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Abstract. We present a numerical investigation of nucleation and ordered structure
formation of a flexible polymer in a nematic liquid crystal matrix confined between
two parallel walls in both a 2D and a 3D channel geometry. The model is of Landau-de
Gennes type for a conserved, compositional order parameter and a non-conserved,
orientational tensor order parameter and allows a study at the nanoscale. The re-
sulting system is numerically stiff, with several high order nonlinear coupled terms.
This poses a significant numerical challenge that we overcome with a linearly implicit
method. This investigation focuses on the effects of wall and surface anchoring on
the nucleation of ordered, polymer-rich domains as well as in the selection of lamel-
lae. In 2D, we find that chains of polymer-rich droplets nucleate, starting at the walls
and aligned with them, and continue to form until they fill up much of the channel.
Without orientational defects observed in the liquid crystal-rich phase, the droplets
eventually coalesce, coarsen, and the linear chain order is destroyed. In 3D, the poly-
mer nucleates into layers of cylindrical structures, instead of droplets, whose principal
axis is oriented with the wall anchoring angle. We also find that when the liquid crys-
tal component is initially in isotropic state, stable equilibrium lamellae can be obtained
for both homeotropic and planar surface anchoring conditions, in 2D and 3D.
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1 Introduction

Nematic liquid crystals are an intermediate phase of matter between the commonly ob-
served solid and liquid states of matter [1]. In recent years, phase separation of a mix-
ture of a nematic liquid crystal (LC) and an isotropic material such as a flexible polymer
has attracted increased attention as this system offers a significant potential for applica-
tions [2–15]. After a temperature quench, the phase separation process proceeds through
a fast initial formation (nucleation) of small particles, a subsequent slow growth, and
coarsening until a steady state is reached [16,17]. For example, polymer-dispersed liquid
crystals (PDLCs), which consist of an isotropic polymer matrix and a LC droplet phase
are being used in switchable windows, displays, spatial light modulators, tunable filters,
and other devices [7,18,19]. There have also been recent applications of PDLCs involving
phase separation induced from rapid temperature quenching [20–28].

In order to better control and design the properties of these materials, it is crucial
to understand the phase separation process and the ultimate morphologies. Due to the
complexity of physical models used for phase separation, it is necessary to resort to nu-
merical simulations for a systematic study. In this work, we report on a computational
investigation of the nucleation mechanism of a polymer in a LC continuous phase in a
2D and a 3D channel with the following setup: the polymer-LC system is confined be-
tween two parallel walls which provide strong planar long-range wall anchoring, and
rapid temperature quenching induces the nucleation of the minority phase.

In earlier studies, a phase field model with a vector order parameter n has been widely
employed for these binary systems [2,3,29]. However, a vector does not have head-to-tail
symmetry and is incapable to learn biaxial states nor capture line defects. To better de-
scribe the domain anisotropy, our framework employs the more comprehensive Landau-
de Gennes model which applies a tensor order parameter Q to describe the orientation of
the rigid-rod like liquid crystal molecules. The free energy of the system is then formu-
lated with the conserved volume fraction of the species and the non-conserved tensor or-
der parameter. The evolution of the system is governed by the coupled time-dependent
Ginzburg-Landau equations (model C) [30, 31]. Similar models have been extensively
used in phase separation with some degree of simplification [4–6, 12–15]. To the best of
our knowledge, this is the first time the full model has been utilized to learn the phase
separation in confined geometries for a 3D geometry.

The Landau-de Gennes model poses significant numerical challenges. It is a large,
highly nonlinear, and coupled system with up to fourth order derivative terms in the
compositional order parameter φ, and several second order terms in the tensor order
parameter Q equations. This makes the time integration markedly stiff. In addition, Q
must remain traceless at each time step, and to preserve the integral of φ and be con-
sistent with the variation of the free energy, a nontrivial boundary condition has to be
enforced at the walls. We overcome these computational challenges with the implemen-
tation of a linearly implicit method, a strict enforcement of the traceless condition, and
an extrapolated boundary condition.
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We find that the nematic component and wall anchoring have profound effect on
structure formation. By varying thermotropic parameters which control the isotropic to
nematic transition temperature of the LC in the presence of the polymer component, we
are able to select the initial state of the LC to be nematic or isotropic and this leads to two
strikingly different results. In one case, small polymer-rich droplets nucleate in a LC con-
tinuous phase and form ordered chain structures, layer by layer, in the early phase sepa-
ration process in 2D, and cylindrical chain structures in 3D. The colloidal dispersions and
emulsions of this type have attracted considerable attention because of the striking self-
assembly morphologies [32–38], which offer great potential applications [39,40]. The col-
loidal particles disturb the orientational field and produce defects which stabilize droplet
chain structures. Theoretical [41] and numerical [42] studies on nematic liquid crystal
colloids indicate that a dipole orientational defect produced in between the droplets sta-
bilize the chain. With the Landau-de Gennes model we are able to observe these chain
structures, starting at the walls and propagating into the interior, during a first stage in
the phase separation process. However, as we show with one example, dipole defects are
not preserved in the Landau-de Gennes model and split into −1/2 point defects. As a
result, without the presence of dipole defects, the chain order is ultimately destroyed by
coarsening and coalescence. In the second case, in which we consider a mixture in which
the LC is initially in isotropic state, we find that the system phase separates into stable
equilibrium lamellae, with alternating polymer-rich and LC-rich layers filling the entire
region for both the 2D and 3D channel and when either homeotropic or planar surface
anchoring conditions prevail.

The remainder of the paper is organized as follows: Section 2 describes the Landau-
de Gennes theory to model the free energy, the kinetic equation and the boundary con-
ditions. Section 3 discusses the numerical method employed to solve the differential
equations. Section 4 presents a summary of numerical results for simulations in 2D and
3D channels. Concluding remarks are given in Section 5.

2 Landau-de Gennes Model

2.1 Landau-de Gennes Free Energy

We consider a binary mixture of an isotropic material, such as a flexible polymer, and ne-
matic liquid crystal contained between two parallel walls. To study the nucleation of the
polymer induced from rapid temperature quenching, we consider the thermodynamic
behavior of our system, and the Landau-de Gennes theory is applied, which involves a
tensor order parameter Q that is capable of describing the biaxial states. In contrast, the
other commonly used continuum theory for nematic liquid crystals is the Oseen-Frank
model, which relies only on the director field n but fails to capture disclination line de-
fects and biaxial states [43].

The tensor order parameter Q in the Landau-de Gennes theory is a symmetric, trace-
less 3 by 3 matrix which describes the orientational ordering of a liquid crystal. The
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eigenvectors of Q represent the average directions of alignment of the molecules, and
the associated eigenvalues measure the degree of alignment along these directions. The
generic biaxial state corresponds to a Q tensor with three distinct eigenvalues. In contrast,
uniaxial states appear when two of the eigenvalues are the same and can be simplified
into the form [1]:

Q=S(n⊗n)− 1
3

SI, S∈R, n∈S2, (2.1)

where S∈ [−1
2

,1] represents the degree of orientational ordering and the unit vector n
indicates the average direction of the uniaxial rod-like liquid crystal molecules. The bi-
axiality parameter in the liquid crystal literature is usually defined as [44, 45]:

β(Q)=1−6
(tr(Q3))2

(tr(Q2))3 , (2.2)

where β(Q)∈ [0,1], and β(Q)=0 stands for the uniaxial case.
The system containing a flexible polymer and a nematic liquid crystal can be de-

scribed with the tensor order parameter Q and a phase field φ ∈ [0,1] that represents
the local volume fraction of the flexible isotropic polymer in the binary mixture. Assum-
ing the incompressibility of the system, the local volume fraction of the nematic liquid
crystal is thus 1−φ. Therefore, the pure, bulk phases are identified with φ=0 and φ=1
for the nematic liquid crystal and the isotropic fluid, respectively.

The free energy density f (Q,φ) of the system consists of two parts: the Flory-Huggins
free energy [46, 47], which governs phase separation, and the Laudau-de Gennes free
energy, which governs the nematic component. More specifically, four terms appear: a
mixing energy density fmix, an orientational distortion energy density of the nematic, fela,
a thermotropic energy density that describes the preferred phase of the nematic, fther, and
the anchoring energy density of the nematic molecules at interfaces, fanc:

f (Q,φ)= fmix+(1−φ)( fther+ fanc+ fela), (2.3)

where

fmix(φ)=
λc

2
[|∇φ|2+

βφlnφ+(1−φ)ln(1−φ)+
g0

T
φ(1−φ)

2ε2
c

], (2.4)

fther(Q,φ)=
Ac(φ)

2
TrQ2+

Bc

3
TrQ3+

Cc

4
(TrQ2)2, (2.5)

fela(Q)=
Kc

2
(∇γQαβ)(∇γQαβ), (2.6)



5

fanc(Q,φ)=
Wc

2
(∇αφ)(∇βφ)Qαβ. (2.7)

In (2.4), λc is the mixing energy strength with units of J/m, εc is the capillary width
with units of length, and β denotes the molecular volume ratio of the liquid crystal and

isotropic fluid molecules. The coefficient
g0

T
is the Flory-Huggins interaction parameter

related to the van der Waals interactions between unlike molecular species, where T is
the temperature.

In (2.5), Ac(φ), Bc, Cc are temperatures and material dependent with units of Jm−3.
Usually we assume Bc and Cc are independent of temperature while Ac(φ) = ac(T−
T∗NI(φ)), where T∗NI(φ) is the super-cooling temperature at which the isotropic state loses
stability. Here we assume T∗NI = Tc−dφ, where Tc is super-cooling temperature in the
absence of isotropic fluid, and the relationship implies that nematic ordering is disturbed
by the existence of isotropic phase so that the transition temperature is a decreasing func-
tion of φ [4, 48]. The set of Q that minimizes the potential fther obviously plays a crucial
role, which determines the equilibrium state of the liquid crystal under different tem-

peratures. It can be found as uniaxial Q= Seq(n⊗n− 1
3

I) with equilibrium scalar order
parameter as follows:

Seq =

0 T>TNI ,
1

4Cc
(−Bc+

√
B2

c−24Ac(φ)Cc) T<TNI ,
(2.8)

where TNI =T∗NI(φ)+
B2

c
27acCc

is the isotropic-nematic transition temperature.

In (2.6), the elastic deformation can always be decomposed in three basic deformation
modes, splay, twist and bend [1]. The common formulation of the distortional free energy
with respect to Q reads [49]:

fela(Q)=
1
2

L1
∂Qij

∂xk

∂Qij

∂xk
+

1
2

L2
∂Qij

∂xk

∂Qik

∂xj
+

1
2

L3
∂Qij

∂xj

∂Qik

∂xk
+

1
2

L4Qij
∂Qkl

∂xi

∂Qkl

∂xj
. (2.9)

With one-constant approximation, we assume L1 =Kc, L2 = L3 = L4 = 0, and Kc denotes
the elastic energy strength of units J/m.

Lastly, in (2.7), Wc is the surface anchoring energy strength given in J/m. Note that
as Wc <0, the homeotropic anchoring is favorable for which the molecules tend to align
perpendicular to the interface, in contrast, as Wc > 0, the planar anchoring is preferred
with tangential alignment.

As mentioned by Ravnik et al. [42], the ratio of the thermotropic energy fther and
distortional energy fela introduces a characteristic length scale ξN , which is referred to as
nematic correlation length. It determines the spatial scale for the variation of the nematic
order. Its role in nematic is most profound in defects as it roughly determines its size. We
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will use ξN to control the mesh resolution in the later numerical calculations. A simple
calculation as in [42] will yield

ξN =

√
Kc

ac(T−T∗NI)+2/3BcSeq+2CcS2
eq

. (2.10)

The total free energy is now given by

F=
∫

Ω
f (φ,Q)dV, (2.11)

where Ω = [0,Lxc]×[0,Lyc] for a 2D channel and Ω = [0,Lxc]×[0,Lyc]×[0,Lzc] for a 3D
channel.

2.2 Kinetic Equation and Boundary Conditions

The evolution of the conserved volume fraction φ and non-conserved orientational order
parameter Q are governed by the coupled time-dependent Ginzburg-Landau equations
(model C) which ensures the monotonic decrease of the total energy:

∂φ

∂t
=∇·

(
Mφ∇

δF
δφ

)
+η,

∂Qαβ

∂t
=−MQ

δF
δQαβ

+ηαβ+λδαβ,

(2.12)

where Mφ and MQ are the mobility coefficients that depend on the molecular weights
of isotropic and liquid crystal molecules as well as the local composition density φ and
orientational order parameter Q. They are assumed to be constants in the simulation as
employed by Motoyama et al. [4]. Here δαβ stands for the Kronecker delta. The thermal
noise η and ηαβ are neglected, and λ is determined by the traceless condition TrQ = 0.
We note that a Lagrangian multiplier for the symmetry constraint, Qij = Qji, is omitted
here because non-symmetrical terms in (2.9) were assumed to be zero. The system (2.12)
comprises six coupled nonlinear parabolic partial differential equations.

The system can be nondimensionalized by selected characteristic length and energy
scales Lc and Ec. Then, the free energy parameters are made dimensionless as λ =
λcLc/Ec,ε = εc/Lc,g = g0/T,W = WcLc/Ec,K = KcLc/Ec,A = AcL3

c /Ec,B = BcL3
c /Ec,C =

CcL3
c /Ec,Lx =Lxc/Lc,Ly =Lyc/Lc,Lz =Lzc/Lc.
Computing the variational derivative of (2.12), we generate the coupled system of the
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equations that simulates the phase separation of the mixture:

1
MQ

∂Qαβ

∂t
=K∇γ[(1−φ)∇γQαβ]−(1−φ)

[W
2
(∇αφ)(∇βφ)−W

6
|∇φ|2δαβ

+{A+C(TrQ2)}Qαβ+B(Q2)αβ−
B
3

TrQ2δαβ

]
,

1
Mφ

∂φ

∂t
=∇·∇[λ(−∇2φ+

βln(φ)−ln(1−φ)−2gφ

4ε2 )+(1−φ)
ad
2

TrQ2

−W∇α{(1−φ)(∇βφ)Qαβ}−
K
2
(∇γQαβ)(∇γQαβ)

−W
2
(∇αφ)(∇βφ)Qαβ−

A
2

TrQ2− B
3

TrQ3−C
4
(TrQ2)2].

(2.13)

The terms −W
6
|∇φ|2δαβ and −B

3
TrQ2δαβ are added to preserve the traceless property of

Q [4, 6]. The following boundary conditions are required to be satisfied:∫
∂Ω

KPαβ(1−φ)
∂Qαβ

∂ν
ds=0, (2.14)∫

∂Ω
ψ

[
∂φ

∂ν
+W(1−φ)∇φ·QT ·ν

]
ds=0, (2.15)

where ν denotes the outward normal vector to ∂Ω, and Pαβ and ψ are the testing function
of Qαβ and φ, respectively.

We consider a rectangular domain that the polymer-LC system is confined in between
the two walls and periodic boundary conditions are imposed in the parallel-wall direc-
tion, which ensure (2.14) and (2.15) to be hold along the horizontal boundaries. For the
Y boundaries, the walls are usually glass slides that being coated and rubbed to obtain
uniform long-range anchoring, which makes the molecules homogeneously aligned par-
allel to the walls. This implies the prescribed boundary value for Q, and (2.14) is satisfied
with test function Pαβ which vanishes at the walls. More specifically,

Q
∣∣∣∣
y=0,Ly

=Qs =Seq(τ⊗τ− 1
3

I), (2.16)

where Seq is determined by (2.8), and τ is the in plane director field along the walls whose
direction is determined by how the glass slides are rubbed. It provides the planar long-
range wall anchoring for our system.

Now we explore the boundary condition of φ at the wall to satisfy (2.15). Denote the
unit normal vector of the walls as ν, and a unit vector τ representing the planar wall
anchoring, therefore, τ ·ν=0, which implies:

Q·ν=S(τ⊗τ− 1
3

I)·ν=−1
3

Sν, (2.17)
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apply to (2.15),

∂φ

∂ν
+W(1−φ)∇φ·QT ·ν= ∂φ

∂ν
−W

3
(1−φ)S∇φ·ν= ∂φ

∂ν

(
1−W

3
S+

W
3

φS
)
=0, (2.18)

which implies,
∂φ

∂ν

∣∣∣∣
y=0,Ly

=0. (2.19)

The Neumann boundary condition at the walls is sufficient for φ to satisfy (2.15). It is also
worthwhile noting that the differential equation of φ is 4-th order in (2.13), and another
boundary condition for φ is required. It is derived from the fact that φ is a conserved
quantity, i.e.

d
dt

∫
Ω

φdV=
∫

Ω
∇·(Mφ∇

δF
δφ

)dV=
∫

∂Ω
Mφ

∂

∂ν
(

δF
δφ

)ds=0. (2.20)

Along parallel-wall direction, this holds because of the periodic boundary condition.

Along Y boundary, we want to set
∂

∂ν

(
δF
δφ

)∣∣∣∣
y=0,Ly

=0. More explicitly,

∂(λ(∇2φ))

∂ν

∣∣∣∣
y=0,Ly

=
∂

∂ν

[
λ(

βln(φ)−ln(1−φ)−2gφ

4ε2 )+(1−φ)
ad
2

TrQ2

−W∇α{(1−φ)(∇βφ)Qαβ}−
K
2
(∇γQαβ)(∇γQαβ)

−W
2
(∇αφ)(∇βφ)Qαβ−

A
2

TrQ2− B
3

TrQ3−C
4
(TrQ2)2)

]∣∣∣∣
y=0,Ly

.

(2.21)

3 Numerical Method

At each time step, we need to solve five second order partial differential equations (PDEs)
for Qαβ and one fourth order PDE for φ. We enforce strictly the traceless requirement for
Q by determining Q33 directly from this condition. This coupled system is numerically
stiff due to the presence of many high order spatial derivatives. In addition, there are two
distinctly different time scales, a fast one associated with an initial fast phase separation
and a slow one in which domain coarsening takes place. In order to relax the numerical
stiffness, we employ a semi-implicit method in which we identify the linearly dominant
terms at small scales and discretize these implicitly while treating the remaining nonlin-
ear terms explicitly.

For 2D channel, we assume there are no gradients in the z direction, i.e. ∇z f = 0 for
any of the relevant functions f . The time discretized form of (2.13) can be written as
follows:
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1
MQ

Qj+1
αβ −Qj

αβ

∆t
=µ1(∆Qαβ)

j+1+g(φj,Qj
αβ), (3.1)

1
Mφ

φj+1−φj

∆t
=∇·∇(−λ(∆φ)j+1+µ2φj+1+h(φj,Qj

αβ)), (3.2)

where

g(φ,Qαβ)=(K(1−φ)−µ1)∆Qαβ−K∇φ·∇Qαβ−(1−φ)[
W
2
(∇αφ)(∇βφ)

−W
6
|∇φ|2δαβ+{A+C(TrQ2)}Qαβ+B(Q2)αβ−

B
3

TrQ2δαβ],
(3.3)

h(φ,Qαβ)=−µ2φ+λ(
βln(φ)−ln(1−φ)−2gφ

2ε2 )+
ad
2
(1−φ)TrQ2

−K
2
(∇γQαβ)(∇γQαβ)−W∇α{(1−φ)(∇βφ)Qαβ}

−W
2
(∇αφ)(∇βφ)Qαβ−

A
2

TrQ2− B
3

TrQ3−C
4
(TrQ2)2.

(3.4)

Here, µ1 and µ2 are numerical parameters introduced to relax the timestep stability con-
straint [50].

µ1=
max(K(1−φ))

2
, (3.5)

µ2=max
∣∣∣ d
dφ

λ(
βln(φ)−ln(1−φ)−2gφ

2ε2 )
∣∣∣. (3.6)

These equations are solved on a rectangular domain with periodic boundary condition
along the horizontal direction. Thus, we perform a discrete Fourier transform along the
x and z directions to obtain a linear system along the y direction.

At the walls we have a Dirichlet boundary condition for Q (2.16) and Neumann
boundary conditions for φ and for the Laplacian of φ, (2.19) and (2.21), respectively. The
latter involves derivatives of Q and since these are not specified at the boundary, condi-
tion (2.21) represents a notable challenge. Other numerical investigations have avoided
this problem by opting to use instead the homogeneous Neumann boundary condition.

We find that the boundary conditions for φ can be expressed in the following form:

∂φ

∂ν
=0,

∂3φ

∂ν3 =
1
λ

∂h
∂ν

=0,

(3.7)

which makes its enforcement more tractable. Specifically, to obtain h(φ,Q) at the walls
(n=1 and n= N) we extrapolate ∇νQαβ from the interior values. The algorithm flow is
shown in Fig. 1.
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Figure 1: Algorithm flow of the coupled system. The dashed line at 0 and N+1 are ghost
points induced for φ and h, whose values are found by Neumann boundary condition.

4 Numerical Results and Discussion

We present next our numerical results of ordering and structure formation of an isotropic
material, such as a flexible polymer, nucleating in a liquid crystal (LC) continuous phase
for both a 2D and a 3D channel. The polymer-LC system is confined between two parallel
walls and periodic boundary conditions are imposed in the parallel-wall direction. We
are particularly concerned with the interplay of phase separation and nematic ordering
induced by wall anchoring so we impose planar anchoring at the walls (i.e. at the walls
the nematic alignment is parallel to them) and examine both homeotropic (normal to the
walls) and planar anchoring at the polymer-LC surfaces.

In all the simulations here reported, the free energy decreased monotonically per step
and the total polymer volume fraction was preserved accurately with a 10−13 variation
after 104 steps. These quantities were approximated with the composite trapezoidal rule.

4.1 Parameters

There is a large number of parameters in the Landau-de Gennes model. We have chosen
these parameters to approximate those of a 5CB nematic liquid crystal [42]. Their val-
ues and the numerical mesh sizes are provided in Table 1. The quenching temperature,
and initial composition were selected so that some phase separation (nucleation) takes
place before there is any significant orientational order away from the walls. Two sets of
thermotropic energy parameters (a, B, and C) were considered (labeled Set 1 and Set 2 in
Table 1) to obtain an initially nematic and an isotropic state of the LC component as de-
termined by Seq, which is evaluated using (2.8) with φ=0.4 as the initial, mean polymer
concentration. The two values of Seq in Table 1 correspond to a weakly nematic initial
state of the LC for Set 1 and an isotropic state for Set 2.

The correlation length ξN , which gives a measure of the orientational defect size if
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there is any, was computed using (2.10). Consequently, to adequately resolve such small
length scale we take the uniform mesh size to be ∆xc =∆yc = 10nm. The time step size
is ∆t = 0.1 and remains constant throughout all simulations. For 2D experiments, the
rectangular domain size is set to be Lxc = 2.56µm and Lyc = 2.56µm. For 3D case, Lxc =
1.28µm, Lyc =1µm, and Lzc =1.28µm. In both instances, the normal-wall direction is y.

Parameters Set 1 Set 2

λc 4×10−11 J/m *
Kc 4×10−11 J/m *
Wc −1×10−10 J/m *
ac 0.553×105 J/m3K 8×105 J/m3K
Bc −0.7155×106 J/m3 −0.1×106 J/m3

Cc 0.8758×106 J/m3 1.6×106 J/m3

MQ 10−20m3/J∆t *
Mφ 10−4m3/J∆t *
β 1 *
g0 2.8K *
T 1.3K *
Tc 2K *
d 2K *
εc 50nm *
Seq 0.384 0
ξN 22.29nm 85.05nm
∆xc 10nm *
∆yc 10nm *
∆t 0.1 *

Table 1: Two sets of parameters used for numerical simulations. Set 1 corresponds
roughly to 5CB nematic liquid crystal [42], and ∗ in set 2 takes the same value as in
set 1. The temperature related parameters are taken from [4].

As mentioned in Section 2, the parameters are nondimensionalized by choosing a
characteristic length scale Lc and a characteristic energy scale Ec. We take Lc =1µm and
Ec =1×10−14 J.

4.2 Initial Condition

In all the simulations we start with an initial state defined by a small perturbation of a
uniform mixture, where the dominant phase is the nematic crystal (φ< 1

2 ),

φ0=0.4+γ. (4.1)
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Here γ is a uniformly distributed random number in (−0.001, 0.001). The initial director
field n is taken to be a random unit vector.

4.3 Chain Structure Order

The experimental results of Loudet, Barois, and Poulin [32] show spectacularly that a
polymer phase can nucleate in a confined nematic LC matrix to form highly ordered
droplet chains whose orientation can be controlled by wall anchoring. We examine next
to which extent this fascinating phenomenon can be captured by the Landau-de Gennes
model.

We consider a relatively shallow quench (T=1.3) so that some phase separation oc-
curs prior to when the orientational order becomes significant. The surface anchoring
is homeotropic, i.e. the preferential nematic orientation at the polymer-LC interfaces is
normal to those surfaces. After nondimensionalization, the values of the relevant param-
eters are a=5.528, B=−71.55, and C=87.58 for the thermotropic energy and W=−0.01,
K= 0.004, and λ= 0.004 for the anchoring strength, the elastic constant, and the mixing
energy strength, respectively.

Figure 2 displays a series of snapshots of the phase separation process in the 2D chan-
nel. The polymer-rich phase is shown in blue and the LC-rich phase in red. A subsam-
pled, in-plane component of the director field is also displayed. In the early stages of the
spinodal decomposition [Fig. 2(a)], a row of polymer-rich droplets is nucleated adjacent
to each wall in two corresponding LC-rich layers. The wall anchoring induces an orien-
tational order that quickly propagates from the walls inward, toward the channel center,
and produces a director field that is nearly horizontal in about 2/3 of the domain. LC-
rich layers immediately next to the walls have also been observed in the simulations by
Xia et al. [6] for a similar system but with free wall anchoring (i.e. no preferred nematic
orientation enforced at the walls) and with an affinity wall potential. Here, however, the
LC-layers are induced by the planar wall anchoring, which has a dramatic long range
effect as Fig. 2(b) shows; the director field is horizontal at the domain center and more
rows of polymer-rich droplets have formed. In contrast, in a typical spinodal decompo-
sition of a binary mixture with a dominant component as modelled by the Cahn-Hilliard
equation, the minority phase starts to nucleate throughout the entire domain without any
ordering.

The nucleated droplets create some distortion on the orientational order induced by
the walls. Note that the surface anchoring is not strong (the director field is not entirely
normal to the polymer-LC surfaces). In the current model, to simulate homeotropic sur-
face anchoring, W has to be negative and so a large |W| necessitates a larger mixing
energy strength λ to keep the system well-posed. As a result, when we increase both
parameters we would see elongated polymer-rich domains instead of circular droplets.
In other words, there is a delicate balance of wall and surface anchoring, mixing energy,
orientational elasticity and thermotropic effects that comes into play within the Landau-
de Gennes model to give rise to this extraordinary ordered droplet chains. As shown in
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Fig. 2(c), drop coalescence takes place in the middle of the channel at a later time and the
polymer-rich domains continue to coarsen [Fig. 2(d)].

In contrast to the phase separation process depicted in Fig. 2, the experiments of
Loudet, Barois, and Poulin [32] show that the coarsening is arrested once the droplets
reach a critical size, so that the chain structure is preserved and stable. This is explained
in [32] by the presence of a dipole orientational defect between each droplet in a chain.
Our numerical solution shows no indication of such orientational defects. To investigate
this further, we consider a single droplet of polymer in a nematic matrix in an orienta-
tional field that approximately corresponds to a dipole. Using this as our initial condition
we observe that the dipole defect splits into two−1/2 defects and cannot be sustained by
the model as shown in Fig. 3. These two −1/2 defects are surrounded by biaxial region
in which the order parameter has a discontinuity. Similar observations have been made
for the hedgehog dipole defect [44], which was found to be unstable for large droplet
radius and low temperatures with Landau-de Gennes model and forms a −1/2 disclina-
tion loop about the particle, which is surrounded by a region of biaxiality [44]. Therefore,
in the absence of dipole orientational defects, there is no mechanism in the Landau-de
Gennes model to stop the coarsening of the polymer-rich droplets and eventually the
chain structure ordering is destroyed.

We now look at the same system but in a 3D channel. The relevant physical param-
eters and the initial condition are the same as in the 2D channel discussed above, and
homeotropic surface anchoring is chosen. The wall anchoring is again planar but now
we consider two different orientations: 1) aligned with the x-axis, and 2) aligned at a 45
degree angle between the x and z axes. Figure 4 displays isosurfaces of polymer volume
fraction φ and a subsample of the director field at t=1100 and t=3500 for the planar wall
anchoring 1) and 2). The orientational order induced by the wall anchoring and the fa-
vored homeotropic surface anchoring produce chains of elongated cylinders of polymer-
rich material instead of droplets, in contrast to the 2D case. As seen in the bottom two
plots in Fig. 4, wall anchoring controls the orientation of these chain structures, which
now align at a 45 degree angle between the x and z axis. The nucleation of perfectly or-
dered layers of polymer-rich cylinders takes place, just as in the 2D counterpart, from the
walls inward, until coarsening and coalescence destroy the order.

Even though homeotropic surface anchoring is more prevalent in these systems than
the planar one, we consider the latter to examine its effects on the nucleated morphology.
Figure 5 shows that again polymer-rich cylinders are nucleated but now the axis of these
cylinders is oriented in the direction of the wall anchoring. It is important to note that
just as in the 2D case, the wall anchoring quickly produces a layer of LC-rich material
adjacent to the walls at which the nucleation of the first cylinder layers begins.

4.4 Lamellae Order

We consider next the same set-up as before, an initial mean polymer volume fraction of
φ = 0.4, but now the LC in the mixture is initially in isotropic phase. Such state is ob-
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Figure 2: Time sequence of the polymer volume fraction φ and the subsampled director
field for a polymer phase nucleating in a liquid-crystal matrix at (nondimensional times)
(a) t=1000, (b) t=2000, (c) t=3000, and (d) t=12000. The thermotropic energy parameters
are a=5.528, B=−71.55, C=87.58. LC-rich phase in red and polymer-rich phase in blue.
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Figure 3: The top/middle/bottom plots show the polymer volume fraction φ with the
subsampled director field n, the scalar order parameter S, and the biaxiality parameter
β(Q), respectively. The (a1), (a2), and (a3) plots are the initial setting at t = 1, which
approximates a dipole point defect to the right of the droplet. The (b1), (b2), and (b3) plots
are at t=30,000. The parameters are a=5.528, B=−71.55, C=87.58, λ=0.004, K=0.002,
W=−0.0015. LC-rich phase in red and polymer-rich phase in blue.
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Figure 4: The top (bottom) two plots show isosurfaces and a sample of the director field at
t=1100 (left) and t=3500 (right) when the wall anchoring is along the x axis (top) and at
a 45 degree angle (bottom). The surface anchoring is homeotropic and the thermotropic
energy parameters are a=5.528, B=−71.55, C=87.58.
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Figure 5: Isosurfaces and a sample of the director field for nucleation with planar surface
anchoring and planar wall anchoring along the (a) x direction and (b) in a 45 degree angle
between the x and z axes. The time step is t = 3500. The thermotropic energy parameters
are a=5.528, B=−71.55, C=87.58.

tained by changing the thermotropic energy coefficients to a=80, B=−10, C=160, which
with φ = 0.4 give Seq = 0. All the other parameters remain the same (Set 2 in Table 1).
The wall anchoring remains planar. We consider first homeotropic surface anchoring.
Figure 6 shows snapshots of the phase separation process in the 2D channel. At early
times [Fig. 6(a)] a layer of LC-rich material develops adjacent to the each wall, just as in
the chain structure nucleation case, but now these first LC-rich layers are accompanied
by equal polymer-rich layers. As the initial isotropic binary mixture phase-separates
at the walls, the strong anchoring there induces the lamellae. A similar appearance of
phase-separated layers adjacent to walls has been observed in a thin film of a polymer
blend [51], a diblock copolymer [52], and a polymer dispersed nematic [6] when they
were confined between two walls. As Fig. 6(a) shows, these layers drastically modify
the orientational field, turning it vertically aligned to comply with the homeotropic sur-
face anchoring preference, a significant distance from the walls. This orientational dis-
tortion favors the formation of more lamellae [Fig. 6(b)], which alternate in polymer-
rich and LC-reach composition, and propagate from the walls inward to fill the entire
channel [Fig. 6(c)(d)]. Once this occurs the system is in equilibrium and the lamellae do
not coarsen, in striking contrast to what happens in spinodal decomposition of a binary
isotropic mixture (as modeled by the Cahn-Hilliard equation). Indeed, Fig. 7 shows the
total energy reaches a minimum and the anchoring and elastic energies perfectly balance
each other out and an equilibrium is attained.

Surface anchoring plays a crucial role in the formation of lamellae from an initially
isotropic mixture such as the one just considered (parameter Set 2 in Table 1). If we
choose planar surface anchoring, as shown in Fig. 8, the system phase separates into
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Figure 6: Time sequence of the polymer volume fraction φ and the subsampled director
field for the phase separation of a polymer-LC mixture where the LC component is ini-
tially in isotropic state (thermotropic energy parameters a= 80, B=−10, C = 160) with
homeotropic surface anchoring at (a) t=500, (b) t=1500, (c) t=3500, (d) t=12000. LC-rich
phase is in red and polymer-rich phase is in blue.
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Figure 7: The anchoring energy and elastic energy (left) and total free energy (right) vs t
for the lamellae structure formation.

lamellae growing from the walls inward, just as with homeotropic anchoring. However,
the orientational field undergoes a very different distortion, with the orientational field
aligning along the surface of the polymer-rich domains.

In the 3D channel, the phase separation and the formation of lamellae follows the
same dynamics as the 2D case. Figure 9 presents isosurfaces of the polymer volume
fraction and a subsampled director field at two different times for both wall anchoring
aligned with the x axis and at a 45 degree angle between the x and z axis. The surface
anchoring is homeotropic. As in the 2D case, once the phase-separated layers cover the
entire channel, the system reaches an equilibrium and coarsening is arrested.

5 Conclusion

We have presented a numerical investigation, both in 2D and 3D, of the ordering and
structure formation of a polymer nucleating in a LC continuous phase induced from
temperature quenching. The polymer-LC system is confined between two parallel walls
which are rubbed and coated to provide the strong planar long-range wall anchoring.
Both homeotropic and planar surface anchoring are considered at the polymer-LC inter-
face. The model is the Ginzburg-Landau theory for the conserved composition density
φ, which represents the volume fraction of the polymer, and the non-conserved nematic
tensor order parameter Q, which describes the orientation of the rigid rod-like nematic
molecules. To our knowledge, this is the first 3D numerical investigation of nucleation
in a confined geometry. Our study demonstrates that the presence of the nematic liquid
crystal has profound effect on the morphology of nucleation of the minority phase. More-
over, the long-range wall anchoring and surface anchoring dramatically affect the orien-
tation of the ordered structures. With certain set of parameters, remarkable polymer-rich
domain chain structures are observed when quenching from the nematic initial state in
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Figure 8: Time sequence of the polymer volume fraction φ and the subsampled director
field for the phase separation of a polymer-LC mixture where the LC component is ini-
tially in isotropic state (thermotropic energy parameters a= 80, B=−10, C = 160) with
planar surface anchoring at (a) t = 500, (b) t = 1500, (c) t = 3500, (d) t = 12000. LC-rich
phase is in red and polymer-rich phase is in blue.
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Figure 9: The top (bottom) two plots show isosurfaces of φ and a sample of the director
field at t = 500 (left) and t = 3500 (right) when the wall anchoring is along the x axis
(top) and at a 45 degree angle (bottom). The surface anchoring is homeotropic and the
thermotropic energy parameters are a=80, B=−10, C=160.
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both the 2D and 3D channel. However, there is no apparent mechanism in this Landau-
de Gennes model to arrest the coarsening of the polymer-rich domains and eventually
the chain structure order is destroyed. As argued in [32], the highly ordered array of
monodisperse droplet chains observed in experiments is preserved and stable during
phase separation because of dipole orientational defects formed in between the droplets.
However, we show with a numerical example that dipole defects cannot be sustained in
the Landau-de Gennes model and open up to two −1/2 point defects. The use of vari-
able mobility that depends on both Q and φ might provide a mechanism to arrest or slow
down the coarsening once the ordered structures have formed.

We also find a stable lamellae order when quenching from isotropic phase. The sys-
tem reaches equilibrium with alternating polymer-rich and LC-rich layers, and the coars-
ening is arrested. While the model considered here has limitations, the results reveal the
strong effects that the orientational order induced by the presence of a liquid crystal com-
ponent and by anchoring can have on nucleation and phase separation, and underlines a
potential mechanism for controlling morphology in this type of binary systems.
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