
Deep Learning and Self-Consistent Field Theory: A
Path Towards Accelerating Polymer Phase Discovery

Yao Xuan1∗
, Kris T. Delaney2, Hector D. Ceniceros1, and Glenn H.

Fredrickson2,3

1Department of Mathematics, University of California, Santa Barbara, California 93106, USA
2Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
3Departments of Materials and Chemical Engineering, University of California, Santa Barbara,

California 93106, USA

Aug 2020

Abstract

A new framework that leverages data obtained from self-consistent field theory
(SCFT) simulations with deep learning to accelerate the exploration of parameter space
for block copolymers is presented. Deep neural networks are adapted and trained in
Sobolev space to better capture the saddle point nature of the SCFT approximation.
The proposed approach consists of two main problems: 1) the learning of an approx-
imation to the effective Hamiltonian as a function of the average monomer density
fields and the relevant physical parameters and 2) the prediction of saddle density
fields given the polymer parameters. There is an additional challenge: the effective
Hamiltonian has to be invariant under shifts (and rotations in 2D and 3D). A data-
enhancing approach and an appropriate regularization are introduced to effectively
achieve said invariance. In this first study, the focus is on one-dimensional (in physical
space) systems to allow for a thorough exploration and development of the proposed
methodology.

Keywords: Self-Consistent Field Theory; Machine Learning; Sobolev Space; Saddle Density
Fields; Global Shift-invariance.

1 Introduction

Numerical simulations using self-consistent field theory (SCFT) are a valuable method to study the
energetics and structure of polymer phases [1, 2, 3]. However, these computations are generally
expensive. Relaxation methods to the SCFT (saddle point) solutions are slow to converge and

∗corresponding author, yxuan@math.ucsb.edu

1

each iteration is costly as it requires the solution of one or several modified diffusion (Fokker-
Planck) equations [1, 4, 5]. There are some recent attempts to combine SCFT with machine
learning. Nakamura [6] proposed to predict polymer phase types by a neural network with a
theory-embedded layer that captures the characteristic features of the phase via coarse-grained
mean-field theory. Wei, Jiang, and Shi [7] introduced a neural network approach as a solver to
the SCFT modified diffusion equations to accelerate the computation of the mean fields. In this
work we leverage techniques of machine learning to obtain fast and accurate predictions of SCFT
solutions after a suitable map from parameter space and average monomer density is learned. This
new approach, which merges computer-simulated data with supervised learning, works for a large
range of parameters after one single training and has the potential to dramatically accelerate the
discovery and study of new polymer phases.

To describe the proposed approach in more detail, let us consider the simple model of an
incompressible AB diblock copolymer melt1. The relevant parameters are χN (χ is the Flory
parameter and N is the copolymer degree of polymerization), which measures the strength of
segregation of the two components, L, the cell length in units of the unperturbed radius of gyration
Rg, and f , the volume fraction of component A. Let ρ = ρA be the local average monomer density
of blocks A. Then, the framework we propose consists of solving the following two problems:

• Problem 1: Learn a map (χN,L, f, ρ) 7−→ H̃(χN,L, f, ρ), where H̃ is an accurate approx-
imation of the field-theoretic intensive Hamiltonian H, the Helmholtz free-energy per chain
at saddle points.

• Problem 2: For specific values χN∗, L∗, f∗, find accurately and efficiently the density field
ρ∗ that minimizes H̃.

Once H̃, a surrogate for the effective Hamiltonian at the saddle points, is learned (Problem 1), the
procedure to solve Problem 2 can be expediently applied to screen the parameter space for new
phase candidates.

To solve the first problem we recast H as

H(χN,L, f, ρ) = χNf − χN

Ld

∫
ρ2dr +R(χN,L, f, ρ), (1)

by extracting the leading (quadratic) interaction term, and focus on learning, via neural networks,
the remainder or residual term R, which contributes to polymer entropy, but not enthalpy. In
Eq. (1), d is the spatial dimension. The rationale for splitting H is simply that we know the exact
expression for the enthalpic part of H, and it is both local and economical to compute while the
entropic part is not known in closed form and is computationally expensive. We present numerical
results in Appendix 6.2 that show learning only the entropic part R produces superior results for
the predicted density field ρ∗ than those obtained by learning the full functional H.

Note that in an auxiliary field theory the effective Hamiltonian H, which coincides with the
free energy at the SCFT saddle point, is a functional of one or more potential-chemical-like fields
and one pressure-like field. The ρ dependence is generally integrated out using Gaussian integral
identities and ρ is instead evaluated from these auxiliary fields. Here, we seek instead to learn
directly an approximation of H, or more precisely of R, as a function of ρ.

Both Problem 1 and Problem 2 are challenging for the following reasons. First, the training data
set for machine learning is generated from SCFT simulations, which produce physically meaningful
information only at the saddle point. Thus, we only know H at the saddle point solutions, a reduced

1This SCFT model is fully described in Appendix 6.1.

2

set of a much larger complex manifold. But ultimately, we would like to find a minimizer of H
over all possible ρ fields, including both saddle points and non-saddle points. Therefore, additional
assumptions about the map are necessary. Second, the input is very high dimensional; the density
field ρ becomes a large vector whose components correspond to values of ρ at regular mesh points
in physical space. Consequently, even with a successfully learned map in Problem 1, Problem 2
is still a formidable optimization problem due to its high dimensionality. Moreover, H can have
many local minima, thus finding a global minimum is a difficult task. Finally, the learned map H̃
needs to be invariant under translations (and rotations in 2D and 3D) and this poses an additional
challenge to the map-learning process.

In this work, we propose to learn a map from (χN,L, f, ρ) to the free energy, using SCFT-
generated data, which is a good approximation of H and its gradient around saddle points and is
invariant under spatial shifts of the density field. This is achieved by constructing a novel deep
neural network in Sobolev space. Then, we pre-screen candidates for minimizers of the learned map
to find, via gradient descent, predictors of new SCFT saddle points. In this first study, we focus on
one-dimensional (in physical space) systems to allow for a thorough exploration and development
of the proposed methodology.

The rest of this article is organized as follows. In Section 2, we propose the neural network-based
method to approximate H in Sobolev space. By using a Sobolev metric we are able to predict both
H and its gradient (thermodynamic force) simultaneously. Additional properties are added to the
neural network based on the periodic shift invariance of the modeled system and the mathematical
existence of the desired neural network is rigorously proved. Section 4 is devoted to a summary
of numerical results for an AB diblock system and for an AB3 mikto-arm star system, both with
density-field variations in only one space dimension. Finally, some concluding remarks, including
the prospects for extension to higher spatial dimensions, are given in Section 5.

2 The Neural Network Model

We describe in this section the deep neural network trained in Sobolev space that we propose to
accurately describe H and its gradient in the vicinity of field-theoretic saddle points.

2.1 Methodology

Henceforth, we use x = (χN,L, f, ρ) to denote all parameters of the model, which for concreteness
is an incompressible diblock copolymer melt. Here, ρ is a vector whose components are the values of
the local average density field ρ at the spatial grid points. We need to learn a map (χN,L, f, ρ) 7−→
H̃(χN,L, f, ρ) which approximates the effective Hamiltonian H of the field theory at the saddle
points.

Suppose M = {(x1, H1), (x2, H2), ..., (xNT , HNT)} is the training set of size NT generated by
SCFT simulations, where xi = (χNi, Li, fi, ρi) represents the ith training point and Hi is the
corresponding H value (free energy) for the ith training point.

As mentioned in the introduction, we start by rewriting H as

H(x) = χNf − χN

L

∫
ρ2dr +R(x), (2)

and learn the entropic remainder function R. An appropriate model for this task is one that matches
both the functional value of R and its gradient (first variation in the continuum case) because at
a saddle point ρ∗, necessarily δH

δρ |ρ=ρ∗ = 0. We will call NN the approximation to R obtained via

3

a neural network approach that we specify in detail below. Hence, at the end, the approximate
effective Hamiltonian map has the expression

H̃(x) = χNf − χN

L

∫
ρ2dr +NN(x). (3)

In a neural network, there are many parameters in the form of weights and biases. These parameters
are determined by minimizing a cost or loss function, which is defined based on the desired properties
of the neural network. For our problem, we first choose a basic version of cost function as

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β

NT∑
i=1

‖∇ρH̃(xi)‖2, (4)

where α refers to the all the parameters in the neural network (hidden in the structure of H̃) and β
is a parameter that controls the size of the penalty term

∑NT
i=1 ‖∇ρH̃(xi)‖2, which favors vanishing

gradients at training points and adds smoothness to the learned map and prevents overfitting.
More importantly, this regularizing term effectively enforces that the gradient of the learned H̃
approximates the zero vector at the training points (all training points are saddle points of H). It
is important to emphasize that the learned map will ultimately match accurately both the function
value of H and its vanishing gradient at training points. This property of the model represents a
new approach to predict SCFT saddle points.

Note that for each data point (xi, Hi), in view of (2) and (3), NN should match

Ri = Hi − χNifi +
χNi

Li

∫
ρ2i dr. (5)

Moreover, after discretizing in space we have

∇ρH̃(xi) = −2χNi

Li
∆r ρi +∇ρNN(xi), (6)

where ∆r is the spatial mesh size. Then, we can rewrite the cost function (4) in terms of the
residual map NN as

C(α) =

NT∑
i=1

(NN(xi)−Ri)2 + β

NT∑
i=1

‖∇ρNN(xi)−
2χNi

Li
∆r ρi‖2. (7)

From Eq. (7), the cost function we seek to minimize is just the distance between the predicted map,
NN , and the actual map we are trying to approximate, R, in the sense of the Sobolev norm. The
existence of a neural network to approximate a map to a desired accuracy has been established for
different activation functions [8, 9]. Thus, a natural question is: does there exist a neural network
that approximates both the map and its gradient, i.e. in the sense of Sobolev norm? The answer
is yes and our approach is built on this solid theoretical foundation.

A single hidden layer feedback network constructs functions of the form

g(x) =

q∑
j=1

ωj G(θj · x̃), (8)

where G is an activation function (e.g. sigmoid, softmax, ReLU, etc.), x̃ = (1, x), ωj represents
hidden-to-output layer weights and the vectors θj (of dimension equal to the dimension of x plus 1)

4

represent input-to-hidden layer weights. Collectively, these parameters are the vector α appearing
in the cost or loss function (7). If this class of functions is dense in a functional space F under some
specific metric, then for any f ∈ F , there is a neural network of the form (8) that approximates f
to a given accuracy in that metric. Hornik, Stinchcombe, and White [10] proved this is the case
with the Sobolev norm. This result guarantees the existence of a single-hidden-layer neural network
that approximates both a functional and its functional gradient simultaneously and provides the
theoretical foundation for our proposed cost function (7). Moreover, there also exists, as proved
by Czarnecki, Osindero, Jaderberg, Swirszcz, and Pascanu [11], a single layer neural network that
matches both the functional and its functional gradient with zero training loss. That is, theoreti-
cally, there exists α∗ such that C(α∗) = 0. A more technical summary of these important theorems
is presented in the Appendix 6.3.

We use stochastic gradient descent methods, employing back propagation and the Adam
method, to find the network’s parameters by minimizing (7). We designed a deep neural net-
work with 6 hidden layers to learn NN ; the architecture of this deep neural network is shown
in Table 1. The width and depth of neural network, which control the generalization power and
convergence rate, are tunable hyperparameters. We selected these hyperparameters guided by an
ablation study, which is summarized in Appendix 6.5.

Hidden layer 1 2 3 4 5 6
Number of neurons 60 180 180 180 180 60

Table 1: Architecture of the deep neural network: number of neurons (cells) in each hidden
layer.

2.2 Neural Network with Global Shift-Invariance

In the SCFT model, with periodic boundary conditions, the effective Hamiltonian is invariant under
shifts in ρ. Hence, our approximation H̃ should have the property

H̃(x) = H̃(Tsx), (9)

where Tsx = (χN,L, f, Tsρ) and Tsρ is a spatial shift of the periodic density field ρ, i.e.,
Tsρ(r)=ρ(r + s). Equivalently, H̃(χN , L, f, [ρ1, ρ2, ...]) = H̃(χN , L, f, [ρ1+s, ρ2+s, ...ρ1, ..., ρs]). This
is illustrated in Figure 1: any period-window of ρ generates the same effective Hamiltonian. This is
of course also the case for the entropic remainder term R. Machine learning techniques with global
shift-invariance are not yet common in the literature. Some popular deep learning architectures,
such as the convolutional neural network (CNN), have local shift-invariance. However, it is easy to
construct examples in which a small change in input can result in a huge change of the output in a
CNN [12]. Our goal here is to construct a deep neural network with global shift-invariance. This
can be achieved by combining data augmentation and the addition of a penalty or regularization
term in the loss function. Data augmentation consists in adding (cyclically) shifted data points to
training set so that the neural network can learn the pattern of periodic shift-invariance directly
from the data.

Suppose M = {(xi, Hi), 1 ≤ i ≤ NT } is the original training set, the new training set after
augmentation is defined as:

M̃ = {(Tsxi, Hi), 1 ≤ i ≤ NT , 1 ≤ s ≤ Ns},

5

Figure 1: Density field in any period window generates the same effective Hamiltonian. This
global shift-invariance is required for the learned map.

where Ns is number of possible shifts. We also modify the cost or loss function with an additional
penalty term as follows

C(α) =

Ns∑
s=1

NT∑
i=1

(NN(Tsxi)− H̃i)
2 (10)

+ β

Ns∑
s=1

NT∑
i=1

‖∇ρNN(Tsxi)−
2χNi

Li
∆rTsρi‖2

+ γ

Ns∑
s=1

NT∑
i=1

(NN(xi)−NN(Tsxi))
2.

The last term penalizes the differences of NN at shifted points. It is worth noting that while
global shift-invariance is essential for many physical models, the machine learning literature on
that topic is scarce. Global shift-invariance is a challenging problem because it results in a much
smaller subspace of the general neural network approximation space. Therefore, the existence of
a neural network, in the global shift-invariant space, that approximates accurately a functional
in the Sobolev norm is an important and non-trivial question. Indeed, if the subspace is not
large enough, the existence of a network to approximate accurately any given functional is not
guaranteed. Fortunately, we are able to prove the existence of a neural network that approximates
a given functional under the Sobolev norm and has global shift-invariance at the same time. In
more precise terms, we have the following result.

Theorem 1. There exists a neural network NN(x) with a ReLU (or a leaky ReLU) activation
function such that the neural network has zero training loss with loss function (10).

Proof. Let f(x) = R(x), i.e. the true remainder of the effective Hamiltonian and g(ρ) = 2χN
L ∆rρ,

the true gradient of the remainder. Then, we can take any extension of g(ρ), say g̃(x), such that
g̃(x) matches g(ρ) on all the coordinates corresponding to ρ. By Theorem 4 in the Appendix,
there is a neural network such that NN(x) matches f(x) and NNx(x) matches g̃(x) exactly, on

6

the training set. Since we only need the gradient with respect to ρ, by the definition of g̃(x), NNρ

is equal to g(ρ) on the training set. This directly makes the first two terms vanish in cost function
(10). For the third term, noting that

NN(Tsxi) = R(Tsxi) = R(xi) = NN(xi),

for all i, s, we get NN(xi) − NN(Tsxi) = 0. Thus, there exists a neural network NN(x) that
leads to a zero training loss with the cost function (10). In other words, it is possible to achieve
simultaneously the desired approximation in the Sobolev norm and global shift-invariance with one
neural network.

2.3 Searching for Saddle Points

As described above, the map H̃ is trained in Sobolev space. Once this is achieved, we can use local
minimizers of H̃, obtained via gradient descent, as predictors of the saddle point density fields of
the effective Hamiltonian.2 To solve ∇ρH̃ = 0 we employ the gradient descent method because it
is simple and fast to evaluate the learner and its gradient at any x.

Given arbitrary (χN∗, L∗, f∗), we eliminate these variables in H̃(x) so that H̃ can be viewed
as a function of ρ alone. Then, we proceed with gradient descent to find a local minimizer ρ̂NN as
an approximation to a saddle point ρ∗ of the effective field-theoretic Hamiltonian:

ρn+1 = ρn − ε∇ρH̃(xn), (11)

where xn = (χN∗, L∗, f∗, ρn) and ε is the step size. Note that, as expressed in (6),

∇ρH̃(x) = −2χN
L

∆r ρ+∇ρNN(x), (12)

where ∇ρNN(x) can be efficiently evaluated by the Chain Rule applied to the neural network, e.g.
∇ρg(x) =

∑q
j=1 ωj∇ρG(θj · x̃) for a single-layer neural network. This is easy to compute even for

a multiple-layer neural network because a computation graph is automatically generated for the
neural network to gather gradient information for backward propagation. Again, here ∆r is the
spatial mesh resolution. The gradient descent iteration (20) is terminated when ‖∇ρH̃‖ decreases
below a target specified small value..

One important component of the gradient descent method is the initial iterate ρ0. Here we
propose a selection strategy for ρ0 that fully uses the information of the training set. For a given
(χN∗, L∗, f∗), we scan all the density fields in the training set to find the one that generates
the smallest ‖∇ρH̃‖ at (χN∗, L∗, f∗). Since a neural network is just a composition of a series of
linear functions and simple (nonlinear) activation functions, this evaluation is extremely fast in
comparison with the evaluation of the full SCFT model.

2.4 Strategies to Tune Hyperparameters

Hyperparameter tuning is an important procedure in deep learning. The weights and biases in the
network, denoted collectively as α above, are parameters. There are multiple hyperparameters in a
neural network model, such as the strengths of the penalization terms β and γ in the loss function,
the hyperparameters defining the architecture of the network, such as the number of layers and the
number of nodes per layer, and the learning rate (step size) used in the training process.

2Henceforth, we call the local minimizer of H̃ a saddle point predictor or a predicted saddle point.

7

Following standard practice, we split the dataset into three parts: a training set, a validation
set, and a test set. For various combinations of different values of hyperparameters, the neural
network is trained on the training set and the results are compared with the data in the validation
set. After selecting the optimal combination of hyperparameters based on the performance on the
validation set, we evaluate the best model on the test set to check the error. This comparison
requires the specification of a metric. For the given validation set with parameters (χN∗i , L

∗
i , f
∗
i)

where 1 ≤ i ≤ NV , we define the metric or loss function on the validation set as follows

CV (α) =

Ns∑
s=1

NV∑
i=1

(NN(Tsx
∗
i)−Ri)2 (13)

+ βV

Ns∑
s=1

NV∑
i=1

‖∇ρNN(Tsx
∗
i)−

2χN∗i
L∗i

∆rTsρ
∗
i ‖2

+ γV

Ns∑
s=1

NV∑
i=1

(NN(x∗i)−NN(Tsx
∗
i))

2

+ θV

NV∑
i=1

‖ρ̂NNi − ρ∗i ‖2,

where x∗i = (χN∗i , L
∗
i , f
∗
i , ρ
∗
i) and ρ̂NNi is the predicted density field corresponding to (χN∗i , L

∗
i , f
∗
i).

The first two terms provide a measure of the accuracy of the learner and its gradient. The third term
measures the shift-invariance. The fourth term measures the deviation of predicted minimizers ρ̂NN

from the saddle points. Thus, with this metric on the validation set we can find hyperparameters
that lead to a neural network that not only approximates the effective Hamiltonian and its gradient
but also predicts the saddle point after gradient descent searching. In the implementation, we can
adjust the weights (βV , γV and θV) to each of the terms in CV to prioritize the approximation of
NN , its gradient, its shift-invariance, or a saddle point, local density field or to balance the scaling.

2.5 The Algorithm

In training deep networks it is common to add a regularization term to the loss function that
penalizes the size of weights and biases and provides smoothness to the model. Here, we follow
that practice and modify our loss function by adding the term λ‖α‖22, i.e.

C(α) =

Ns∑
s=1

NT∑
i=1

(NN(Tsxi)−Ri)2

+ β

Ns∑
s=1

NT∑
i=1

‖∇ρNN(Tsxi)−
2χNi

Li
∆rTsρi‖2

+ γ

Ns∑
s=1

NT∑
i=1

(NN(xi)−NN(Tsxi))
2 + λ‖α‖22.

(14)

Algorithm 1 provides the sequence of steps for deep learning H and to obtain predictions of
SCFT saddle points. Training of the neural network is done under the Sobolev norm to obtain
accurate predictions of both H and its gradient. With this network, after selecting a good, data-
based initial guess, the gradient descent method is used to find accurate approximations of the
saddle point.

8

Algorithm 1: Neural network method to learn the effective Hamiltonian and to

obtain a saddle point density field prediction.
Input: Training set M , validation set MV , test set MT

1. Hyperparameter tuning:

for hyperparameter λi, βj, γk do
use Adam method to search for αijk = arg minαC(α)

evaluate CV (αijk) on MV

end

λ, β, γ = arg minλi,βj ,γk CV (αijk)

2. Prediction of effective Hamiltonian on MT :

for x = (χN,L, f, ρ) do

H̃(x) = χNf − χN
L

∫
ρ2dr +NN(x)

end

3. Prediction of saddle point corresponding to χN∗, L∗, f∗:

for ρi from M do

Evaluate H̃(χN∗, L∗, f∗, ρi), ∇ρH̃(χN∗, L∗, f∗, ρi)

end

ρ0 = arg minρi ‖∇ρH̃(χN∗, L∗, f∗, ρi)‖
while ‖∇ρH̃(χN∗, L∗, f∗, ρi)‖ > δ do

ρn+1 = ρn − ε∇ρH̃(xn)

end

ρn → ρ̃NN which is the estimated saddle point corresponding to χN∗, L∗, f∗

3 Exploring a Simpler Data-Based Learner

As we show in Section 4, our deep NN-based approach is remarkably accurate and efficient in build-
ing a shift-invariant surrogate for the field-theoretic effective Hamiltonian in the vicinity of saddle
points. There is however a vast number of other data-based learners that one could potentially
use within our proposed framework to accelerate the exploration of parameter space in polymer
SCFT. In fact, the first learner we tried, inspired by the pioneering work of Snyder, Rupp, Hansen,
Blooston, Müller, and Burke [13, 14, 15], was Kernel Ridge Regression (KRR).

In KRR, one constructs the approximate map H̃ from an expansion of the form

H̃(x) =

NT∑
j=1

αjK(x, xj), (15)

where, as before, x = (χN,L, f, ρ), xi represents ith training point, K is a fixed function known
as the kernel (e.g. the Gaussian function), and NT is the training set size. Because the number of
parameters αj is not fixed and depends on the size NT of the data , KRR is a simple data-adaptive
regression approach.

To use KRR as the data-based learner in our proposed, accelerated SCFT framework we need
1) to train KRR (i.e. determine α1, α2, ..., αNT), in Sobolev space to approximate simultaneously

9

H and its gradient, and 2) to constrain the KRR learner to be shift-invariant. While we could
solve 1) explicitly, we were unable to find a satisfactory solution for 2). Although this is a serious
limitation of KRR in the context of polymer SCFT, the extension of the KRR to Sobolev space
training could be useful for other applications that do not require the global invariance. With this
in mind, we present below this extension and compare this approximation with that produced by
the deep NN learner.

Specifically, to train KRR in Sobolev space and determine α1, α2, ..., αNT , we minimize the cost
function

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β

n∑
i=1

‖∇ρH̃(xi)‖2 + λαTKα, (16)

where∇ρH̃(xi) stands for the gradient of H̃ with respect to ρ evaluated at xi, α = (α1, α2, ..., αNT)T ,
and K is a matrix with entries Kij = K(xi, xj). The regularization term λαTKα penalizes the size
of the coefficients α in the metric induced by the kernel and limits overfitting. The gradient term
in C(α) favors approximations with a vanishing gradient, consistent with SCFT saddle points.

We now derive an explicit expression for α in our Sobolev space KRR model. We employ the
Gaussian kernel

K(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, (17)

where

‖xi − xj‖ =
√
c1(χNi − χNj)2 + c2(Li − Lj)2 + c3(fi − fj)2 + ‖ρi − ρj‖22, (18)

‖ · ‖2 is the l2 norm, and c1, c2, c3 are positive hyperparameters.

Theorem 2. The Sobolev-trained Kernel Ridge Regression (15) with Gaussian kernel (17) , which
minimizes (16), has coefficients α that satisfy linear system

(KTK + βK̃ + λK)α = KTH, (19)

where K̃ =

NT∑
i=1

K̃i and K̃i is a matrix with (K̃i)jm = 1
σ4K(xi, xj)K(xi, xm)〈ρj − ρi, ρm − ρi〉.

A proof is given in Appendix 6.4. This result is an attractive feature of KRR; there is an explicit
expression for α, i.e. the learner is easy to train.

There are 6 hyperparameters in our KRR method: c1, c2, c3, λ, σ, and β. They could either
be determined by the methods in Section 2.4 or by k-fold cross validation. Once the KRR learner
is obtained, we proceed as in the deep neural network case, to minimize H̃, via gradient descent,
to find saddle point predictors

ρn+1 = ρn − ε∇ρH̃(xn), (20)

where the gradient is evaluated explicitly:

∇ρH̃(x) =

NT∑
j=1

ρj − ρ
σ2

αjK(x, xj). (21)

10

4 Results

We conducted several numerical experiments to validate the proposed SCFT-deep learning frame-
work. We summarize our results in this section.

We considered two systems: an AB diblock copolymer melt and an AB3 star copolymer melt,
both in one spatial dimension. There were two stages in the numerical experiments. First, we
trained a machine learning architecture (the deep neural network here, but other machine learning
methods could be used in this step) to predict the effective Hamiltonian H and its gradient from the
parameters, χN , L, f and average monomer (A) density field ρ. The deep neural network learner
is equipped with global shift-invariance obtained through a data augmentation technique and the
addition of a penalty term in the loss function. Second, we selected an initial guess for the density
field from the training set and searched by gradient descent for a density field that minimizes the
learned map H̃.

4.1 AB Diblock Copolymer with Low-to-Moderate χN

In this experiment, we first test the algorithms on an AB diblock system for χN in the range [20, 35]
for A-block volume fractions f ∈ {0.3, 0.4}. The training, validation, and test data for f = 0.3 are
as follows:

• The training set consists of the combination of χN ∈ {n ∈ N : 20 ≤ n ≤ 35}, L ∈
{n + 0.2, n + 0.5, n + 0.8 : 3 ≤ n ≤ 6} and f ∈ {0.3}. The size of the training set is
16 ∗ 3 ∗ 4 = 192.

• The validation and test sets consist of the combination of χN ∈ {n, n + 0.5 : 20 ≤ n ≤
35, n ∈ N}, L ∈ {n, n+0.1, n+0.3, n+0.4, n+0.6, n+0.7, n+0.9 : 3 ≤ n ≤ 6} and f ∈ {0.3}.
Note that this larger set has no overlap with the training set. We randomly take 192/3 = 64
points by uniform distribution from this set as our validation set and apply the rest as the
test set.

All the data points are obtained by numerically solving the SCFT model for each corresponding set
of parameters. The modified diffusion equations were solved using periodic boundary conditions
and pseudo-spectral collocation in space with 64 mesh points in 1D. 100 contour steps were made
using second-order operator splitting [16, 17]. Auxiliary fields, initialized with smooth fields with a
fixed number of periods, were relaxed to saddle-point configurations using the semi-implicit Seidel
iteration [4]. L was varied rather than set to the value that minimizes the effective Hamiltonian in
building the datasets. This gave more richness to the training set by including stressed configura-
tions. However, as L increases, solutions with an increased number of periods become feasible; the
algorithm selects the density field that produces the smallest effective Hamiltonian among these
solutions with different periods. We use a similar strategy to generate the data for the case f = 0.4.
The deep neural network is trained separately for f = 0.3 and f = 0.4.

Figure 2 shows the excellent accuracy of the predicted H̃ as a function of χN and L. H̃ coincides
with the SCFT mean-field free energy H to two digits of accuracy. As mentioned above, global
shift-invariance is an important property the SCFT model solutions. Figure 3a displays the output
of the deep network for all the possible periodic shifts (cyclic permutations) of the density array
input (from 0 to 63) for some representative cases. As this figure demonstrates, the proposed deep
network preserves with good accuracy (2–3 digits) the desired, global shift-invariance.

We now test the ability of our deep learning model to predict saddle point SCFT densities.
As mentioned earlier this is done using gradient descent of the learned map. The search process

11

(a) χN = 27.5, 3 ≤ L ≤ 6.9, and f = 0.3. (b) L = 3.6, 20 ≤ χN ≤ 35.5, and f = 0.3.

(c) χN = 28.5, 3 ≤ L ≤ 6.9, and f = 0.4. (d) L = 5.6, 20 ≤ χN ≤ 35.5, and f = 0.4.

Figure 2: AB diblock copolymer with low-to-moderate χN : comparison of the deep learned
effective Hamiltonian with the SCFT effective Hamiltonian. In (d), there is a jump because
the optimal density field switches from two periods to one period at that point and this leads
to a smaller effective Hamiltonian.

(a) AB diblock copolymer (b) AB3 star copolymer

Figure 3: Global shift-invariance validation for some representative cases: (a)low-to-
moderate χN and high χN cases for AB diblock system, (b)low-to moderate and high χN
cases for AB3 star system.

12

starts from the density field in the training set that generates a gradient of the learner H̃ closest
to 0. Then, in each iteration, we evaluate the gradient of the learner by summing up the gradient
of the leading order term and the gradient of the deep-learned remainder R, computed by the
Chain Rule. Because the training is done in Sobolev space, a minimizer of the learner H̃ yields
an accurate approximation of the true SCFT saddle point density field. Figure 4 presents four
examples of the predicted density field and compares them with the corresponding SCFT solution.
The accuracy of the deep learning model predictions is outstanding. Table 2 lists the specific errors
of the predictions on the test set for both the AB diblock and the AB3 star copolymer.

(a) χN = 33.5, L = 3.4, and f = 0.3. (b) χN = 30.5, L = 6.6, and f = 0.3.

(c) χN = 26.5, L = 4.1, and f = 0.4. (d) χN = 24.0, L = 6.6, and f = 0.4.

Figure 4: AB diblock copolymer with low-to-moderate χN : predicted and SCFT saddle
density fields.

We are using a relatively small training set but get fairly accurate approximations. Increasing
the number of data points would generally improve the performance. As proved by Chen, Jiang,
Liao, and Zhao [18], there exists a deep ReLU architecture such that the mean squared error

of the approximation converges at the rate of O(n
− 2(s+α)

2(s+α)+d log3 n) when n points are sampled
to approximate a Hölder function in Hs,α supported on a d-dimensional Riemannian manifold
isometrically embedded in RD with sub-Gaussian noise and a data intrinsic dimension of d.

4.2 AB Diblock Copolymer with High χN

We now consider the case of high χN , i.e. strong segregation. This is a notoriously difficult case
from the SCFT computational point of view. High χN SCFT simulations usually require high

13

χN Structure f EH EG EI

low χN
AB diblock

0.3 0.017 0.018 0.006
0.4 0.006 0.023 0.005

AB3 star 0.4 0.013 0.035 0.005

high χN
AB diblock

0.3 0.011 0.050 0.006
0.4 0.012 0.046 0.017

AB3 star 0.4 0.017 0.065 0.012

Table 2: Performance of the Sobolev space-trained deep neural network on the test set
(root mean square error): EH is the error of predicted effective Hamiltonian, EG is the
error of predicted effective Hamiltonian gradient, EI is the difference of predicted effective
Hamiltonian of shifted density fields. Low χN refers to χN ∈ [20, 35.5] for all cases. High
χN refers to χN ∈ [50, 65.5] for the AB diblock with f = 0.3 and for the AB3 star system,
and to χN ∈ [45, 60.5] for the AB diblock with f = 0.4.

spatial resolution and are numerically stiff, taking hundreds or thousands of iterations to converge.
Here, we select χN in the range [50, 65] for f = 0.3 and χN in the range [45, 60] for f = 0.4, using
a similar procedure with same number of spatial and contour grid points as Section 4.1 to generate
the dataset.

(a) χN = 50.5, 3 ≤ L ≤ 6.9, and f = 0.3. (b) L = 4.6, 50 ≤ χN ≤ 65.5, and f = 0.3.

(c) χN = 58.5, 3 ≤ L ≤ 5.8, and f = 0.4. (d) L = 3.6, 45 ≤ χN ≤ 60.5, and f = 0.4.

Figure 5: AB diblock copolymer with high χN : comparison of the learned and SCFT Hamil-
tonian.

14

Figure 5 shows representative predictions of the effective Hamiltonian map H from (χN,L, f, ρ),
and Figure 3a displays representative results for global shift-invariance. As in the low-to-
intermediate χN cases, the deep learner produces excellent predictions. Table 2 demonstrates
that we still have several digits of accuracy in H, its gradient, and in preserving global shift-
invariance. However, as expected, the error in the gradient is larger for the high χN cases because
of the sharper interfaces.

(a) χN = 59.5, L = 3.6, and f = 0.3. (b) χN = 60.0, L = 6.7, and f = 0.3.

(c) χN = 52.0, L = 3.0, and f = 0.4. (d) χN = 57.5, L = 5.3, and f = 0.4.

Figure 6: AB diblock copolymer with high χN : predicted and SCFT saddle density field.

Predictions of the SCFT saddle point density field for a given (χN∗, L∗, f∗) are shown in
Figure 6. The deep learner in combination with gradient descent is able to predict the density
profiles for these higher values of χN almost as accurately as for the lower χN values. We emphasize
that high χN SCFT computations are computationally much more expensive than those for smaller
χN due to the requirement of higher numerical resolution and slower convergence of the saddle
point iterations. In contrast, with the deep learning method we can obtain an accurate prediction
of the saddle point density field for high χN fast, at the same cost as that for obtaining a density
prediction for low-to-moderate χN case; in both cases, it is just several evaluations of a neural
network, which is a combination of linear functions and activation functions as shown in Eq. (8).
After generating hundreds of training data points and a one-time training, the Sobolev-trained
neural network becomes a valuable, fast computational tool to predict accurately the effective
Hamiltonian from density fields on any dataset, for example a large scale dataset with tens of
thousands of data points to evaluate. No additional training or fine-tuning is needed during the
subsequent polymer phase discovery process. To illustrate the running time difference between the

15

predictions by the numerical solution of SCFT and the new deep neural network model, we take
200 samples of (χN,L, f) with 61 ≤ χN ≤ 65, to compare both approaches. The running times
are shown in Table 3. The SCFT CPU and the neural network CPU times are from the same
machine (MacBook Pro, 2.2 GHz Intel Core i7 Processor, 16 GB 1600 MHz DDR3 Memory). The
neural network GPU time is the running time on a Tesla P100 GPU. The same stopping criterion
was used CPU and GPU neural network experiments. The superiority of the deep neural network
model is clear and the computational savings would even more dramatic in 2D and 3D. Finding
saddle point, local density fields with large 3D SCFT computations can take several hours whereas
we should expect the proposed deep learning approach to accomplish the same task in seconds. In
addition, as the size of sample set to be predicted increases, the neural network approach becomes
more efficient because it is implemented based on tensor operations and the running time increases
slowly as the size of input set increases.

Model SCFT CPU neural network CPU neural network GPU
Prediction time 1123s 5.97s 3.27s

Table 3: Comparison of the direct SCFT and the deep neural network approach in terms for
200 samples.

4.3 AB3 Star Copolymer

To show the generalizability of our model, we now test our deep learning model for an AB3 star
copolymer melt, which has a different molecular architecture than the AB diblock melt. In an AB3

star system, three B blocks are attached at a point to the A block terminus. In both systems,
strand lengths (including degeneracy factor) sum to 1. In the AB diblock case, fA + fB = 1 while
fA + 3fB = 1 for the AB3 star system.

We employ the same technique for the AB3 star system as used for the AB diblock melt, where
we wrote the effective Hamiltonian as the sum of the enthalpic term (explicitly extracting the
quadratic interaction) and a remainder that contains the polymer entropy and is deep learned in
Sobolev space. Experiments are run on both a low-to-moderate χN case and a high χN case, and
in both cases accurate results are obtained.

The predicted map from (χN,L, f, ρ) to effective Hamiltonian H is shown in Fig. 7 and a
validation of the global shift-invariance is presented in Fig. 3b. Just as for the AB diblock, the
predictions for the AB3 star copolymer are, as Table 2 quantifies, very accurate. The density profile
predictions are also excellent for both low and high χN as Fig. 8 demonstrates.

4.4 Comparison with the Kernel Ridge Regression Learner

We implemented the Sobolev-trained Kernel Ridge Regression (KRR) learner introduced in Section
3 for the AB diblock copolymer and the AB3 star copolymer. Even though the KRR does not
comply with the shift invariance constraint, a comparison with the deep NN-based method offers
information on the capability of the Sobolev-trained KRR to approximate simultaneously H and
its gradient, which might be useful for other applications.

Table 4 shows a comparison of the accuracy of the deep NN and the KRR for approximating
H and its gradient, for both the AB block copolymer and the AB3 star copolymer. The accuracy
in H is slightly better for the deep NN but the KRR yields a more accurate approximation of the

16

(a) χN = 22, 3 ≤ L ≤ 6.9, and f = 0.4. (b) L = 5.6, 20 ≤ χN ≤ 35.5, and f = 0.4.

(c) χN = 58.5, 3 ≤ L ≤ 6.9, and f = 0.4. (d) L = 5.6, 50 ≤ χN ≤ 65.5, and f = 0.4.

Figure 7: AB3 star copolymer: comparison of predicted and SCFT effective Hamiltonian.

gradient. The latter is not surprising given the additional shift-invariance requirement in the deep
NN which effectively reduces the approximating space. It is in fact remarkable that the deep NN
yields comparable accuracy with that of the constraint-free KRR. This underlines the generalization
power of the deep NN while handling additional learning constraints. On the other hand, for systems
that do not require a global shift (and/or rotational) invariance, the Sobolev-trained KRR could
provide a simple, accurate, and explicitly trained learner.

Structure learner f EH EG EI

AB diblock
NN 0.3 0.017 0.018 0.006

KRR 0.3 0.021 0.006 –

AB3 star
NN 0.4 0.017 0.065 0.012

KRR 0.4 0.020 0.007 –

Table 4: Comparison of the NN and the KRR learners trained in Sobolev space for the
AB diblock and the AB3 star system with low χN . EH is the error of predicted effective
Hamiltonian, EG is the error of predicted effective Hamiltonian gradient, and EI is the
difference of predicted effective Hamiltonian of shifted density fields. The KRR learner does
not have this approximate shift invariance.

17

(a) χN = 24.5, L = 3.0, and f = 0.4. (b) χN = 23.0, L = 5.1, and f = 0.4.

(c) χN = 59.5, L = 4.1, and f = 0.4. (d) χN = 64.5, L = 6.9, and f = 0.4.

Figure 8: AB3 star copolymer: predicted and SCFT saddle density fields.

5 Conclusions

We presented a deep learning framework to accelerate the exploration of parameter space for
block copolymer systems based on field theoretic models. The central idea is to use data sets
obtained from SCFT simulations to train in Sobolev space and learn the effective Hamiltonian of
the system as a function of the relevant average monomer density field and the model parameters.
The proposed neural network learner is built from rigorous universal approximation results in
Sobolev space and accurately preserves global shift-invariance. Once this learning process is done,
one can expeditiously find, via gradient descent, an accurate prediction for a saddle point density
field. Moreover, we can potentially combine any global optimizer with this neural network approach
to search for a global minimum.

The proposed SCFT-deep learning approach could also be used to accelerate the solution of the
inverse design problem: given target properties of the system, find the parameters and composition
that generate those properties. This could be done by optimizing a suitable fitness function,
which measures deviations from the target system, and whose evaluation can be expeditiously done
through a deep-learned functional.

There are, of course, several other machine learning models beside deep neural networks. In
fact, we started this project by exploring the use of Kernel Ridge Regression (KRR), inspired
by the pioneering work of Snyder, Rupp, Hansen, Blooston, Müller, and Burke [13, 14, 15] on
the use of KRR in the context of density functional theory. We derived an explicit formula to
compute the KRR parameters with Sobolev training to effectively predict H and its gradient, ∇H,

18

simultaneously. While this machine learning approach requires smaller training sets, we could not
construct a KRR model that satisfactorily preserves the important global shift-invariance. The
deep network model quickly revealed more general and robust approximations properties for our
system and consequently we adopted this and not KRR.

The focus of this work has been on systems in one spatial dimension to allow us properly
develop and test the proposed framework. Work on 2D and 3D systems is underway. In the higher-
dimensional case we need global shift invariance along all axes, as well as rotational invariance.
Both can be incorporated with the data enhancement and regularization approach proposed here.

Acknowledgments

H.D.C. and Y.X. acknowledge partial support from the National Science Foundation under award
DMS-1818821. K.T.D. and G.H.F. were supported by the DMREF Program of the National Science
Foundation under award DMR-1725414. Use was made of computational facilities purchased with
funds from the National Science Foundation (CNS-1725797) and administered by the Center for
Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and
the Materials Research Science and Engineering Center (MRSEC; NSF DMR 1720256) at UC Santa
Barbara.

19

6 Appendix

6.1 The SCFT AB Diblock Copolymer Model

The effective Hamiltonian of an AB diblock copolymer melt is expressed in terms of two fields, wA
and wB [1]

H[wA, wB] =

∫
[−(wA + wB)/2 + (wB − wA)2/(4χN)]dr− V lnQ[wA, wB], (22)

where χ is the Flory parameter and measures the strength of binary contacts, N is the copolymer
degreee of polimerization, and V is the system volume. Q[wA, wB] is the partition function for a
single copolymer with field wA acting on the A block and field wB acting on the B block. This
functional can be evaluated by the formula

Q[wA, wB] =
1

V

∫
q(r, 1; [wA, wB]), (23)

where q(r, s; [wA, wB]) is the copolymer propagator (s is the contour variable which parametrizes
a copolymer chain) which satisfies the Fokker-Planck equation (often referred to as the modified
diffusion equation)

∂q

∂s
= ∇2q − ψq, q(r, 0; [wA, wB]) = 1. (24)

Here,

ψ(r, s) =

{
wA(r), 0 ≤ s ≤ f,
wB(r), f < s ≤ 1,

(25)

where f is the average volume fraction of type A blocks. The SCFT solution corresponds to saddle
points of H, where H is a minimum with respect to the chemical potential-like field

w−(r) ≡ 1

2
[wB(r)− wA(r)] (26)

and a maximum with respect to pressure-like field

w+(r) ≡ 1

2
[wB(r) + wA(r)]. (27)

To find the saddle point fields, via gradient descent (for w−) and gradient ascent (for w+) we need
to evaluate the first variation (“gradient”) of H. This can be done in terms of monomer density
fields ρA and ρB:

δH[w+, w−]

δw+(r)
= ρA(r; [w+, w−]) + ρB(r; [w+, w−])− 1,

δH[w+, w−]

δw−(r)
=

2

χN
w− + ρB(r; [w+, w−])− ρA(r; [w+, w−]).

(28)

20

In turn, ρA and ρB are computed using the Feynmman-Kac formulas

ρA(r; [w+, w−]) =
1

Q[w+, w−]

∫ f

0
q(r, s; [w+, w−])q†(r, 1− s; [w+, w−])ds,

ρB(r; [w+, w−]) =
1

Q[w+, w−]

∫ 1

f
q(r, s; [w+, w−])q†(r, 1− s; [w+, w−])ds,

(29)

where the propagator q† accounts for the lack of head-to-tail symmetry of the diblock. Analogously
to q, q† satisfies the equation,

∂q†

∂s
= ∇2q† − ψ†q†, q†(r, 0; [wA, wB]) = 1, (30)

where

ψ†(r, s) =

{
wB(r), 0 ≤ s < 1− f,
wA(r), 1− f ≤ s ≤ 1.

. (31)

A typical SCFT computation requires hundreds or thousands of evaluations of (28) and hence of
solutions to the Fokker-Planck equations. This makes polymer SCFT simulations very expensive.

6.2 Learning H Versus Learning R Only

We present here numerical evidence that the proposed splitting of the Hamiltonian to focus on
learning the entropic part R only produces superior results for the predicted saddle point density
field than those produced by learning the full functional H. To make a fair comparison of the two
strategies, we trained the two NN learners with the same architecture in the same set-up. Both
methods produce comparable accuracy for H and its gradient and are both capable of enforcing
shift invariance accurately but as Fig. 9 shows, the splitting approach yields significantly more
accurate density field predictions.

6.3 Universal approximation

Consider the Sobolev space Wm
p (U) ≡ {f ∈ L1,loc(U)|∂αf ∈ Lp(U, λ), 0 ≤ |α| ≤ m}. There are

two significant results on the existence of neural network approximation neural network in Sobolev
space. These are the following theorems.

Theorem 3. [10] If G is l-finite, 0 ≤ m ≤ l, U is an open bounded subset of Rr and C∞0 (Rr) is
dmp -dense in Wm

p (U) then Σ(G) is also dmp -dense in Wm
p (U).

For a natural number l, G is l-finite if G ∈ C l(R) and 0 <
∫
|DlG|dλ < ∞. Most commonly

used activation functions are l-finite. In Theorem 2 dmp is the Sobolev norm up to mth derivative
induced, by Lp norm. The condition that C∞0 (Rr) is dmp -dense in Wm

p (U) is easy to satisfy. As
pointed out by Hornik et al. [10], for all U which is a bounded domain star-shaped with respect to
a point O (equivalently, any ray with origin O has a unique intersection with the boundary of U)
C∞0 (Rr) is dmp -dense in Wm

p (U). This means that for most common subsets of Rr, the aforemen-
tioned condition is naturally true. In [10], the authors also proved several other versions of this
universal approximation result for single layer neural networks with respect to the Sobolev norm.
These theorems support the existence of such neural networks that simultaneously approximates a
functional and its functional gradient.

21

(a) χN = 33.5, L = 3.4, f = 0.3: learn the remainder (b) χN = 33.5, L = 3.4, f = 0.3: learn the entire Hamiltonian

(c) χN = 30.5, L = 6.6, f = 0.3: learn the remainder (d) χN = 30.5, L = 6.6, f = 0.3: learn the entire Hamiltonian

Figure 9: Learning H versus learning R only. Predicted saddle point density fields prediction
for the AB diblock copolymer with low-to-moderate χN : left panels (a and c) are the
predictions based on learning the entropic remainder R only, right panels (b and d) are the
predictions based on learning the entire Hamiltonian H.

Theorem 4. [11] Given any two functions f : S → R and g : S → Rd and a finite set U ⊂ S, there
exits neural network NN with a ReLU (or a leaky ReLU) activation such that ∀x ∈ U : f(x) =
NN(x) and g(x) = ∂NN

∂x (x).

This theorem guarantees the existence of a Sobolev space-trained neural network with 0 training
loss.

6.4 Kernel Ridge Regression in Sobolev space

In this appendix, we prove Theorem 2.

22

Proof. Since H̃(x) =
∑NT

j=1 αjK(x, xj), we have

∇ρH̃(x) =

NT∑
j=1

ρj − ρ
σ2

αjK(x, xj),

‖∇ρH̃(xi)‖2 = 〈∇ρH̃(xi),∇ρH̃(xi)〉

= 〈
NT∑
j=1

ρj − ρi
σ2

αjK(xi, xj),

NT∑
m=1

ρm − ρi
σ2

αmK(xi, xm)〉

=

NT∑
j=1

NT∑
m=1

αjαm
1

σ4
K(xi, xj)K(xi, xm)〈ρj − ρi, ρm − ρi〉

= αT K̃iα,

where K̃i is a matrix with (K̃i)jm = 1
σ4K(xi, xj)K(xi, xm)〈ρj − ρi, ρm − ρi〉. Thus,

NT∑
i=1

‖∇ρH̃(xi)‖2 =

NT∑
i=1

αT K̃iα = αT K̃α, (32)

where K̃ =

NT∑
i=1

K̃i. Note that both K̃i and K̃i are symmetric matrices. The cost function (16) can

now be rewritten as

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β αT K̃α+ λαT K̃α

= (H −Kα)T (H −Kα) + β αT K̃α+ λαTKα,

(33)

Therefore
∂C

∂α
= 2(−KT)(H −Kα) + β(K̃ + K̃T)α+ λ(K +KT)α = 0 (34)

and consequently, α is the solution of the linear system

(KTK + βK̃ + λK)α = KTH. (35)

6.5 Ablation Study

In this section, we summarize results of a study that guided our choice of the network size. We
consider the approximation error, in both H and its gradient, as the networks depth (number of
hidden layers) and the network width (number of cells per layer) is changed while the training and
test sets and all the other hyperparameters are kept fixed. We also examine the behavior of the
training and validation loss functions as the number of epochs (iterations on the stochastic gradient
descent method) increases.

In the first batch of experiments, all the hyperparameters are fixed except for the network
depth. Seven neural networks with different number of hidden layers are trained on the same
training set and evaluated on the same test set independently. In the second batch of experiments,

23

the number of cells (network width) in the middle hidden layers are the only variable while all other
hyperparameters are fixed. Again, seven neural networks with different widths are trained on the
same training set and evaluated on the same test set. Figure 10 shows that the approximation is
relatively stable with respect to the network size (both in depth and width) for the range considered.
This suggests that for the relatively modest training set size there is no discernible improvement of
the approximation as the network size grows beyond 6-8 levels. In other words, the training set is
not big enough to benefit from the use of larger networks. This observation is consistent with the
results reported by D’souza, Huang, and Yeh [20] on a convolutional neural network with a small
sample size.

(a) error vs. number of hidden layers (b) error vs. number of cells in middle hidden layers

Figure 10: Relationship between the error on test set (root square error of H and its gradient)
and the size of neural network: (a) error versus number of hidden layers (depth), (b) error
versus number of hidden cells (width) from hidden layer 2 to hidden layer 5.

We now look at the behavior of the training and validation loss functions as number of epochs
(iterations on the stochastic gradient descent method) increases. The training loss functions and the
validation loss function (the sum of the loss of the effective Hamiltonian, the effective Hamiltonian
gradient and the shift invariance term) after 100 epochs are presented in Fig. 11. Both training loss

Figure 11: Training and validation loss functions against the number of epochs (stochastic
gradient descent iterations).

24

function and the validation loss function (not used in training) decrease as expected as the number
of epochs increases.

6.6 Hyperparameters Employed in the Numerical Experiments

We list in Table 5 the hyperparameters we used for the experiments in Section 4. We took β = 1

χN Structure f learning rate λ β γ

low χN
AB diblock

0.3 0.0001 8.15e-08 1 Ns/(Ns − 1)
0.4 0.001 8.44e-09 1 Ns/(Ns − 1)

AB3 star 0.4 0.0001 5.23e-08 1 Ns/(Ns − 1)

high χN
AB diblock

0.3 0.001 4.97e-10 1 Ns/(Ns − 1)
0.4 0.001 2.80e-10 1 Ns/(Ns − 1)

AB3 star 0.4 0.001 4.93e-11 1 Ns/(Ns − 1)

Table 5: Hyperparameters employed in the numerical experiments. Ns is the number of
possible shifts.

to stress the equal priority of approximating both the Hamiltonian and its gradient also to match
the coefficient of the Sobolev norm. We chose γ = Ns/(Ns − 1), which is close to 1. This choice
takes into account that one of the possible shifts, s = Ns, is a one-period shift and leads to a 0
difference with NN(xi) in formula (10) (only Ns− 1 valid terms in the summation). We employed
the hyperparameters-tuning strategies described in Section 2.4 to select the optimal learning rate
and the regularization coefficient λ. We took βV = β and γV = γ in the validation loss (13) and
θV = Ns to balance the summation. Note that one could also view β and γ as hyperparameters
and tune them as done for the learning rate and λ, which might generate better results. We did
not do this because with the more expedited use of fixed values of β and γ the deep NN already
produced impressive results.

In Step 2, when we search for saddle density fields by gradient descent, we performed 500
iterations after selecting the initial density fields from training set.

25

References

[1] G.H. Fredrickson. The equilibrium theory of inhomogeneous polymers. Oxford University Press,
2006.

[2] M. W. Matsen. Self-Consistent Field Theory and Its Applications, chapter 2, pages 87–178.
John Wiley & Sons, Ltd, 2007.

[3] F. Schmid. Self-consistent-field theories for complex fluids. Journal of Physics: Condensed
Matter, 10(37):8105–8138, sep 1998.

[4] H. D. Ceniceros and G. H. Fredrickson. Numerical solution of polymer self-consistent field
theory. Multiscale Modeling & Simulation, 2(3):452–474, 2004.

[5] P. Stasiak and M. W. Matsen. Efficiency of pseudo-spectral algorithms with Anderson mixing
for the SCFT of periodic block-copolymer phases. The European Physical Journal E, 34(10):1–
9, 2011.

[6] Issei Nakamura. Phase diagrams of polymer-containing liquid mixtures with a theory-
embedded neural network. New Journal of Physics, 22(1):015001, 2020.

[7] Qianshi Wei, Ying Jiang, and Jeff ZY Chen. Machine-learning solver for modified diffusion
equations. Physical Review E, 98(5):053304, 2018.

[8] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[9] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–
867, 1993.

[10] K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping
and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560, 1990.

[11] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pascanu. Sobolev training
for neural networks. In Advances in Neural Information Processing Systems, pages 4278–4287,
2017.

[12] R. Zhang. Making convolutional networks shift-invariant again. CoRR, abs/1904.11486, 2019.

[13] J. C. Snyder, M. Rupp, K. Hansen, K. R. Müller, and K. Burke. Finding density functionals
with machine learning. Physical review letters, 108(25):253002, 2012.

[14] J. C. Snyder, M. Rupp, K. Hansen, L. Blooston, K. R. Müller, and K. Burke. Orbital-free
bond breaking via machine learning. The Journal of chemical physics, 139(22):224104, 2013.

[15] J. C. Snyder, M. Rupp, K. R. Müller, and K. Burke. Nonlinear gradient denoising: Finding
accurate extrema from inaccurate functional derivatives. International Journal of Quantum
Chemistry, 115(16):1102–1114, 2015.

[16] K. Rasmussen and G. Kalosakas. Improved numerical algorithm for exploring block copolymer
mesophases. Journal of Polymer Science Part B: Polymer Physics, 40(16):1777–1783, 2002.

26

[17] G. Tzeremes, K. Rasmussen, T. Lookman, and A. Saxena. Efficient computation of the struc-
tural phase behavior of block copolymers. Physical Review E, 65(4):041806, 2002.

[18] M. Chen, H. Jiang, W. Liao, and T. Zhao. Nonparametric regression on low-dimensional
manifolds using deep relu networks. arXiv preprint arXiv:1908.01842, 2019.

[19] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep network approximation for smooth functions.
arXiv preprint arXiv:2001.03040, 2020.

[20] N. D’souza R, P.-Y. Huang, and F.-C. Yeh. Structural analysis and optimization of con-
volutional neural networks with a small sample size. Scientific Reports, Nature, 10(1):834,
2020.

[21] H. D. Ceniceros. Efficient order-adaptive methods for polymer self-consistent field theory.
Journal of Computational Physics, 386:9–21, 2019.

27

