smaller Ca

for the larger drops. The scaling prediction from Eqn. (42) is that  should vary as .

We show a straight line with slope 1/6 in the figure. If we fit data in the range of Ca

where the curves define a straight line we find . Although this would seem to 

provide strong evidence that the scaling assumptions in deriving Eqn. 

ch 1/ 6Ca

0.15
ch Ca

(42) are correct, it 

is clear that some variation in the number 0.15 would be seen depending on which precise 

points we choose to include in the curve fit. 

Finally, we plot  versus  for the three values of ch *A  and a fixed Ca = 0.008 in 

Fig. 20. The scaling prediction from Eqn. (42) is that this should scale as  but the *1/3A
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measured slope from the numerical predictions is slightly different, namely . In 

effect, this predicts that the drainage time should scale as  for fixed Ca . On the 

other hand, the experimental data (taken for drops in the size range from 27 – 50 m) was 

found empirically to scale as 

0.3*A

0.6
dt G R

5/ 4R . This is a major discrepancy between the experimental 

results and the computational predictions. We do not understand the source of this 

difference. We are currently carrying out new experiments to vary the drop size over a 

wider range, and to introduce “molecular” calculations in the thin films when the film 

thickness reaches a few hundred angstroms. 

3.5. Critical conditions for head-on collision 

Since the time available for film drainage is not limited in a head-on collision, one 

might expect that coalescence will occur regardless of Ca . However, both numerical 

simulations and asymptotic analyses of the flow-induced coalescence of drops show that 

the internal circulation within the drop, caused by the outer flow, can influence the 

drainage of the thin film and arrest the film drainage at high Ca  [19, 20], hence leading 

to a critical capillary number even for a head-on collision.  We were not able to observe 

these phenomena in our earlier experimental studies [9, 11]. Drops remain in contact for a 

long time but eventually tilt from the shear plane (i. e. x-y plane in planar extensional 

flow generated by the four-roll mill) at high Ca .

A numerical example of arrested coalescence in a head-on collision is shown in Fig. 

21, which illustrates the existence of a critical Ca . Figure 21 shows the film evolution 

for two different capillary numbers at = 3.93 10*A -9 and = 1.2. The drops coalesce for 

= 0.05 (dashed line), but the thin film reaches a stationary configuration due to Ca
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inhibition of the drainage process via coupling with the internal circulation for Ca =

0.055 (solid line). The insets in the figure show the stationary drop shape and the film 

profile at = 100. tG

Nemer et al. [20] predicted the critical conditions for coalescence based on an 

asymptotic analysis of the thin film, which includes the effect of the internal circulating 

flow. The viscous force along the line of centers, , due to the undisturbed external flow 

for two touching spherical drops, can be expressed in the form [40, 41]

F

, (47) 22 ( ) eF f GR

where ( )f  is 11.306, 14.022, and 17.143 for = 0.19, 1.2, and 6.8 respectively [41]. 

By combining Eqn. (47) with the Eqns.(16) and (18) from reference [20], the critical 

capillary number for the head-on collision can be written in the form, 

. (48) 5/9 1/3 2/3 * 1/90.7866 ( )cCa f A

The critical capillary number obtained numerically is plotted in Fig. 22 as a function 

of the dimensionless Hamaker constant, together with the asymptotic formula (48). The 

results show good agreement with the prediction of the asymptotic analysis of Nemer et

al. [20]. The critical capillary number is a weak function of the dimensionless Hamaker 

constant (or drop size, ) but a relatively strong function of the viscosity ratio, 

.

2/9
cCa R

2/3
cCa

4. RESULTS FOR GLANCING COLLISIONS 

The simulations with a time independent external flow were performed to simulate 

interactions of drops during a head-on collision. However, at least from a practical point 

of view, the case of glancing collisions, where the drops rotate during the collision 
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process due to the initial offset from the inflow axis, is more important. In a glancing 

collision, the hydrodynamic force from the external flow along the line of centers 

changes with time, and there is a finite time available for film drainage before the drops 

eventually rotate to a configuration where they are separated by the flow. Thus, 

coalescence only occurs if Ca  is smaller than some critical capillary number, .cCa

In this section, we consider “head-on” collisions in a time-dependent external flow, 

as a first step toward understanding glancing collisions. This is motivated by the earlier 

experimental study of Borrell et al. [12]. As explained earlier, this study shows that for 

the range of drop size and capillary number encompassed by our coalescence experiments 

( > 25 m and typical Ca ),that there is no measurable macroscopic 

difference in the drainage time prior to coalescence between a glancing collision and a 

head-on collision with the same history of force along the line of centers of drops. From 

these results we infer that the dynamics of film drainage are similar in the two 

experiments, suggesting that the glancing collision process can be described as the 

superposition of a translational motion along the line of centers plus a rotation of the line 

of centers relative to axes that are fixed in the flow for , as mentioned earlier. 

Specifically, the near axisymmetric film drainage process achieved in a head-on collision 

is apparently a good approximation of the same process in a non-axisymmetric glancing 

collision in 2D linear flow, which implies that the coalescence process is dominated by 

the time history of the force along the line of centers and is at least approximately 

independent of the degree of asymmetry in the overall collision process.  

R 3(10 )O

1Ca

As in the Borrell et. al. [12] experiment, the rate of strain, , was chosen to 

mimic the time-dependence of the component of the force along the line of centers in 

( )G t
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each particular glancing collision (i.e. for each offset, viscosity ratio and capillary 

number) between two spherical drops. As shown in Eqn. (1) – (3) of Borrell et al. [12], 

 can be related to the orientation angle ( )G t  for the line of centers between the drops in 

a glancing collision, according to  

0( ) cos 2 ( )G t G t , (49) 

where  is the strain rate based on a given capillary number ( ), and 0G 0Ca  is measured 

relative to the inflow symmetry axis of the 4-rol mill. Although the strain rate, G , is a 

function of time, the boundary-integral formulation, Eqn. (10), does not change. The 

capillary number for the undisturbed external flow in Eqn. (10) simply becomes a 

function of time 

0 ( )Ca Ca t , (50) 

where 0 0eCa G R , and ( ) cos 2 ( )t t . The function ( )t  was determined from 

the theoretical prediction of the collision trajectory for two spherical drops, which 

previous studies in our group [7, 9] had shown to provide a very accurate prediction of 

the measured angle versus time, even for drops at finite G . The theoretical trajectory was 

calculated using the code from Tretheway et al. [7], based on the numerical scheme 

described in Yang et al. [9]. An example of the predicted and measured orientation angle 

versus time is shown in Fig. 23. It can be seen that the data and predictions are virtually 

identical. The initial offset is defined as the shortest distance from the center of the drop 

to the inflow axis, divided by , at the center-to-center distance of  [9, 11].R 4R

We calculated the critical capillary number ( ) and coalescence angle (i. e. time) 

at which coalescence occurs, for collisions in a time-dependent flow, at the two different 

cCa
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viscosity ratios of 0.19 and 1.2. The drop size is fixed as 27.2 m, and the other 

parameters are the same as described earlier. The angle in this axisymmetric simulation is 

represented by the corresponding value of ( ) cos 2 ( )t t  at any instant.  

4.1. Coalescence angle and thin film shape for  = 0.19 

Figure 24 shows the coalescence angle as a function of Ca  at various initial offsets 

for = 0.19 (again different offsets are represented by different dependences of  on 

time). The largest value of Ca  for each set of data corresponds to . The critical 

capillary number decreases, and the maximum coalescence angle increases with increase 

of the offset. At the larger offsets from 0.14 – 0.17, coalescence occurs beyond , after 

the external flow starts to pull the drops apart (i. e. 

cCa

45

0G ). Above an initial offset of 0.17, 

coalescence is impossible. These results are qualitatively consistent with our 

experimental study of glancing collisions [11] (cf. Fig. 7 in Yoon et al. [11]).  

An interesting point is that the maximum coalescence angles are relatively small 

( ) for the smaller offsets. For these cases, coalescence occurs relatively early in 

the collision process although there is a whole range of angles (and time) remaining 

where the external flow still pushes the drops together (  for ). This 

phenomenon is caused by relaxation of the dimple formed between the drops while the 

drops rotate through . Figure 25(a) shows the evolution of the thin film at the 

smallest offset of 0.01 for two values of the capillary number just below and above 

(Ca = 0.015 and 0.0151). The local minimum and center film thickness (  and ),

and the radius of the dimple ( ) are shown in the figure. The corresponding angle is also 

30

0G 45

45

cCa

minh centerh
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plotted by a dotted line. When Ca = 0.015, coalescence occurs at . For the slightly 

increased capillary number of 0.0151, the local minimum film thickness is 

indistinguishable in Fig 25(a) over almost the complete trajectory, but deviates just prior 

to reaching , with a minimum film thickness that is slightly larger than the critical 

value occurring at around . The thin film shapes for Ca=0.0151 are shown in Fig 

25(b) at the moments indicated in Fig. 25(a) by the open circles. It can be seen that the 

dimple begins to relax beginning approximately at  due to the decreasing 

hydrodynamic force from the external flow, and that it is the corresponding evolution of 

film shapes that cause the film thickness to exhibit a local minimum at this point in the 

trajectory. Further, by comparing 25(a) and 25(b) it is evident that there is a phase lag 

between the external force, which changes sign at , and the film shape, which still 

shows a significant dimple at that point. The dimple eventually disappears ( )

at around . As the drops are pulled apart, there is a “suction pressure” induced in 

the thin film. This causes a secondary minimum of the film thickness to appear at 

as the interfaces to bulge toward each other near the line of centers right before the 

apparent separation of the drops. However, at this offset and viscosity ratio, the 

secondary minimum of the film thickness is much larger than the first minimum for 

 and cannot trigger film rupture.  
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45

min centerh h

55

58

45

When the offset is close to the maximum offset for coalescence, the local 

deformation of the thin film is quite different. Figure 26 shows the evolution of thin film 

for two values of Ca at the largest offset of 0.17. When Ca = 0.0069, the drops coalesce 

at about , after the force has changed sign (G55 0 ) and the drops are being pulled 

apart. When the initial offset is smaller, the drops collide more forcefully, and the thin 
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film becomes dimpled relatively early in the collision process, as shown earlier. In 

contrast, as the offset increases, the drops collide more gently. Eventually, above a 

certain offset, the thin film remains relatively spherical (or only has a very small dimple) 

during the early stage of the collision process ( ). Thus in this case, the interface 

thickness decreases continuously up to 45° as the drops move toward one another, and 

then continues to decrease beyond 45° as the interfaces bulge outward due to the “suction 

pressure”. This local deformation induces the film to rupture, and the coalescence angle 

continuously increases beyond 45  as previously shown in the coalescence angle data in 

Fig. 24. For the slightly increased capillary number of 0.007, the interfaces are abruptly 

pulled inward to the center of the drops at around , and the drops separate as 

shown in Fig. 26. The important difference is that the local “suction” induced 

deformation starts to occur at around  for the larger offsets, whereas for the 

smaller offsets, this local deformation is retarded due to relaxation of the dimple, and 

starts to occur at a relatively larger angle after the dimple disappears, only a little before 

the apparent separation of the drops. 

45

55

45

When , the locally bulging interface causes a secondary (or primary for 

larger offsets) minimum in the film thickness at the angle of around 55 - 58 . Figure 27 

shows the minimum of the film thickness for , caused by the locally bulging 

interface. The minimum of the film thickness decreases with the increase of the offset. 

However, all values of the film thickness are much larger than the critical film thickness 

found in the constant flow collision simulation (

cCa Ca

45

0.0004ch ,  for = 27.2 

m), except in the case of the largest offset. 

100Ach R
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4.2. Coalescence angle and thin film shape for  = 1.2 

The coalescence angle as a function of Ca  for the higher viscosity ratio of 1.2 is 

shown in Fig. 28. Qualitatively, the results look similar to the lower viscosity ratio. There 

are, however, several differences between the results for = 0.19 and 1.2. First of all, the 

critical capillary numbers are much smaller than those at the lower viscosity ratio, and the 

maximum offset for coalescence is also smaller. The maximum coalescence angles at the 

same initial offsets are also larger than in the case of the lower viscosity ratio. These 

results are again qualitatively consistent with our earlier experimental results for glancing 

collisions [11].  

However, there are also significant differences between the experimental and 

simulation results. First, the experimental data (cf. Fig. 9 in Yoon et al. [11]) for offsets 

in the range 0.05 – 0.08 shows that the coalescence angle increases continuously with Ca

up to a certain value, and then abruptly increases to around 58 . At the higher offsets (0.1 

 offset  0.12), the coalescence angle continuously increases with Ca  up to around 58 ,

as also shown by the higher offset predictions in Fig. 28. However, in the experiments, 

the drops continue to coalesce over a significant range of capillary number with the 

coalescence angle fixed at about . In the simulations, there is a secondary 

minimum in the film thickness at for the larger Ca values, but (unlike the 

experiments) the film thickness is not small enough to induce coalescence beyond the 

angles shown in Figure 28.  

58

58

Figure 29 shows the evolution of the thin film at the lowest offset of 0.01 for = 1.2, 

again for two values of Ca, one above and one below  for this case. The evolution of cCa
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the thin film looks qualitatively similar to the case of = 0.19, as shown earlier in Fig. 

25. The same types of data shown in Fig. 25 are also plotted in this figure. The dimple is 

smaller than for 0.19  due to the smaller value of capillary number (or ), and the 

critical coalescence angle is larger due to the fact that the drainage process is slower 

because of the larger value of 

cCa

.

The evolution of the thin film at an “intermediate” offset of 0.06 for = 1.2 is shown 

in Fig. 30. This is one of the cases where the experiments showed a discontinuous 

transition from coalescence angles less than 45° to coalescence at angles at 58°. In the 

simulations, for Ca = 0.00253, coalescence occurs at . This is larger than the 

maximum angle prior to the jump in angles that was seen in the experiments, but this may 

be a consequence inadequate resolution in the experiments. Clearly, based on the results 

in Fig 28, the angle becomes extremely sensitive to Ca in this regime. When Ca  is 

increased to 0.00254, however, coalescence is not predicted as observed for both the 

glancing and time-dependent flow experiments at . The computed results are 

qualitatively similar to those of the lower offset case (Fig 29), however, the dimple is 

smaller than in the lower offset case, and the dimple starts to relax at a larger angle. The 

“suction” induced local deformation, occurring right before the apparent separation of the 

drops, causes a secondary minimum of the film thickness at about , but cannot 

induce film rupture. Thus, the simulation does not predict the abrupt jump of the 

coalescence angle for 

45

58

58

= 1.2. However, the angle (or time) at which the secondary 

minimum occurs is exactly the same as the coalescence angle of the experiment. 

Furthermore, the relaxation of the dimple is completed at a much smaller film thickness 

than when the offset is 0.01, due to the smaller dimple formed in the early stage of the 
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collision process, and the secondary minimum film thickness is significantly smaller than 

when the offset is 0.01. However, for reasons that we do not currently understand, the 

simulated film thickness is still not small enough to produce coalescence even though this 

is observed in the experiments.  

When the offset is close to the maximum offset for coalescence, the local 

deformation of the thin film is similar to the case of = 0.19. Figure 31 shows the 

evolution of the thin film for two values of Ca at the largest offset of 0.13. When Ca =

0.00257, coalescence occurs at , as the drops are being pulled apart. For the 

slightly increased capillary number of 0.00258, the drops separate at around . The 

local deformation for  is not caused by the van der Waals force even though this 

might seem an alternative explanation due to the small film thickness at . A 

comparison of the film evolution with and without the van der Waals force for the same 

capillary number ( = 0.00253) is shown in Fig. 32. The inset shows the film shapes for 

58

58

45

45

Ca

HA = 0, at the moments indicated in the figure. Although the van der Waals force is not 

included, the local minimum film thickness still decreases due to the deformation 

mechanism mentioned above.  

Figure 33 shows the minimum of the film thickness for  when ,

caused by the locally bulging interface (

45 cCa Ca

=1.2). The results again qualitatively look 

similar to the lower viscosity ratio case, as shown in Fig. 27. However, there is one 

important difference. The secondary minimum film thickness is much smaller than that 

for = 0.19 at the same offset. This is caused by the fact that the local deformation is 

enhanced as the viscosity ratio increases, since the lubrication effect in the thin film 

becomes stronger. The force from the external flow that pulls the drops apart must 
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become strong enough to overcome the enhanced lubrication force, and this means that 

the “suction” pressures in the thin film are also enhanced prior to the drops separating.

It will be noted that some of the film thicknesses for the larger offsets are much 

smaller than the critical film thickness found in the time-independent flow collision 

simulation ( ,  for = 27.2 m), even though all the results in Fig 

33 are for cases ( ) where no coalescence is predicted. The fact that these films 

do not rupture is presumably due to a combination of the increased local curvature (and 

hence enhanced stabilization due to capillary forces) as well as the rapid transient nature 

of the film deformation process. Nevertheless, as already noted, coalescence is observed 

in the corresponding experiments.  

0.0004ch 100Ach R

cCa Ca

4.3. Critical capillary number as a function of the initial offset 

Figure 34 shows the critical capillary number as a function of the initial offset for the 

time-dependent flow simulations as well as the glancing collision experiment. 

Coalescence only occurs if Ca  is smaller than  and the offset is smaller than the 

maximum offset. The results for the lower viscosity ratio of 0.19 look similar to each 

other although the critical capillary number and maximum offset are a little larger than 

measured in the experiment. On the other hand, the results for the higher viscosity ratio 

of 1.2 severely deviate at the larger offsets since the simulation is not able to predict the 

jump and plateau in the coalescence angle that is observed experimentally. 

cCa

5. DISCUSSION 

43



The current numerical simulations captured at least some of the mechanisms that are 

responsible for the complex behavior of coalescence for both head-on and glancing 

collisions outlined in our earlier experimental studies [9, 11, 12]. The simulations 

qualitatively predicted the head-on collision experimental results for the higher capillary 

numbers but not for the lower capillary numbers, where the thin film remains relatively 

spherical during the collision process. The drop size dependence of the drainage time was 

also weaker than in the experiments.  

The time-dependent flow simulations only provided a quantitatively accurate 

description of the glancing collision experiments for the lowest viscosity ratio of 0.19. 

The results for coalescence angles less than 45° are similar to the experiments for 1.2 ,

and the results also confirm our earlier hypothesis of a minimum in the film thickness for 

an angle of approximately 58° due to a local outward bulging of the interfaces as the 

drops were being pulled apart. However, this local deformation did not trigger the film 

rupture at the smaller offsets, as observed in both the glancing and time-dependent flow 

collision experiments, nor did it reproduce the extended range of capillary numbers 

where coalescence was experimentally observed for the larger offsets.   

There are a number of factors that could be responsible for the discrepancy between 

the simulation and experiments. We list some of these below, though we should 

emphasize that we do not currently know which (if any) is the critical issue. 

 First of all, in spite of the arguments at the beginning of this paper, it is possible that 

the assumption of axisymmetry may be partially responsible. The drops as well as the 

thin film are actually not axisymmetric in the applied two dimensional linear flow 

generated by the four-roll mill. The axisymmetric assumption is expected to be a good 
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approximation when , as mentioned earlier. We have also carried out a (as yet 

unpublished) [36] linear stability analysis of an axisymmetric thin film of finite radius 

equal to that in the coalescence problem to compare the conditions for instability to 

axisymmetric and non-axisymmetric perturbations of shape. This analysis shows that the 

conditions (film thickness) for instability are virtually the same, again supporting the 

relevance of the axisymmetric assumption for the present work. Finally, for many of the 

discrepancies between the simulations and the experiments, it unlikely that non-

axisymmetric film shapes will play a role. This is particularly true of the differences in 

coalescence behavior for angles greater than 45°. Nevertheless, at this point, we cannot 

systematically quantify the difference in the thin film dynamics caused by the 

axisymmetric assumption.  

1Ca

The fluids used in the experiments are macroscopically Newtonian under the weak 

flow conditions of the experiments, but actually are polymers with moderate molecular 

weights.  Polydimethylsiloxane (PDMS, Mn = 103,400) was used as the suspending fluid, 

and different molecular weights of polybutadiene (PBd, Mn = 5,000 – 24,900) were used 

as the drop to change the viscosity ratio from (0.1 10)O . Viscoelastic effects are 

negligible for the external flow, and negligible even for the drainage flow in the thin film, 

based upon estimates of the Deborah number the external shear rates and the shear rates 

that occur locally in the thin gap region during the drainage process. Viscoelastic effects 

will likely play a role in the final stages of film rupture, once the film is being rapidly 

thinned by van der Waals forces, but this will not have any significant effect on the 

quantities, such as drainage time, coalescence angle or critical capillary number that we 

are predicting. However, one place that viscoelastic effects may play a role is in the 
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predictions of coalescence (or no coalescence) due to the local “suction” induced 

deformation as the drops are being pulled apart. In this case, the length scales are small, 

and the interface deformation process is relatively rapid, suggesting that the enhanced 

extensional viscosity of the polymeric fluid could produce an increase in the interface 

deformation, and hence a decrease in the minimum film thickness. Although this effect 

will not be a large one, it may be sufficient to induce coalescence for cases where the 

simulations currently predict none. And it might be the reason why we observed the 

abrupt jump and the plateau in the coalescence angle in the experiments, but not in the 

simulations.  

Finally, the continuum fluid mechanics framework may no longer be valid at some 

point, when the film thickness becomes very small. The calculated film thickness 

decreases way below 100  for some cases, depending on the parameters. This is only a 

factor of 6 – 8 larger than the radius of gyration of an entanglement segment in the 

PDMS. However, at this point, we do not know the limit. Also, in reality, the interface is 

not sharp but diffuse, with a finite transition region. The typical interfacial thickness can 

be as large as several nanometers for immiscible polymers ( ) [42-44]. If the mean 

film thickness becomes comparable to the interfacial thickness, the continuum theory will 

break down.

A

50A

The van der Waals force is introduced in the boundary-integral formulation, using a 

disjoining pressure approximation, which is inversely proportional to the local film 

thickness ( 31 h ). The disjoining pressure increases the dynamic pressure of the thin 

film near the region where the local minimum film thickness occurs, and this enhances 

the film drainage at this point once the van der Waals force becomes significant. This 

46



approximate method has been used here, and is commonly adopted as a way to introduce 

the van der Waals force in the boundary integral method. However, the van der Waals 

force is induced by the interaction energy between the two bodies and depends on the 

geometries of the bodies. The disjoining pressure is only defined exactly as 

36disj Hp A h , for the interaction force per unit area between two infinite flat and 

sharp interfaces. Therefore, the disjoining pressure can provide a good leading order 

approximation for relatively flat interfaces ( 0 ), but will always fail to capture the 

physics involved in the final stages of film rupture, as the local curvature increases [45, 

46], or as the film thickness decreases to the point that the diffuse nature of the interface 

can no longer be ignored. As shown earlier, the curvatures over the region where the 

actual film rupture occurs are  when the film thickness becomes comparable to the 

critical film thickness. Thus, there are serious issues about the use of the disjoining 

pressure approximation for the van der Waals force.  

(1)O

These and related questions are the subject of current investigations from our lab.  

6. CONCLUSIONS 

Numerical studies for the coalescence of two equal-sized deformable drops in an 

axisymmetric flow were performed using a boundary-integral method. An adaptive mesh 

refinement method was used to resolve the local small-scale dynamics in the gap and to 

retain a reasonable speed of computation. The thin film dynamics was successfully 

studied within a classical continuum mechanics framework, with sufficient stability and 

accuracy, up to a film thickness of  times undeformed drop radius, for a range of 

capillary numbers from  and viscosity ratios from . The results 

4(10 )O

4(10 10 )O 1 (0.1 10)O
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were compared with the experimental data of our earlier studies [9, 11, 12] and provide 

good insight into the flow-induced coalescence process. The collisions for time-

independent flow (termed “head-on” collisions in the experimental studies) showed two 

distinctively different regimes. At lower capillary numbers, the interfaces of thin film 

between the colliding drops remained almost spherical up to the point of film rupture, and 

the drainage time scaled as . In this case, the drainage time is relatively short 

because a steep pressure gradient is formed at the center of the film. The experiment, 

however, showed a plateau in the dependence of  on . At higher capillary 

numbers, the film became dimpled at an early stage of the collision process, and the rate 

of the film drainage significantly slowed down after the dimple was fully formed. At this 

stage, the thin film pressure reaches the maximum value of the capillary pressure due to 

the deformation, with the pressure gradient only occurring near the rim of the dimple. In 

this case, the drainage time scaled approximately as , which is consistent with 

the experimental data as well as a slightly modified version of the existing scaling theory. 

Using the Hamaker constant calculated by the Lifshitz theory, the calculated drainage 

times showed quantitatively good agreements with the experimentally measured drainage 

time for R = 27.2 m. However, the predicted drop size dependence of the drainage time 

was weaker than in the experiments. The critical conditions for coalescence were also 

examined when the internal circulation within the drop, induced by the outer flow, arrests 

the film drainage, and the results were consistent with the asymptotic analysis of Nemer 

et al. [20]. For the collisions in a time-dependent flow, which approximate coalescence in 

“glancing collisions”, the simulations predicted many aspects of the experimental results. 

The results, however, were only quantitatively accurate, in comparison with the 

dt G Ca

dt G Ca

4/3
dt G Ca

48



experimental data, for the lowest viscosity ratio of 0.19. The interfaces of the thin film 

locally bulged outward when the drops were being pulled apart (  or ), as 

previously hypothesized. This local deformation caused a secondary (or primary for 

larger offsets) minimum in the film thickness for , when . The local 

deformation started to occur at around  for the larger offsets. For the smaller 

offsets, however, the local deformation was retarded, due to the relaxation of the dimple, 

and occurred at a relatively larger angle after the dimple disappeared, a little before the 

apparent separation of the drops in the flow. Thus, at the larger offsets, the coalescence 

angle continuously increases with Ca  up to the separation angle, for . At 

smaller offsets, however, the local deformation could not induce film rupture, as was 

observed in both the glancing and time-dependent flow collision experiments for the 

higher viscosity ratios. Therefore, the simulations predicted neither the abrupt jump nor 

the plateau of the coalescence angle for 

45 0G

o55 58 cCa Ca

45

cCa Ca

=1.2. We discussed some of the limitations of 

the current numerical study in interpreting the real coalescence problem. These and 

related questions will be the subject of continued investigation.  
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Table 1. Convergence of the coalescence time. The relative error is based on the result of 

step 3. 
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Figure 1. Schematic of two deformable drops in a linear axisymmetric flow. 
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Figure 2. Typical examples of the node distribution function, ( )P β , for non-uniform 

mesh. 
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Figure 3. Evolution of the interface shape in the gap region as well as the node 

distribution for Ca = 0.015 and λ =0.19. The nodes are plotted every 4 points in the 

figure.  
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Figure 4. Evolution of the thin film calculated with varying node spacing for Ca = 0.015, 

λ = 0.19, and = 4.99×10*A -11 ( = 27.2 μm and R σ = 4.6mN/m): the local minimum film 

thickness, , the film thickness at the center of the film, , and the radius of the 

thin film (or dimple), a  as a function of time.  

minh centerh

 

 

 



 

 

0 1 2 3
0

1

2

3

4

5

tG = 2.041tG = 0.815 (d=2R)
-2 0 2

-2

0

2

 

 

-2 0 2
-2

0

2

 

 

 

 
ce

nt
er

-to
-c

en
te

r 
di

st
an

ce
 (d

/R
)

tG

  experiment
  BI simulation

 

 

Figure 5. Comparison between the experimentally measured and the calculated center-to-

center distance ( d R ) as a function of dimensionless time ( tG ) for Ca = 0.0207, λ = 

0.19, and = 4.99×10*A -11 ( = 27.2 μm and R σ = 4.6mN/m).  

 

 

 

 



 

Figure 6. Evolution of the film shape for Ca = 0.015, λ = 0.19, and = 4.99×10*A -11: (a) 

, , and the radius of the thin film, a , as function of time; data without the van 

der Waals force ( ) are also presented by dotted lines; (b) thin film shapes at the 

moments indicated in Fig. 6(a) by the open circles.  
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Figure 7. Mean curvatures for the entire drop for Ca = 0.015, λ = 0.19, and = 

4.99×10

*A

-11 at the moments indicated earlier in Fig. 6.  

 

 

 

 

 



 

Figure 8. Evolution of the film shape for Ca = 0.0008, λ = 0.19, and = 4.99×10*A -11: (a) 

, , and the radius of the thin film, a , as function of time; data without the van 

der Waals force ( ) are also presented by dotted lines; (b) thin film shapes at the 

moments indicated in Fig. 7(a) by the open circles.  
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Figure 9. Mean curvatures for the entire drop for Ca = 0.0008, λ = 0.19, and = 

4.99×10

*A

-11 at the moments indicated earlier in Fig. 8. Insect shows the curvature at 

 (32d = R rd plot in the main figure). 
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Figure 10. Drainage time as a function of Ca  for = 27.2 μm. The data of the 

simulations and experiments are shown by the solid symbols and open symbols 

respectively. The drainage times are scaled by the radius of drop for the comparison with 

the experiments.  
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Figure 11. Initial film thickness, , when 0h 2d R= , as a function of Ca . 
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Figure 12. Lateral extent of the dimpled region, , as a function of Ca . a
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Figure 13.  Film thickness, ,  at which the dimple starts to form as a function of  dimpleh Ca
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Figure 14. Drainage time as a function of viscosity ratio for = 27.2 μm and Ca = 0.004. R
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Figure 15. Drainage time as a function of Ca  for various values of the dimensionless 

Hamaker constant at λ = 0.19. The experimental data are also presented by solid triangles 

for = 27.2 μm, solid circles for = 40.1 μm, and solid squares for = 45.4 μm. R R R
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Figure 16. Drainage time as a function of Ca  for various values of the dimensionless 

Hamaker constant at λ = 1.2. The experimental data are also presented by solid triangles 

for = 27.2 μm, solid circles for = 35.6 μm, and solid squares for = 44.7 μm. R R R
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Figure 17. Drainage time as a function of Ca  for various values of the dimensionless 

Hamaker constant at λ = 6.8. The experimental data are also presented by solid triangles 

for = 27.2 μm and solid circles for = 39 μm. R R
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Figure 18. Critical film thickness for coalescence as a function of λ  at = 0.008. Ca
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Figure 19. Critical film thickness for coalescence as a function of Ca  for λ = 0.19. 
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Figure 20. Critical film thickness for coalescence as a function of the dimensionless 

Hamaker constant. 
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Figure 21. Evolution of the film shape for the two capillary numbers below and above 

the critical value at = 3.93×10*A -9 and λ = 1.2. Insets show the stationary drop shape and 

the film profile for = 0.055 at tG =100.  Ca
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Figure 22. Critical capillary number for head-on collision as a function of the 

dimensionless Hamaker constant. 
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Figure 23. Comparison of typical experimental and theoretical trajectories for λ  = 1.2. 

The capillary number is slightly higher than  (Ca = 0.00497 for offset = 0.02, Ca = 

0.00433 for offset = 0.06, Ca = 0.00481 for offset = 0.12). 
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Figure 24. Coalescence angle as a function of  for collisions in a time-dependent flow 

at several initial offsets, 

Ca

λ = 0.19, and = 4.99×10*A -11.  

 

 

 

 

 

 

 



 

Figure 25. Evolution of the film shape for offset = 0.01, λ = 0.19 and = 4.99×10*A -11: (a) 

, , and the radius of the dimple, , as a function of time; (b) thin film shapes at 

the moments indicated by open circles in figure(a) for = 0.0151.  
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Figure 26. Evolution of the film shape for offset = 0.17, λ = 0.19 and = 4.99×10*A -11: (a) 

, , and the radius of the dimple, , as a function of time; (b) thin film shapes at 

the moments indicated by open circles in figure(a) for = 0.007.  
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Figure 27. Secondary minimum of the film thickness for , when  (45θ > cCa Ca> λ = 

 

0.19).  
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Figure 28. Coalescence angle as a function of  for collisions in a time-dependent flow Ca

at several initial offsets, λ = 1.2, and *A = 4.78×10-11.  

 

 

 

 

 

 

 



 

Figure 29. Evolution of the film shape for offset = 0.01, λ = 1.2 and = 4.78×10-11: (a) 
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Figure 30. Evolution of the film shape for offset = 0.06, λ = 1.2 and = 4.78×10-11: (a) 

, , and the radius of the dimple, , as a function of time; (b) thin film shapes at 

the points indicated by open circles in figure(a) for = 0.00254.  
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Figure 31. Evolution of the film shape for offset = 0.13, λ = 1.2 and = 4.78×10-11: (a) 

, , and the radius of the dimple, , as a function of time; (b) thin film shapes at 

the points indicated by open circles in figure(a) for = 0.00258.  
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Figure 32. The comparison of the film evolutions with and without the van der Waals 

force for = 0.00253. Inset shows the film shapes for Ca HA = 0 at the moments indicated 

in the figure.  
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Figure 33. Secondary minimum of the film thickness for , when  (45θ > cCa Ca> λ = 

1.2).  
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Figure 34. Critical capillary number as a function of the initial offset for the time-

dependent flow simulation as well as the glancing collision experiment.  
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