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Abstract

The motion of fluid interfaces often lead to singular events which
include pinching, break-up, coalescence, and cusp formation. Numerical
simulation can play a key role in the investigation of these fundamental
phenomena which is of significant scientific and technological interest.
This is however a formidable task which demands an accurate resolution
of disparate time and length scales and a faithful representation of physical
forces. A survey of front-tracking methods for the investigation of singular
or near singular events in interfacial rheology is presented. This review
is focused on immersed interface and boundary integral type methods.
Recent advances and some salient remaining challenges are also discussed.
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1 Introduction

The dynamics of fluid interfaces that bound drops, bubbles, jets, or layers
of fluids with different material properties is a source of intriguing and
fascinating singular and small-scale phenomena which include pinching, break-
up, coalescence, cusp formation, short capillary waves, and many of the
fundamental instabilities in fluids. These examples have inspired, over the
course of several decades, the development of many numerical approaches to
follow the motion of these free boundaries for a variety of flows. The methods
are broadly divided into two main types: front-tracking and front-capturing. In
a front-tracking method [58, 82, 36, 34, 35, 48], the fluid interface is evolved
in time by updating an explicit representation of the interface in the form
of links, elements, or Lagrangian markers. In contrast, in a front-capturing
approach the interface is embedded as a level set of a function defined in the
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entire fluid (computational) domain. This function could be an approximation
to the distance to the interface (level set method [57, 24, 76]), a volume
fraction of one of the two component in a two-phase flow (Volume-Of-Fluid
method [69, 63, 66, 60]), or a concentration-related order parameter (phase
field method [25, 3, 45, 13, 6, 46, 88]).

Despite significant advances, both approaches, tracking and capturing, have
shortcomings when it comes to dealing with topological singularities. In
tracking, a decision has to be made to allow or not a topological transition
(e.g. break-up, merging) and if so when and how an interfacial reconnection
is to be performed. The process remains unsatisfactorily manual and different
procedures can lead to dramatically different outcomes (see for example [56]).
On the other hand, in a front-capturing method, the transition through a
topological singularity occurs without user intervention. While this can be
advantageous for some applications that do not require small-scale details of
the flow, it is a serious drawback for the investigation of the interfacial rheology
immediately preceding a singular or near singular event. The realization of
such singular phenomena is very much flow-dependent. Real fluid interfaces
can remain in extreme close proximity for some time without reconnecting.
Unfortunately, a front-capturing method typically precipitates a topological
change under such conditions. Moreover, interacting fluid interfaces frequently
develop small-scale structure in the form of localized curvature variations, and
short, capillary waves which are difficult to resolve with a front-capturing
approach. Thus, despite post-singularity limitations, front-tracking methods
appear to be more suitable for the investigation of the interfacial rheology
leading to a potential topological singularity.

In this article, we review two classes of tracking methods for the investigation
of a potentially singular events in an interfacial flow. The methods considered
are based on the boundary integral approach and the immersed boundary
method. The presentation and discussion are focused on 2D flows. We present
an illustrative example of flow-induced drop coalescence and a case Rayleigh-
Taylor instability for both inviscid and viscous flows.

2 Boundary integral methods

Boundary integral methods are a powerful numerical tool for a specialized class
of problems. These methods have been used extensively to study the motion
of single or multiple drops or bubbles in Stokes flows (see e.g. the reviews
[1, 2] and [74, 52, 49, 91, 26, 28]). The boundary integral approach is attractive
because it reduces the problem to one defined on the interface only. Thus, it
provides a framework within which it is possible to achieve, at least in principle,
high resolution of interfacial quantities, which is necessary for the investigation
of the small scale phenomena that occur during the fundamental processes of
coalescence and break-up.

In what follows we are going to assume that we have a fluid interface or
immersed boundary T" represented in parametric form at time ¢ as X(q,t) for
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« € B. Here « is a Lagrangian parameter, not necessarily arclength, and B C R.

2.1 Inviscid flows

The first example we consider is a density-stratified fluid. The system consists
of two infinite layers of fluid which are inviscid, incompressible, and irrotational.
A fluid interface I' separates the layers. We denote the fluid quantities above
the interface with the subscript 2 and those below the interface with subscript
1. The fluid in each layer satisfies Euler’s equations
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pi +u;-Vu; | =—=Vp; —pig (1)
ot
V-u; =0, (2)
for ¢ = 1,2, where p;, u;, and p are the density, velocity, and pressure

respectively. The constant force g represents the gravity acceleration. Due
to the assumption of irrotationality, we have that in the bulk fluid

Vxu =0 i=12 (3)

Two boundary conditions are imposed on I'. A kinematic boundary condition
which states that the normal velocity is continuous across I' and a dynamic
boundary condition which takes the form of the so-called Laplace-Young law

[pr = 7, (4)

where [p|r denotes the jump of pressure across the interface I', x is the mean
curvature, and 7 is the surface tension coefficient. Note that, in consistency with
the kinematic boundary condition, the tangential velocity at the fluid interface
is not uniquely determined as it may have a jump discontinuity across I'.

In two dimensions, it is convenient to work with a complex position variable
z(a,t) = z(a,t) + iy(a,t) where x and y are the two components of X(a,t).
Closed (periodic) interfaces and open but periodically extended interfaces in the
horizontal direction are commonly used configurations. For the latter we have
z(a,t) = a+ p(a, t), where p(a, t) is a 2r-periodic function of «.

Taking the tangential velocity to be the average of the limiting velocities
above and below the interface, the interface evolves according to the Birkhoff-
Rott equation

Tt =g [ et eot (a0 - (0 )da’ (5)
where the periodicity has been employed to obtain a closed form of the kernel.
In (5) Z is the complex conjugate of z and « is the unnormalized vortex sheet
strength. The above integral should be understood as the Cauchy principal-
value integral. If the interface is closed, then z(q,t) is a periodic function of «
the the Birkhoff-Rott equation becomes

dz 17 ~y(a/ ) ,
ﬁ(a’t) T 2mi /_,T z(a,t) — z(a/, t) dec’. (6)
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Using Euler’s equations (1) on both sides of I we can obtain an evolution
equation for this vortex sheet strength in the form [8]:

dry B d?z 1 72
E =24 <R6{Wza}+§aa <|Za|2 + 9Ya + SKa, (7)

where A = (p1 — p2)/(p1 + p2) is the Atwood number and S = 7/(p1 + p2) is a
scaled surface tension parameter. Due to the first term in the right hand side of
(7), this is a Fredholm integral equation of the second kind for dv/dt. It can be
shown that this equation has a globally convergent Neumann series [§8] and as a
result, it can be solved efficiently via fixed point iteration. Of course, if A =0
(density matched case) then dv/dt is given explicitly; this is the classical, inertial
vortex sheet case. Equations (5) and (7) completely determine the motion of
the free boundary.

2.1.1 Numerical methods

The design of numerical methods for (5) or (6) and (7) appears deceivable
simple; just specify a quadrature @, to evaluate the integral in (5),
an approximation Dj to the derivative 0,, and a time stepping scheme.
Unfortunately, boundary integral methods for inviscid flows are notoriously
sensitive to numerical instabilities [50, 67, 30]. This problem is excerbarated by
the presence of surface tension as it contributes with nonlinear terms with high
order derivatives. In the case of 2D water waves, Beale, Hou, and Lowengrub [10]
showed that a delicate balance of leading order singular operators that exists at
the continuum level must be retained at the discrete level to achieve numerical
stability. As a consequence, Qj, and Dy cannot be chosen independently. The
stability analysis in [10] was subsequently extended to the more general case of
two-fluid interfaces with surface tension in [16].

The presence of surface tension also induces a time-step constraint to explicit
time integration schemes of the form

At < %(min As;)3/2, (8)

where As; = |zo|h is the spacing between Lagrangian markers, h = 27/N,
and N is the total number of markers or interfacial points. This constraint
is typically a severe one due to excessive clustering of Lagrangian points as
these are advected by the flow. The numerical stiffness introduced by surface
tension was a serious limitation to long time simulations of interfacial flows in
2D via boundary integral techniques. An efficient approach that overcame this
difficulty was proposed by Hou, Lowengrub, and Shelley [41]. The central idea
of their method is to employ more convenient variables to describe the interface
position, namely the tangent angle 6 and the arclength metric o = |z,], to
extract leading order terms at small scales (high wave numbers), and to treat
the latter implicitly. Indeed, in terms of # and o, we have that the curvature
has the simple form k = @00[. Henceforth, we denote with the subscript «
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differentiation with respect to that variable. This expression for the curvature
can be further simplified by selecting a parametrization or frame that produces
a spatially independent arclength metric |z,|, i.e. one in which the Lagrangian
particles remain equidistributed in arclength. Such a dynamic parametrization
change can be achieved by exploiting the freedom in specifying the tangential
velocity [41].

Let W = %, then we can write the flow’s normal and tangential components
of the velocity at ' as UN = —Im{e®®W} and UT = Re{e?W} with Re and
Im denoting the real and imaginary parts respectively. The boundary integral
representation (5) and (7) can be reformulated in the new frame and variables
as

o= UT+U"), - 0,U". (9)
1

01

nes () + G,
2
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0/«

- (UY +0,(UT +UY)], (10)

where U4 is an added tangential velocity that can be used to control the spacing
of Lagrangian particles. In particular, one could choose a U4 that renders a
space-independent o that is equal to its average at all times

o(a,t) =<o >, (12)

where < - > stands for the mean in « over one period. It is easy to show that if
UA=-uT +/ [0.UN — (0, UN)] do/, (13)
0

then the constraint (12) is enforced at all times provided it holds initially. With
this choice of U4, (9) becomes the ordinary differential equation

ot = —<9aUN> (14)

The leading order terms at small scales can be easily extracted from this
formulation. Extending the periodic integrand in (5) to the entire real line we
can write

1 o0

- 7(0/) . 1 > / / /
~ g f o T~ [ et

— 0o

where H is the Hilbert transform defined by

1 f)

T ) ox—a

H[f)(a) = o/, (16)
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and g is a smooth function. Thus, it follows that
1
UN(aﬂ t) = %H[’Y](OZ, t) + Rs [’7](0‘7 t), (17)

where Ry is a smoothing operator in the sense that if z(«,t) is a real analytic
function of « for t < T and o > 0 then the Fourier transform of R, satisfies
RJy] = O(e?I¥13) for large wavenumber |k|. Here, p > 0 is the width
of the strip of analyticity about the real axis. If z(a,t) is only C™ then
R.[y] = O(|k|~™4). Thus, at high modes,

1N

“Ua ~ 202 5= ANl
where A = J,’H and by ~ we mean equivalent modulo a smoothing operator.
The evolution equations for 6 and v can now be written in a form that reveals
the leading order behavior at small scales:

1

et - T"QA[A/] + P, (18)
S

Tt = ;00404 + Q, (19)

where P is defined as the right hand side of (10) minus the high mode leading
term and @ is the right hand side of (11) without the surface tension term.
Note that both leading order terms in (18) and (19) are diagonal in Fourier
space. Consequently, a semi-implicit discretization in which these two terms
are treated implicitly while keeping P and @) explicitly produces a simple 2 x 2
linear system for each mode k. A forth order implicit/explicit SBDF method [4]
has been used successfully in several applications [41, 42, 16, 17, 18, 23].

The leading order terms at small scales (high modes) balance each other
out. Indeed, if we multiply (18) by A[f] and (19) by v/(2S0) and note that
0o = —A260 we obtain

th/ OA[f)da = 20’2/A ~]da + . (20)
15 dt/ = /A ~]da + . (21)

To guarantee numerical stability it is crucial to maintain this type of balance
among leading order terms at the discrete level. This balance and hence
numerical stability can be achieved with a spectral spatial discretization and
suitable de-aliasing filtering as proved in [16]. For both configurations, T’
closed or z(a,t) = a + p(a,t) with p(a,t) periodic, it is possible to obtain
a spectral discretization in « of the evolution equations (9)-(11). The Birkhoff
singular integral in (5) or in (6) can be computed with spectral accuracy via
the alternate-point trapezoidal rule [71, 70]

N/2

1
W, = yp= E ~; cot §(zZ — zj)2h, (22)
j=—N/241
(4 — i) odd
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where h = 27/N, with N even. This quadrature results from Richardson
extrapolation and cancels out the kernel’s singularity. Derivatives with respect
to a can be computed (pseudo) spectrally via the Fast Fourier Transform (FFT).

2.1.2 Potential pinch-off in unstably stratified 2D flows

One of the fundamental instabilities in incompressible fluids takes place at the
interface of two fluids with different densities when the lighter fluid is accelerated
into the heavier fluid [31]. This instability is called Rayleigh-Taylor (RT) [65, 77]
and is believed to play a preeminent role in fluid mixing which is important to a
wide variety of applications. Due to its fundamental relevance and applications,
several numerical studies have been performed [27, 7, 64, 9, 78, 33, 39, 35, 84, 5,
40] and the RT instability has also served as a test case for numerical methods
of multi-phase flows [38, 11, 63, 16, 60].

In the absence of any regularizing mechanism, an unstably stratified inviscid
fluid system is linearly ill-posed due to the RT instability. Surface tension
tension can provide a physically-based regularization to the RT instability and
at the same time also be a driving force in nonlinear regimes. A number of
experimental [83] and numerical studies [78, 11, 60, 16] of the RT instability
have shown that for an interface that is initially a single-mode perturbation
of a flat sheet (single-mode setup), at small to moderate Atwood numbers,
the interface develops thin fluid fingers that subsequently roll-up and form a
mushroom shaped configuration. However, in some of the numerical studies that
show roll-up and eventual drop formation there is no surface tension and thus the
regularizing mechanisms are purely numerical. Thus, to understand the critical
effects of surface tension it is of paramount importance that these are captured
accurately and are not overshadowed by numerically induced regularizations.
This is particularly relevant near a potentially singular event such as pinch-off
or drop formation. The spectrally accurate, non-stiff, boundary integral method
described in 2.1.1 provides an effective tool for such an investigation in the case
of inviscid flows.

As an illustration of the importance of surface tension effects on the long-
time motion of an unstably stratified inviscid fluid we consider a case originally
reported in [16] of an initial single mode perturbation

z(a, 0) = a + ie cos(2mar), (23)
’Y(O‘a 0) =0, (24)

where ¢ = 0.1 and we take A = —0.1, ¢ = 10, and S = 0.005. Figure 1 shows
the time evolution of the interface for a calculation employing N = 1024 and
At = 1.25x107%. Near t = 0.8, the interface becomes vertical in two symmetric
positions about x = 0.5. Two small fluid fingers develop and subsequently
roll up. A close-up look at the subsequent dynamics is presented in Fig. 2
where capillary waves emanating from the rolled up fingers could be clearly
observed. Opposite to the finger tips of the heavier fluid, small bumps with
high curvature develop and the two opposite sections of the interface approach



36 H.D. Ceniceros

=0 t=0.7 t=0.8
05 0.5 0.5
0 \/ 0 \/ 8 \//
-05 -0.5 -0.5
0.5 1 0 0.5 1 05 1
t=0.9 t=1.0 t=1.1
05 0.5 0.5
IR I
-05 -0.5 -0.5
0.5 1 0 0.5 1 05 1
t=1.2 t=1.3 t=14
05 0.5 = 0.5 \
-05 -0.5 -0.5 /
0 0.5 1 0 0.5 1 0 05 1

Figure 1: Unstably stratified inviscid flow: Time evolution of the interface with
A= —0.1and S =0.005. N = 1024 and At = 2.5 x 1074,

each other during roll-up. During this process a thin film ensues and the
interfacial portions in close proximity develop large curvatures as the thin film
drains. Figure 3a shows the interface profile at t = 1.785 and Fig. 3b displays
the minimum interfacial separation or thin film thickness which continues to
decrease in time. The monotone behavior of the thin film thickness is a strong
indication of a finite-time topological singularity formation. A fit to a curve
of the form d(t) = C(t. — t)?/3, shown as a solid line in Fig. 3b, shows good
agreement with the numerical data. This suggests that the interface might
collapse with a 2/3 exponent but a further numerical and analytical study is
needed to have a more conclusive answer; this is still an open problem.

A remarkably similar topological singularity formation was also observed
by Hou, Lowengrub, and Shelley [42] in their investigation of vortex sheet
(density matched) undergoing Kelvin-Helmholtz instability in the presence of
surface tension. The coinciding aspects of these two different problems, Kelvin-
Helmholtz instability and RT instability, suggests that surface tension leads
to and ultimately determines the type of interfacial collapse. This topological
singularity is truly surprising as it is driven by surface tension and it takes place
in a 2D flow where the azimuthal component of the curvature is absent.
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Figure 2: Unstably stratified inviscid flow: A = —0.1 and S = 0.005. Sequence
of interface positions. N = 2048 and At = 1.25 x 10~%.
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Figure 3: Unstably stratified inviscid flow: A = —0.1 and S = 0.005. (a)
Interface position at ¢ = 1.785 and (b) minimum separation against time. The
circles represent the computed values and the solid line a fitted curve of the
form d(t) = O(t. — t)?/3.
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2.2 Stokes flows

The problem of flow-induced drop coalescence has received considerable recent
attention due to the role that this process plays in the formation of polymer
blends, which is currently the major route to new polymeric materials with
desired macroscopic properties. The understanding of the conditions for
coalescence and their dependence on fluid and flow properties is critical for
controlling this process.

In coalescence experiments with drops whose diameters are O(100)
microns [47, 86], the Reynolds number Re, which is a relative measure of inertia
versus viscous forces, is very small and inertia can neglected (Stokes flow). In
such situations, a boundary integral representation of the interfacial velocity
can be obtained in terms of the jump in the interfacial surface force. This
representation, as a computational method, was first described by Youngren and
Acrivos [87] and since then significant progress has been made in the extensions
of the boundary integral formulation and on improvements of its accuracy as
reviewed by Pozrikidis [61, 62].

Let us consider two drops of Newtonian fluid with viscosity pg surrounded
by an unbounded Newtonian fluid of viscosity p. and affected by an external
flow field u>. Neglecting inertia terms, the velocity components u; on the
drop surfaces S; and Se can be written in the following boundary integral
representation (using the summation convention over repeated indices) [61] :

wix0) = T (x0) = Ty [ Gk xo) 05 dS(x)

+(222) L 0T, x0) e (0) dS ),
<1+)\ i Jg

(25)

for xog € S and j = 1,2,3. Here A\ = pg/pe, S = S1 + Sa2, nj denotes the
components of the (outward) unit normal, and [f;(x)]s expresses the jump
in the interfacial force. For example, in the case of uniform surface tension
[fi(x)]s = 2Tkn;, where T is the surface tension coefficient and & is the mean
curvature, is the classical Laplace-Young formula. In (25), G;; is the Stokeslet
tensor (free space Green’s function)

Gij (X, XO) _ 6ij + (xi - in)(xj - ij) 7 (26)

x = ol l[x = xol[?

where 0;; is the Kronecker delta. T3, is the associated stress tensor

(zi — woi) (% — zoj)(Tk — Tok)
[|x — xol[®

Tiji(x,%0) = —6

(27)

The integral involving G is known as the single-layer potential while that
involving T is referred to as the double-layer potential. Given the interfacial
force jump [f]s, (25) represents a Fredholm integral equation for the interfacial
velocity. When the viscosity of the drop and the ambient fluid are matched the
velocity is given solely by the single layer integral.
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Due to the non-removable singular nature of the integrands in both the
single-layer potential and the double-layer potential the design of quadratures
with high order uniform accuracy is a challenging problem. The following two
flow identities

/5 Gy (%, x0)ns (x)dS (x) = 0. (28)
/STijk(x, X0)ng(x)dS(x) = —47nd;;, (29)

for xg € S, are often employed to ameliorate the singularities and to produce
bounded integrands. However, it is important to note that higher order
derivatives of the integrands remain singular. In addition, the evaluation of
the integrals in three dimensions is a costly operation. While there has been
some progress in the application of fast multipole techniques to expedite the
computation of these boundary integrals [90], the level of resolution and high
accuracy required in the 3D exploration of topological singularity events, such
as coalescence and break-up, remains largely unattainable.

To reduce the computational complexity, often an assumption of axial
symmetry is taken. With this axi-symmetric flow assumption an analytic
integration around the axis of symmetry can be performed using cylindrical
coordinates and the surface integrals in (25) reduce to line integrals over the
curve C' traced by the drops on a plane with fixed (zero) azimuthal angle (see
e.g. [61]). The resulting kernels of these line integrals can be expressed in terms
of complete elliptic integrals [61]. Using (28)-(29) and the trapezoidal rule it is
possible to obtain second order quadratures for the line integrals. Recently,
higher order quadratures with error corrections obtained from asymptotic
expansions have been proposed in [19].

The components of the normal as well as the curvature can be evaluated
with standard finite differences, with splines, or spectrally. To evolve the fluid
interfaces (the trace C of the drops) we again have freedom in specifying the
tangential velocity. Thus, we may write

88—’; =u+Ut, (30)
where t is a unit tangent vector. Equation (30) can be integrated with a high
order Runge-Kutta method or a multi-step method.

The following example of flow-induced coalescence in axi-symmetric
geometry illustrate some of the computational challenges to investigate this
important singular phenomenon.

2.2.1 Drop coalescence

In a drop coalescence problem the interfacial region of interaction, which is
expected to experience the largest deformation, is very much fixed or can be
easily predicted. As a consequence, high resolution can be obtained adaptively
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by specifying the additional tangential velocity U4 so that
o(a,t) = R(a) < o >, (31)

where R > 0 is a smooth function of mean one. Naturally, R should be chosen to
be small around the interaction region that requires high resolution. Examples
of such a R have been presented in [41, 85].

In a Stokes flow approximation coalescence cannot occur in finite time due
to lubrication forces unless long-range, van der Waals-type of forces, are taken
into account. To a first approximation, these could be modeled by introducing
a disruptive pressure into the interfacial force jump so that the surface tension
force gets replaced by

¥

0)s = 2mwm; = 7ol (32)
where A%, is a scaled Hamaker constant and h(x) is the drop-drop separation
distance (see e.g. [47]).

We present next results originally reported in [85] for a mnumerical
investigation of flow-induced coalescence of two equal-sized drops in axi-
symmetric flows. The simulation is performed with using the boundary integral
formulation described in this section. Normal and tangent vectors, as well as the
curvature are computed spectrally by periodic extension of the drop position
variable X(«,t). An adaptive Lagrangian mesh is obtained by employing a
U# to enforce (31) with a judiciously chosen R to accurately resolve localized,
high curvature regions and integration of (30) is performed with a second
order Runge-Kutta scheme. The flow is characterized by a capillary number
Ca = ueGR/7, where G is the strain rate of the imposed, steady, bi-axial flow
u®™ (to simulate head-on collisions), and R is the radius of the undeformed
drops. The viscosity ratio is A = 0.19, R = 27.2um, and A% = 4.99 x 10711,

Figure 4 compares the center-to-center distance d of the drop as a function
of the dimensionless time tG for an experiment with that obtained from the
boundary integral simulations for Ca = 0.0207. The insets display the computed
drop profile at ¢t = 0.815 when d = 2R and at tG = 2.041. The numerical
simulation predicts very well the drainage time of the thin film separating the
two drops as well as their deformation. Moreover, with the numerics we can look
at the interfacial deformation in the neighborhood of the contact region (thin
film shape). Such an observation is impossible in the experiments. Figure 5
presents a close-up of the thin film change as it evolves dynamically. The
fluid interfaces experience a large deformation at the impending collapse. High
resolution is essential for capturing this singular event.

3 Immersed boundary-type methods

Fluid interfaces that bound drops, bubbles, and layers composing multi-phase
systems can be viewed as immersed structures or boundaries interacting with
the flow. There is a myriad of technologically and scientifically important
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Figure 4: Comparison of experimentally measured center-to-center distance
(d/R) versus time ¢G with numerical values from boundary integral simulation.
Ca =0.0207, A = 0.19.

problems that can be also described as the interaction of a flow (often of a
processing nature) and immersed structures which could be solid or fluid, elastic
or rigid, and could come in a broad range of length scales, from nano to macro.
Aerodynamic design, insect flight, swimming of microorganisms, cardiac fluid
dynamics, and processing of polymeric materials are just a few examples.

The Immersed Boundary (IB) Method introduced by Peskin [58] is a
versatile tool for simulating flow-structure interaction for a wide range of
applications [59]. The method employs a Lagrangian representation of the
immersed structures and their interfacial forces and an Eulerian description
of the flow variables (velocity and pressure). The Lagrangian description
(tracking) of the immersed boundaries, which does not have to conform to the
Eulerian grid, provides a vast structure-building capability while the Eulerian
flow description permits the use of efficient flow solvers. The power of the IB
Method lies in a seamless connection of the two descriptions by the use of two
operations: spreading (of interfacial forces) and interpolation (of velocity at the
immersed boundary), both achieved via mollified delta functions.
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Figure 5: Profile of the thin film gap as it evolves in time (top to bottom).
Ca = 0.0207, A = 0.19.

To describe the method, let us consider an incompressible, Newtonian fluid
occupying a domain  C R" n = 2,3. Inside this domain we assume that
there is an immersed, neutrally buoyant, elastic structure (also referred to as
boundary or interface). This fluid-immersed interface is composed of a system
I' of elastic fibers whose position at any time ¢ is represented in Lagrangian
form by X(s,t), where s € B is a Lagrangian parameter. The interface I' need
not be closed or even continuous. The governing equations are:

p(%—l—u-Vu) = —Vp+uViu+f, (33)
V-u=0, (34)

0X
E - U(X, t)7 (35)

where p and p are the density and viscosity, respectively (both assumed to
be constant in the original formulation of the method). Here u(x,¢) and
p(x,t) are the velocity field and the pressure, respectively, described in terms of
the Eulerian, Cartesian coordinate x. The term f represents the singularly
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supported interfacial (tension) force of the immersed structure acting onto
the fluid. The system (33)-(35) is supplemented with initial and boundary
conditions. For concreteness in this discussion, let us assume periodic boundary
conditions and that €2 is a rectangular domain in the plane.

The seamless connection of the Lagrangian representation of the immersed
structure with the Eulerian representation of the flow is achieved via the
identities:

0X
5 = 5 u(x,t)d(x — X(s,t))dx, (36)
f(x,t) = /BF(X(-, ), 8, t)0(x — X(s,t))ds, (37)

where 0 denotes the Dirac delta distribution. In the IB Method, § is replaced
by d(x) = dp(z)dp (y) and dy, is an approximation of the one-dimensional delta
which has a support of O(h). Thus, interfacial forces are actually spread onto
the fluid domain via the discrete version of (37). In (37), F represents the elastic
force density of I' and is described in Lagrangian coordinates. It is typically a
nonlinear function of the interfacial configuration, F = A(X). For example, if
the tangent direction t along the fibers varies smoothly and if the local elastic
energy density is assumed to depend only on the tangential strain |%—)S(| then

F(X,s5,1) = 2 <T ('8){ ) t) , (38)

0s 0s
where T(|%—)§ ) is the fiber (interfacial) tension. In particular, if 7" is constant,
we obtain the uniform surface tension force of a clean (surfactant-free) fluid
interface.

In a large number of applications, the structures (immersed boundaries) are
very stiff and strong tangential forces on these interfaces induce severe time-step
restrictions for explicit discretizations [73, 72]. Fully implicit methods and some
suitable semi-implicit schemes remove this hindering constraint but seemingly at
a cost that renders these options impractical [80, 54]. Recently, there has been
some progress towards obtaining robust and practical semi-implicit methods in
2D [55, 44, 43, 15] but the corresponding 3D problem remains largely unsolved.

The IB approach can also be used in the case of variable material properties,
i.e. for multi-phase flows by endowing it with a procedure to update p and p in
time. This is however a nontrivial problem as these material properties might
have large (several orders of magnitude) discontinuity jumps (e.g. air-water)
across fluid interfaces. Since the material properties are constant in each of the
bulk phases and the interface motion is limited by the CFL condition to less
than a mesh size in each time step, it is computationally appealing to update
these quantities only in a vicinity of the fluid interface.

Several approaches have been proposed in the literature to address this
problem. In tracking methods, the simplest procedure would be to sweep
the discrete interface element-wise and identify on which side of each element
(line segment) the Eulerian grid points next to it appear. However, this
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straightforward local procedure [81] yields incorrect results when two interfaces
or two disparate segments of the same interface lie too close to each other [82,
79]. To prevent this problem, a more global approach, where the whole
interface is examined for each Eulerian grid point, must be used. Unverdi and
Tryggvason [82] proposed a fluid indicator of this type which is built as the
solution of a Poisson equation. This equation incorporates the global properties
of the interface and can be fast and efficiently solved for typical rectangular
domains. However, it must be solved on the entire computational domain and
does not take advantage of the fact that the material quantities only change in a
vicinity of the interface. Moreover, as reported in [79], this procedure produces
oscillations near the fluid interface and inaccuracies away from it.

In the Level Set Method approach [57], the interface is implicitly given
by the zero level set of a function ¢ initialized as the signed distance to the
fluid interface. Unlike the material properties themselves, ¢ is continuous and
can thus furnish a natural fluid indicator for multi-phase incompressible flows.
Moreover, ¢ can be evolved easily via a simple advection equation. Inspired
by this observation, a hybrid Level Set-Front Tracking (LeFT) approach was
first proposed in [14]. In this hybrid setting, the IB Method equations are
supplemented by the level set equation

99

5, tu Vo =0, (39)

and the momentum equation changes to

ou

() (E +u- Vu) =-Vp+V-pu(¢) [Vu+ VuT} +p(o)g +£. (40)

Note that the interfacial force f is obtained from the explicit Lagrangian
representation of the immersed boundary X (o, t) using (37) and the interfacial
configuration is evolved employing (36). Thus, in this hybrid formulation, the
level set function is solely used as a fluid indicator. Given ¢, the material
quantities are obtained by the relations

p(¢) = p1+ (p2 — p1)H(9), (41)
(@) = pa + (p2 — 1) H (), (42)

where p1, p2 and p1, po are the constant densities and viscosities, respectively
and H(¢) is the Heaviside function defined by

~_J0 if¢ <0,
H(¢)_{1 if ¢ > 0. (43)

Updating ¢ through (39), as it is usually done, quickly leads to a loss of the
distance function property of ¢ (|[V¢| = 1) due to flow distortion and a re-
initialization or re-distancing procedure [76], in which an auxiliary PDE is solved
to try to restore ¢, has to be employed. Moreover, the evolution equation (39) is
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solved in the entire computational domain and the local nature of its variation
is usually not exploited. An alternative, computationally optimal scheme to
compute ¢ was proposed in [21]. The central idea is to employ a fast algorithm
(Closest Point Transform, CPT) from Computational Geometry [53]. This
geometric approach replaces the standard procedures for updating the level set
function with an efficient strategy to obtain the signed distance function locally,
at optimal cost, and at machine precision for a piece-wise linear representation
of the fluid interface.

There has been a recent trend to develop hybrid approaches in an attempt to
overcome some of the inherent limitations of traditional tracking and capturing
methodologies [60, 75, 14, 32, 29, 21, 89]. The hybrid level-set/front-tracking
approach is a particular example of such hybrid strategies that seek to exploit
the best features of two different approaches by merging them into one method.

3.1 Adaption

Due to the multi-component nature of the flow, the fluid interfaces are subjected
to surface tension which plays a fundamental role in nearly all multi-phase flows
of physical interest. The presence of a fluid interface acting with a singular force
leads to large gradients localized in a vicinity of the free boundary. Moreover,
surface tension can induce the production of focused centers of vorticity and
to other small scale phenomena whose adequate capturing often demands
computationally prohibitive fine resolutions to uniform grid approaches. This
problem can be overcome with a judicious use of a local mesh refinement
technique.

In the context of the IB and IB-based methods spatial adaption has been
incorporated in the form of adaptive mesh refinements (AMR) by Roma, Peskin,
and Berger [68] and more recently by Griffith, Hornung, McQueen, and C.
S. Peskin [37] and by Ceniceros, Roma, da Silveira-Neto, and Villar [22].
This approach employs the hierarchical grid structure proposed by Berger and
Colella [12]. Regions of the flow bearing special interest (such as neighborhoods
of a fluid interface, regions of high vorticity, etc.) are covered by block-
structured grids, defined as a hierarchical sequence of nested, progressively finer
levels (composite grids). Each level is formed by a set of disjoint rectangular
grids and the refinement ratio between two successive refinement levels are
constant and equal to two. Ghost cells are employed around each grid, for
all the levels, and underneath fine grid patches to formally prevent the finite
difference operators from being redefined at grid borders and at interior regions
which are covered by finer levels. Values defined in these cells are obtained
from interpolation schemes, usually with second or third order accuracy, and
not from solving the equations of the problem. The description of composite
grids is given in greater details in [12].

There are three main steps in the AMR approach. Flagging: a decision is
made to mark a particular set of cells whose collection gives the region where
refinement is to be applied. Grid generation: grids in each level are generated
according to the flagged cells by applying the algorithm for point clusterig due to
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Berger and Rigoutsos [51]. Multi-level solves: effective iterative methods to solve
the linear systems that arise in the projection method on the composite grid
need to be employed. Multi-level multigrid methods are typically the natural
choices and these can be implemented on a level-by-level basis.

3.2 RT instability in viscous flow

As we have seen, for inviscid 2D flows at small to moderate Atwood numbers,
the interface develops thin fluid fingers that subsequently roll-up and appear to
eventually collapse with the adjacent fluid interface giving rise to a topological
singularity [16]. A relevant question is how small but finite viscosity would
affect such a singular event. Recently, a first examination of the problem has
been presented in [22] with the use of an AMR-based LeFT method. The setup
in [22] is same as that in the aforementioned inviscid case with the exception of
nonzero (10~%, cgs units) matched viscosities. Specifically, A = —0.1, 7 = 0.005,
and g = 10. The computational domain is the rectangle Q = [0, 1] x [—1.5, 1.5],
the velocity satisfies the homogeneous Dirichlet condition at the north and at
the south borders, and periodic condition in the horizontal direction.

Snapshots of the interfacial profile during the late stages of the motion are
presented in Fig. 6. While there is a similar dynamics to that in the invisicid
case there are also notable differences in the fine structure of the fluid fingers
(c.f. Fig. 2). There are traces of capillary waves emanating from the fingers
as in the inviscid counterpart but the interface motion in the viscous flow is
much more complex and the fingers undergo a more pronounced deformation
and a stretching leading up to a formation of thin, filament-like structures
(t = 2.28). The close proximity of interfacial segments suggests a possible
pinch-off scenario as that in the inviscid case [16]. However, a close look at the
time behavior of the minimum distance between adjacent, opposite interfacial
segments, Fig. 7, reveals a contrasting outcome. Slightly before ¢t = 2.26, the
decrease of the minimum distance saturates, as clearly indicated by the two
highest adaptive resolutions, 32 x 64 L6 and 32 x 64 L7, equivalent to uniform
grid resolutions of 1024 x 2048 and 2048 x 4096, respectively. This behavior
is reminiscent of the near pinching roll-up observed in a 2D viscous interface
undergoing Kelvin-Helmholtz instability where viscous effects appear to prevent
finite-time pinching [20, 43]. For the unstably stratified flow, the effects of a
viscosity stratification (whether or not this might induce pinch-off) remain to
be investigated.

4 Concluding Remarks

As the examples presented here illustrate, the accurate capturing of
topologically singular or near singular events in the dynamics of fluid interfaces
is a challenging problem. But the investigation of these striking events could
help to elucidate fundamental phenomena in interfacial rheology as well as to
provide an examination of the range of validity of the underlying models.
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Figure 6: Unstably stratified viscous flow: A = —0.1 and 7 = 0.005, & = 10~
Interfacial profiles.

Topological singularities are not to be taken for granted; they constitute
a complex process which is very much flow-dependent and largely not well-
understood. The numerical investigation of this type of interfacial problems
demands a judicious selection of accurate numerical approaches to ensure that
these extremely important singular events are not induced numerically.

We have focused here on 2D problems and on front-tracking methodology
based on boundary integral and immersed boundary approaches. More
effort is needed to develop the corresponding methodologies in 3D to the
level that is required for investigating the small scale details of singular
events such as flow-induced coalescence or drop break-up. A strong synergy
among theory, experiments, and numerical simulations seems indispensable
for the investigation of these important processes. In particular, one could
check the accuracy of the theory by comparing experimental results with
numerical predictions and as a result improve the models to more faithfully
capture the underlying physics. In particular, the numerical investigation of
topologically singular problems with models that take into account molecular
force interactions coupled to the (macro) flow and that more accurately describe
the de facto varying material properties in the vicinity of a fluid interface as
well as non-uniform surface tension due to surfactants remains an open and
challenging field, particularly in 3D.
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Figure 7: Evolution of the minimum distance from disparate interface segments.
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