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Abstract

Field-theoretic models, which replace interactions between polymers with interac-
tions between polymers and one or more conjugate fields, offer a systematic frame-
work for coarse-graining of complex fluids systems. While this approach has been
used successfully to investigate a wide range of polymer formulations at equilibrium,
field-theoretic models often fail to accurately capture the non-equilibrium behavior
of polymers, especially in the early stages of phase separation. Here the “two-fluid”
approach serves as a useful alternative, treating the motions of fluid components
separately in order to incorporate asymmetries between polymer molecules. In this
work we focus on the connection of these two theories, drawing upon the strengths
of each of the approaches in order to couple polymer microstructure with the dy-
namics of the flow in a systematic way. For illustrative purposes we work with an
inhomogeneous melt of elastic dumbbell polymers, though our methodology will
apply more generally to a wide variety of inhomogeneous systems. First we derive
the model, incorporating thermodynamic forces into a two-fluid model for the flow
through the introduction of conjugate chemical potential and elastic strain fields
for the polymer density and stress. The resulting equations are composed of a sys-
tem of fourth order PDEs coupled with a nonlinear, nonlocal optimization problem
to determine the conjugate fields. The coupled system is severely stiff and with a
high degree of computational complexity. Next, we overcome the formidable nu-
merical challenges posed by the model by designing a robust semi-implicit method
based on linear asymptotic behavior of the leading order terms at small scales, by
exploiting the exponential structure of global (integral) operators, and by paral-
lelizing the nonlinear optimization problem. The semi-implicit method effectively
removes the fourth order stability constraint associated with explicit methods and
we observe only a first order time-step restriction. The algorithm for solving the
nonlinear optimization problem, which takes advantage of the form of the operators
being optimized, reduces the overall computational cost of simulations by several
orders of magnitude. We illustrate the methodology with several examples of phase
separation in an initially quiescent flow.
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1 Introduction

Self-assembled polymeric systems are of fundamental importance in a variety
of applications, such as multiphase plastic materials and solution formulations,
and recently a great deal of interest has focused on the application of polymers
in soft material nanontechnology [8]. Though experimental methods are vital
in the design of such materials, computer simulation and theory can aid in
the exploration of parameter spaces, reducing both the time and cost of the
material design process.

One approach that has been very useful in the study of self-assembly in poly-
meric systems is polymer field theory. Field-theoretic models, which replace
interactions between polymers with interactions between polymers and one or
more conjugate fields, allow for systematic coarse-graining and thus simula-
tion is possible over a broad range of scales [8]. Such methods have found wide
application in the study of the equilibrium structure and thermodynamics of
inhomogeneous polymer melts and concentrated solutions of homo-, block-
, and graft copolymers [6,8,10,12,14–16]. However, flow dynamics are often
neglected in such models and polymer field theory has been less successful
in the study of non-equilibrium regimes, such as the initial stages of phase
separation.

For polymeric systems in which flow dynamics of component molecules play
a significant role, the “two-fluid” approach [5,17,18] has proven to be a useful
formalism. Two-fluid models treat the motion of fluid components separately
and have provided insight into polymeric fluids with asymmetries between
component molecules. The drawback of such models, in comparison to polymer
field theory, is that the microscopic structure of polymer molecules is not
easily incorporated and phenomenological equations are typically used for the
chemical potentials and polymer stresses.

In this work we focus on the connection of these two theories, incorporating
polymer microstructure, via field theory, into the two-fluid modeling approach.
To our knowledge we present the first computational study of coupled flow-
polymer dynamics under the framework developed in [7], avoiding constitu-
tive laws for the chemical potential fields and polymer stresses. For illustrative
purposes we work with an inhomogeneous melt of elastic dumbbell polymers,
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though our methodology will apply more generally to a wide variety of inho-
mogeneous systems. We thus view this work as a stepping stone, providing a
foundation for more advanced studies of polymer dynamics.

Our methodology is based on the work in [7], where a model for polymer
solutions is developed that embeds exact thermodynamic forces, through the
introduction of conjugate chemical potential and elastic strain fields for the
polymer density and stress variables, into a two-fluid model for the flow. We
note that a similar model is considered in [9], where the two-fluid approach
is combined with polymer field-theory for inhomogeneous polymer melts and
a numerical method is presented. However, the model in [9] is considerably
simplified from [7] in that only chemical potential fields are introduced and a
phenomenological constitutive law for stress dynamics is used.

Due to the complex nature of the models that arise from the approach devel-
oped in [7], several computational challenges must be overcome. The form of
the models is a system of high order, nonlinear partial differential equations for
the density, stress, and velocity variables, coupled with a nonlinear, nonlocal
optimization problem for the chemical potential and elastic strain variables.
The presence of high order derivatives leads to numerical stiffness and the size
of the discrete time-step used in simulation is severely restricted for explicit
methods. Additionally, the nonlinear optimization problem must be solved at
each point in time and thus the computational cost of each time-step is much
higher than is typically the case in standard numerical CFD problems. In
this work we address these computational challenges and develop a numerical
methodology capable of efficiently simulating polymeric fluids modeled by the
approach in [7].

The organization of the paper is as follows. In Section 2, we derive a model
for an inhomogeneous melt of elastic dumbbell polymers, connecting the mi-
croscopic description of the polymers to the macroscopic description of the
fluid. The model is composed of a system of fourth order PDEs coupled with
a nonlinear optimization problem for the conjugate fields. In Section 3, we
present the numerical method for the model, which consists of a semi-implicit
time integration scheme for the system of PDEs coupled with an efficient, par-
allel algorithm for the nonlinear optimization problem. In designing the semi-
implict integration scheme, we draw upon ideas used for phase-field models
of polymers [1,3] and linear operators are extracted from the right hand side
of the PDEs and treated implicitly. Whereas explicit methods have a fourth
order time-step restriction, we observe only a first order stability constraint
for the semi-implicit strategy. The algorithm for the nonlinear optimization
problem, which includes techniques designed for problems arising in polymer
self-consistent field theory [2], takes advantage of the specific form of the op-
erators being optimized and reduces the computational cost of simulation by
several orders of magnitude. In Section 4, we implement our methodology for
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a phase separating melt of elastic dumbbells and also investigate the effects of
asymmetry between the fluid components. We provide an estimate of the time-
step restriction of the semi-implicit method and highlight the computational
savings over alternative methodologies.

2 Derivation of the model

2.1 Microscopic model for elastic dumbbell polymers

We start with a particle based model of a binary, incompressible melt of elastic
dumbbells (a bead-spring model for the polymers using two beads). We let Rα1

and Rα2 denote the positions of the 1st and 2nd beads of the αth polymer of
type a and Rβ1 and Rβ2 denote the positions of the 1st and 2nd beads of the
βth polymer of type b. Here α = 1, ..., na and β = 1, ..., nb, where na and nb

are the number of polymers of type a and b.

We work in the nV T canonical ensemble and conformations of noninteract-
ing polymers are given a Gaussian statistical weight, exp(−U0/kBT ), with a
stretching free energy of the form,

U0 =
kT

4Rg2
a

na∑
α=1

(Rα2 −Rα1)
2 +

kT

4Rg2
b

nb∑
β=1

(Rβ2 −Rβ1)
2, (1)

where Rg2
a and Rg2

b are the unperturbed radii-of-gyration, kB is the Boltzmann
constant, and T is the thermodynamic temperature of the system. To simplify
the notation we express energies in units of kBT and set kBT = 1.

The effective potential energy function representing nonbonded interactions
between monomers (beads) on the same polymer and between monomers on
different polymers is given by

U1 =
∫

dr
[
χ1ρ̂a(r)ρ̂b(r) +

1

2
χ2|∇ρ̂a(r)|2 +

1

2
χ2|∇ρ̂b(r)|2

]
, (2)

where ρ̂a(r) =
∑2

i=1

∑na
α=1 δ(r−Rαi

) and ρ̂b(r) =
∑2

i=1

∑nb
β=1 δ(r−Rβi

) are mi-
croscopic monomer number densities and χ1 and χ2 are energetic parameters
that penalize a-b bead contacts and density gradients, respectively. Addition-
ally, we have expressions for the microscopic elastic stresses [4] that take the
form
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[σ̂a(r)]jk =
1

4Rg2
a

na∑
α=1

(Rα2 −Rα1)j(Rα2 −Rα1)k × (3)

[δ(r−Rα1) + δ(r−Rα2)]

and

[σ̂b(r)]jk =
1

4Rg2
b

nb∑
β=1

(Rβ2 −Rβ1)j(Rβ2 −Rβ1)k × (4)

[δ(r−Rβ1) + δ(r−Rβ2)].

With this microscopic description of the polymers, the configurational parti-
tion function is given as

Z =
na∏

α=1

nb∏
β=1

∫
dRα1

∫
dRα2

∫
dRβ1

∫
dRβ2 exp(−U0 − U1). (5)

2.2 Field-theoretic form of the model

To transform the microscopic model into a field theory, we first insert the
identity

∫
D[ρa]

∫
D[σa] δ(ρa − ρ̂a)δ(σa − σ̂a) (6)

=
∫
D[ρb]

∫
D[σb]δ(ρb − ρ̂b)δ(σb − σ̂b) = 1

into the expression for the configurational partition function given by Equation
(5), where the integrals appearing in this equation are functional integrals [8]
over the real fields ρa, ρb, σa and σb. Next we introduce functional integrals
over the conjugate chemical potential fields µa(r) and µb(r) and elastic strain
fields εa(r) and εb(r) through the identities

δ(ρa− ρ̂a)δ(σa − σ̂a) (7)

=
∫
D[µa]

∫
D[εa] exp

(
i
∫

dr [µa(ρa − ρ̂a) + εa : (σa − σ̂a)]
)
,

δ(ρb− ρ̂b)δ(σb − σ̂b) (8)

=
∫
D[µb]

∫
D[εb] exp

(
i
∫

dr [µb(ρb − ρ̂b) + εb : (σb − σ̂b)]
)
,
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where ε : σ =
∑

ij εijσij. These two steps allow the configurational partition
function to be expressed as

Z =
∫
D[ρa]

∫
D[ρb]

∫
D[σa]

∫
D[σb]

∫
D[µa]

∫
D[µb]

∫
D[εa]

∫
D[εb]

× exp(−H[ρa, ρb, σa, σb, µa, µb, εa, εb]), (9)

where the effective Hamiltonian H in this equation is given by

H =
∫

dr
[
χ1ρa(r)ρb(r) +

1

2
χ2|∇ρa(r)|2 +

1

2
χ2|∇ρb(r)|2 (10)

−iµa(r)ρa(r)− iµb(r)ρb(r)− iεa(r) : σa(r)− iεb(r) : σb(r)
]

−na ln Qa[iµa, iεa]− na ln Qb[iµb, iεb].

The functionals Qa and Qb, which are partition functions of a single dumbbell
polymer in the purely imaginary chemical potential and strain fields [8], satisfy

Qa =
1

Qa0

∫
dr

∫
dr′ exp

(
−iµa(r)− iµa(r

′) (11)

− 1

4Rg2
a

(r− r′)2 : [I + iεa(r) + iεa(r
′)]

)

and

Qb =
1

Qb0

∫
dr

∫
dr′ exp

(
−iµb(r)− iµb(r

′) (12)

− 1

4Rg2
b

(r− r′)2 : [I + iεb(r) + iεb(r
′)]

)
.

The normalization factors Qa0 and Qb0 are defined so that Qa[0, 0] = Qb[0, 0] =
1 and in the above expression I denotes the unit tensor.

2.3 Mean-field approximation

Thermodynamic forces are obtained through the variational derivatives of the
effective Hamiltonian,

δH

δρa

,
δH

δρb

,
δH

δσa

,
δH

δσb

,
δH

δµa

,
δH

δµb

,
δH

δεa

,
δH

δεb

. (13)
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For dense systems, such as the melt considered in this work, the functional
integral appearing in Equation (9) is dominated by a saddle point, (µ∗

a, µ∗
b , ε∗a,

ε∗b), of H [10], which satisfies:

δH

δµa

∣∣∣∣
ρa,σa,µa=µ∗

a,εa=ε∗a

=
δH

δµb

∣∣∣∣
ρb,σb,µb=µ∗

b
,εb=ε∗

b

= 0, (14)

δH

δεa

∣∣∣∣
ρa,σa,µa=µ∗

a,εa=ε∗a

=
δH

δεb

∣∣∣∣
ρb,σb,µb=µ∗

b
,εb=ε∗

b

= 0. (15)

We thus ignore all fluctuations in the µ and ε fields and require Equations (14)-
(15) to hold. As it turns out, the physically relevant saddle points prove to be
purely imaginary and for convenience we set µa ← iµa, µb ← iµb, εa ← iεa

and εb ← iεb. Thus for the remainder of this paper all fields will be purely
real.

Taking the variational derivatives of H, we have

δH

δρa

= χ1ρb − χ2∇2ρa − µa, (16)

δH

δσa

= −εa, (17)

δH

δµa

= ρ̃a − ρa, (18)

δH

δεa

= σ̃a − σa, (19)

with similar equations holding for polymers of type b, where the density and
stress operators ρ̃a and σ̃a are given by

ρ̃a(r) = −na
δ ln Qa

δµa

(20)

=
2na

QaQa0

exp
(
− µa(r)

)
×∫

dr′ exp
(
− µa(r

′)− 1

4Rg2
a

(r− r′)2 : [I + εa(r) + εa(r
′)]

)
and

σ̃a(r) = −na
δ ln Qa

δεa

(21)

=
na

2Rg2
aQaQa0

exp
(
− µa(r)

)
×
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∫
dr′(r− r′)2 exp

(
− µa(r

′)− 1

4Rg2
a

(r− r′)2 : [I + εa(r) + εa(r
′)]

)
.

2.4 Two-fluid model

To model the flow we adopt the two-fluid approach outlined in [5] and begin
by introducing a Rayleigh functional, R = W/2 + Ḣ, which is the sum of half
of the energy dissipation rate W and the rate of change of the effective Hamil-
tonian Ḣ. The model for W assumes a local, frictional coupling associated
with the relative motions of the polymers a and b,

W =
∫

dr ξ|va − vb|2, (22)

where

ξ =
ξaξb

ξa + ξb

, (23)

ξa = ξa0ρa and ξb = ξb0ρb are polymer friction coefficients per unit volume, ρa

and ρb are monomer number densities, and va and vb are the species velocities
of polymers a and b.

The rate of change of the effective Hamiltonian is obtained using the chain
rule:

Ḣ =
∫

dr
(

δH

δρa

∂ρa

∂t
+

δH

δρb

∂ρb

∂t
+

δH

δσa

:
∂σa

∂t
+

δH

δσb

:
∂σb

∂t

)
, (24)

where we have only retained the time variations of the fields that have micro-
scopic Poisson-bracket couplings [11] to the polymer velocity fields.

Since ρ̂a and ρ̂b are microscopically conserved, the corresponding macroscopic
density variables satisfy continuity equations:

∂ρa

∂t
= −∇ · (vaρa), (25)

and

∂ρb

∂t
= −∇ · (vbρb). (26)
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The macroscopic stress variables corresponding to σ̂a and σ̂b are not con-
served, but instead are rotated and advected by the polymer velocity according
to:

∂σa

∂t
= −∇ · (vaσa) + (∇va)

T · σa + σa · (∇va) (27)

and

∂σb

∂t
= −∇ · (vbσb) + (∇vb)

T · σb + σb · (∇vb). (28)

In order to enforce incompressibility, the Rayleigh functional can be modified
with a Lagrange multiplier term, with a pressure field P acting as the Lagrange
multiplier,

RM = R−
∫

drP (r, t)∇ · [vaρa + vbρb]. (29)

Taking variational derivatives of RM with respect to the polymer velocity
fields leads to two momentum balance equations:

ρmρa
∂va

∂t
= −δRM

δva

= −ξ(va − vb)−∇ ·Πa − ρa∇P, (30)

ρmρb
∂vb

∂t
= −δRM

δvb

= −ξ(vb − va)−∇ ·Πb − ρb∇P, (31)

where ρm is the polymer mass per monomer (assumed to be equal for the two
types of polymers) and

∇ ·Πa = ∇ ·Πρa +∇ ·Πσa , (32)

∇ ·Πρa = ρa∇
δH

δρa

, (33)

∇ ·Πσa = − δH

δσa

:
(
∇σa

)
+∇

(
δH

δσa

: σa

)
− 2∇ ·

(
δH

δσa

· σa

)
, (34)

and similarly for polymer b. For simplicity we assume ρm = 1, ρa + ρb = 1.

Following [5], we define the species velocity difference w = va−vb and rewrite
(30)-(31) in terms of w and the density averaged velocity v = ρava + ρbvb,
obtaining:

∂v

∂t
+ w

∂ρb

∂t
= −∇ ·Πa −∇ ·Πb −∇P (35)
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∂w

∂t
= −

(
ξ

ρa

+
ξ

ρb

)
w− 1

ρa

∇ ·Πa +
1

ρb

∇ ·Πb. (36)

Often it is the case that the second term on the left hand side of the first
equation and the left hand side of the second equation are dominated by the
other terms [5]. When these terms are neglected we obtain:

∂v

∂t
= −∇ ·Πa −∇ ·Πb −∇P, (37)

w = −1

ξ

(
ρb∇ ·Πa − ρa∇ ·Πb

)
, (38)

where incompressibility is enforced by ∇ · v = 0. The definitions of v and w
result in the following equations for the species velocities:

va = v− ρb

ξ
∇ ·Πa +

ρaρb

ξ

(
∇ ·Πa +∇ ·Πb

)
(39)

and

vb = v− ρa

ξ
∇ ·Πb +

ρaρb

ξ

(
∇ ·Πa +∇ ·Πb

)
. (40)

Lastly, Equations (27) and (28) for the stress must be modified in order to
restore diagonal dissipative couplings on the components of the stress, cor-
responding to stress relaxation in a homogeneous polymer melt. We thus
make the phenomenological modification, as is done in [7], of adding the terms
−(ρa/τa)δH/δσa and −(ρb/τb)δH/δσb to the right hand side, where τa and τb

are stress relaxation time parameters.

2.5 Summary

In summary, our model for an incompressible melt of elastic dumbbells is given
by:

∂ρa

∂t
= −∇ · (vaρa), (41)

∂ρb

∂t
= −∇ · (vbρb), (42)

∂σa

∂t
= −∇ · (vaσa) + (∇va)

T · σa + σa · (∇va)−
ρa

τa

δH

δσa

, (43)
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∂σb

∂t
= −∇ · (vbσb) + (∇vb)

T · σb + σb · (∇vb)−
ρb

τb

δH

δσb

, (44)

va = v− ρb

ξ
∇ ·Πa +

ρaρb

ξ

(
∇ ·Πa +∇ ·Πb

)
, (45)

vb = v− ρa

ξ
∇ ·Πb +

ρaρb

ξ

(
∇ ·Πa +∇ ·Πb

)
, (46)

∂v

∂t
= −∇ ·Πa −∇ ·Πb −∇P, (47)

∇ · v = 0, (48)

and

δH

δµa

=
δH

δµb

= 0,
δH

δεa

=
δH

δεb

= 0, (49)

where

∇ ·Πa = ρa∇
δH

δρa

− δH

δσa

:
(
∇σa

)
+∇

(
δH

δσa

: σa

)
(50)

−2∇ ·
(

δH

δσa

· σa

)
,

∇ ·Πb = ρb∇
δH

δρb

− δH

δσb

:
(
∇σb

)
+∇

(
δH

δσb

: σb

)
(51)

−2∇ ·
(

δH

δσb

· σb

)
.

The general outline for computing the solution goes as follows. Given the fields
ρn

a , ρn
b , σn

a , σn
b , vn at time tn, the first step is to solve for the conjugate fields µn

a ,
µn

b , εn
a , εn

b by approximating the solution to the nonlinear optimization problem
(49). Next the thermodynamic forces appearing in (50)-(51) are computed in
order to update the species velocities vn

a and vn
b in Equations (45)-(46). Lastly,

Equations (41)-(44) and Equations (47)-(48) are used to compute the fields
ρn+1

a , ρn+1
b , σn+1

a , σn+1
b , vn+1 at time tn+1.

Due to the form of the stress operators σ̃a and σ̃b, we have the symmetric
properties that σa = σT

a , σb = σT
b , εa = εT

a , and εb = εT
b . Thus in two

dimentions only one of the redundant off diagonal terms needs to be retained
for each of these variables in computations.
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3 Numerical Methodology

In this Section we present a numerical method for Equations (41)-(51) that
eliminates the fourth order time-step restrictions associated with explicit meth-
ods and allows for the efficient solution of the nonlinear optimization problem
given by (49).

We work in two spatial dimensions and use periodic boundary conditions
in each direction. The discretization in space is pseudo-spectral, where all
derivatives are computed with spectral accuracy for smooth fields using Fast
Fourier Transforms. Additionally, after updating all the variables at each time-
step, we de-alias ρa, σa, and v in Fourier space with the smoothing operator
e−36(|k|/|kmax|)36 suggested in [13] as a more accurate alternative to the “two-
thirds rule”.

3.1 Time Integration Strategy

The equations of motion for the density and stress variables contain high order
derivatives, up to fourth order in ρa and second order in σa. Explicit methods,
when applied to such equations, have severe time-step restrictions, requiring
prohibitively small time-step sizes. In this section, we present a semi-implicit
time-stepping strategy which reduces efficiently the time-step restrictions as-
sociated with explicit methods.

Writing Equations (41)-(51) as

∂ρa

∂t
= fρa(ρa,va), (52)

∂σa

∂t
= fσa(ρa, σa, εa,va), (53)

∂v

∂t
= fv(ρa, ρb, σa, σb, µa, µb, εa, εb), (54)

(with similar equations for polymer b), our approach, similar to [1,3], is to
extract a linear operator L from f that contains the linearized, high order
derivative terms of f that produce numerical stiffness. We then treat L semi-
implicitly, obtaining a time-stepping scheme of the form:

ρn+1
a − ρn

a

∆t
= Ln+1

ρa
+ fn

ρa
− Ln

ρa
, (55)

σn+1
a − σn

a

∆t
= Ln+1

σa
+ fn

σa
− Ln

σa
, (56)
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and

vn+1 − vn

∆t
= Ln+1

v + fn
v − Ln

v . (57)

The first step is to approximate the fields µa and εa to leading order in ρa and
σa. From Equation (20) we have that

µa = − log(ρa) + log
(

2na

QaQa0

∫
dr′e

−µa(r′)− 1

4Rg2
a

(r−r′)2:[I+εa(r)+εa(r′)]
)
. (58)

When the right side is expanded to first order in µa and εa, the first term is
dominant at high frequencies and therefore we have for large k the relation,

F [µa](k) ≈ −F [log(ρa)](k), (59)

where F denotes the Fourier transform. Expanding the operators ρ̃a and σ̃a

in Equations (20) and (21) to first order in µa and εa, we have:

ρa(r) ≈ ρa0

(
1− µa(r)

)
− ρa0

G

∫
dr′

(
g(r, r′) · µa(r

′)
)

(60)

− ρa0

4GRg2
a

∫
dr′

(
g(r, r′) · [(r− r′)2 : εa(r

′)]
)

− ρa0

4GRg2
a

εa(r) :
∫

dr′
(
g(r, r′) · (r− r′)2

)
,

and

σa(r) ≈
ρa0

4GRg2
a

(
1− µa(r)

)
·
∫

dr′
(
g(r, r′) · (r− r′)2

)
(61)

− ρa0

4GRg2
a

∫
dr′

(
g(r, r′) · µa(r

′) · (r− r′)2
)

− ρa0

16GRg4
a

∫
dr′

(
g(r, r′) · (r− r′)2 · [(r− r′)2 : εa(r

′)]
)

− ρa0

16GRg4
a

∫
dr′

(
g(r, r′) · (r− r′)2 · [(r− r′)2 : εa(r)]

)
,

where

g(r, r′) = exp
(
− |r− r′|2

4Rg2
a

)
, G =

∫
dr g(r, r′), (62)

and ρa0 = 2na/V is the average monomer density of polymer a. The second
and third terms in each of the above expansions can be neglected at high

13



frequencies (due to the decay of the Gaussian kernel in Fourier space) and
after evaluating the remaining Gaussian integrals we are left with:

ρa(r) ≈ ρa0

(
1− µa(r)

)
− ρa0

2
ε11a(r)−

ρa0

2
ε22a(r), (63)

σ11a(r) ≈
ρa0

2

(
1− µa(r)

)
− 3ρa0

4
ε11a(r)−

ρa0

4
ε22a(r), (64)

σ12a(r) ≈
ρa0

2
ε12a(r), (65)

σ22a(r) ≈
ρa0

2

(
1− µa(r)

)
− 3ρa0

4
ε22a(r)−

ρa0

4
ε11a(r). (66)

Solving for εa, we have the following relations for large k:

F [ε11a ](k) ≈ 2

ρa0

F
[
1

2
ρa − σ11a

]
(k), (67)

F [ε22a ](k) ≈ 2

ρa0

F
[
1

2
ρa − σ22a

]
(k), (68)

F [ε12a ](k) ≈ 2

ρa0

F
[
− σ12a

]
(k). (69)

Following the methodology in [1,3], we next linearize the operator f about a
homogeneous solution, σa = 1

2
ρaI,v = 0, εa = 0, using the relations (59) and

(67)-(69). For ρa, we have that

∂ρa

∂t
= ∇ ·

(
ρ2

aρ
2
b

ξ
∇ · δH

δρa

)
−∇ ·

(
ρ2

aρ
2
b

ξ
∇ · δH

δρb

)
+ ... (70)

and using ρa + ρb = 1 we find that

Lρa =
ρaρb

ξ
∇2ρa −

2ρ2
aρ

2
bχ1

ξ
∇2ρa −

2ρ2
aρ

2
bχ2

ξ
∇4ρa. (71)

For σa, with Πσax denoting the x component of Πσa , we have that

∂σ11a

∂t
= −σ11a

∂

∂x

(
ρb

ξ
Πσax

)
+ σ11a

∂

∂y

(
ρb

ξ
Πσay

)
(72)

−
(
ρa/τa

)
δH

δσ11a

+ ...,

∂σ22a

∂t
= −σ22a

∂

∂y

(
ρb

ξ
Πσay

)
+ σ22a

∂

∂x

(
ρb

ξ
Πσax

)
(73)
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−
(
ρa/τa

)
δH

δσ22a

+ ...,

∂σ12a

∂t
= −σ11a

∂

∂x

(
ρb

ξ
Πσay

)
− σ22a

∂

∂y

(
ρb

ξ
Πσax

)
(74)

−
(
ρa/τa

)
δH

δσ12a

+ ...,

where the last terms on the right hand side are retained in order to reduce the
dependence of the time-step restriction on the stress relaxation parameter τa.
Since we are linearizing about εa = 0, many of the high order terms from Πσa

vanish and we are left with

Lσ11a
=

ρaρb

2ξ
∇2σ11a −

2

τa

σ11a , (75)

Lσ22a
=

ρaρb

2ξ
∇2σ22a −

2

τa

σ22a , (76)

Lσ12a
=

ρaρb

ξ
∇2σ12a −

2

τa

σ12a , (77)

where we have retained only the second order diagonal terms and the terms
involving τa. For the velocity v we note that fv does not depend on the velocity
and therefore we set Lv = fv.

So far we have neglected the high order ρa terms appearing in the evolution
equation for the stress variable. In order to remove the stiffness associated
with these terms, we treat ρa implicitly in the right hand side of the equation
for the stress. In summary, our numerical integration scheme is given by:

ρn+1
a − ρn

a

∆t
= −C1∇4ρn+1

a + C2∇2ρn+1
a + fρa(ρ

n
a ,v

n
a) (78)

+C1∇4ρn
a − C2∇2ρn

a ,

σn+1
ija
− σn

ija

∆t
= Cij

3 ∇2σn+1
ija
− C4σ

n+1
ija

+ fσa(ρ
n+1
a , σn

a , ε
n
a ,v

∗
a) (79)

−Cij
3 ∇2σn

ija
+ C4σ

n
ija

,

vn+1 − vn

∆t
= fv(ρ

n+1
a , ρn+1

b , σn+1
a , σn+1

b , µn+1
a , µn+1

b , εn+1
a , εn+1

b ), (80)
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where

v∗
a = va[v

n, ρn+1
a , ρn+1

b , σn
a , σ

n
b , µ

n
a , µ

n
b , ε

n
a , ε

n
b ]. (81)

As in [1,3], the constants are given by the maximum value of the coefficients
of the linearized terms,

C1 = max
r

[
ρa(r)ρb(r)

ξ(r)
(1− 2ρa(r)ρb(r)χ1)

]
, C2 = max

r

[
2ρa(r)

2ρb(r)
2χ2

ξ(r)

]
,

2C11
3 = 2C22

3 = C12
3 = max

r

[
ρa(r)ρb(r)

ξ(r)

]
, C4 =

2

τa

, (82)

which can either be calculated analytically or computed at each time-step.

3.2 Mean-field Computation

Since the mean-field approximation is employed to determine the chemical
potential and elastic strain fields, the nonlinear optimization problem,

δH

δµa

[ρn
a , µ

n
a , ε

n
a ] = 0,

δH

δεa

[σn
a , µ

n
a , ε

n
a ] = 0, (83)

must be solved at each time-step tn (and similarly for polymer b). Following
[2], we use a gradient flow approach, writing (83) as

∂µa

∂s
=

δH

δµa

[ρn
a , µa, εa] (84)

and

∂εa

∂s
=

δH

δεa

[σn
a , µa, εa], (85)

where s is a fictitious time variable and the steady state solution corresponds
to the mean-fields µn

a and εn
a . We then discretize Equations (84) and (85),

following [2] using the two-step Seidel type iteration scheme

µi+1,n
a − µi,n

a

∆s
=

δH

δµa

[ρn
a , µ

i,n
a , εi,n

a ], (86)
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εi+1,n
a − εi,n

a

∆s
=

δH

δεa

[σn
a , µ

i+1,n
a , εi,n

a ], (87)

and relax until

max
k,l=1,2

(‖µi+1,n
a − µi,n

a ‖2, ‖ε
i+1,n
kla

− εi,n
kla
‖2) ≤ tol. (88)

Though this iteration scheme costs twice as much per iteration as the one-
step forward Euler scheme, we find that it is more robust, converging for non-
smooth chemical potential and elastic strain fields when the Euler method
fails to converge.

Because the functionals in (83) are invariant under constant shifts in µa, we
enforce∫

dr µi,n
a (r) = 0 (89)

after updating µi,n
a at each pseudo time-step ∆s.

With an arbitrary initial guess µ0,n
a and ε0,n

a , the relaxation scheme given
by (86) and (87) may require thousands of iterations in order to converge
within a desired tolerance. Furthermore, at each pseudo time-step si the two
dimensional integrals over R2 appearing in Equations (20) and (21) must be
computed at each point in the physical domain. Thus with a spatial resolution
of N×N points, the computational cost of just one pseudo time-step is O(N4).

In order to bring down the computational cost, we first improve upon the
initial guess. Since we have solved the optimization problem at times tn−1

and time tn−2, we can use the mean-fields at these times to construct an
extrapolated initial guess:

µ0,n
a = 2µn−1

a − µn−2
a , ε0,n

a = 2εn−1
a − εn−2

a . (90)

With such a procedure the number of iterations required for convergence is
reduced to O(10) when the time-step ∆t is not too large compared to the
magnitude of the fluid velocity (for larger time-steps extrapolation provides
a less accurate initial guess and the relaxation scheme then requires more
iterations in order to converge).

To bring down the computational cost associated with the integration required
at each pseudo time-step, we first observe that the integrands appearing in (20)
and (21) decay exponentially. This implies that the error caused by integrating
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over a finite region decreases exponentially as the domain of integration in-
creases. Thus the integrals in (20) and (21) can be restricted to a small region
centered about r while maintaining accuracy. Additionally, we find that the
spatial resolution used in the integration can be reduced while still accurately
resolving the operators ρ̃a(r) and σ̃a(r).

As an example, we numerically approximate the integral of the function

e−(x2+y2)/4 · x2
[
1 + tanh

(
5 cos(8πx/40) cos(8πy/40)

)]
,

similar in form to the integrands in (20) and (21), over R2 using several spatial
resolutions and domain sizes. In Table 1, we observe that the error created
by reducing the size of the domain of integration from 40 × 40 to 20 × 20
and increasing the grid spacing by a factor of 2 is 0.033. Furthermore, the
integrals in (20) and (21) are normalized to obtain ρ̃a(r) and σ̃a(r), which are
O(1), and thus the error contribution from the integration to the mean-field
approximation will be even smaller, O(10−3), in the context of the optimization
problem. We note that on a domain of size 40 × 40 using a 128 × 128 grid,
a second order finite difference approximation to the system of PDEs in the
model creates an error on the order of 402/1282 = 0.098 that is comparable
to the error contributed from the integration under the L2-norm.

Table 1
Integration resolution comparison

domain of integration integration resolution value of integral

20× 20 32× 32 29.92850069

20× 20 64× 64 29.96182141

40× 40 128× 128 29.96182142

Even with the savings gained by reducing the resolution and domain of in-
tegration, the operators must still be evaluated at every mesh point r in the
physical domain. To bring the simulation time down further, we divide the
physical domain into 32 equally sized pieces and evaluate the operators in
parallel at each pseudo time-step (the number of processors was chosen in
order to balance the cost of mathematical operations and communication be-
tween processors). The computational savings of our approach are illustrated
in Table 2.
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Table 2
CPU time per pseudo time-step ∆s of the nonlinear optimization problem (averaged
over a sample size of 5)

domain of integration integration resolution # of processors CPU time (sec)

20× 20 32× 32 32 1.3

40× 40 128× 128 32 14.7

40× 40 128× 128 1 396.2

4 Numerical Results

In this section we illustrate the effectiveness of the numerical method with
several examples. In Section 4.1 we estimate the time-step restriction of the
semi-implicit method presented in Section 3.1. In Section 4.2 we provide sim-
ulation results for a phase separating, symmetric melt in an initially quiescent
flow. Finally, in Section 4.3 we investigate the effects of asymmetry between
the fluid components. All simulations in this work were carried out on 32 P655
nodes on Datastar at the San Diego Supercomputer Center.

4.1 Time-step restriction of semi-implicit integration scheme

We consider a domain of size [40Rg, 40Rg] and use the initial conditions
ρ0

a(x, y) = 0.5 + 0.1 cos(8πx/40Rg) cos(8πy/40Rg), ρ0
b = 1 − ρ0

a, ε0
a = ε0

b = 0
(which determines σ0

a and σ0
b through Equation (83)), and v0 = 0 and the

parameters χ1 = 2, χ2 = 0.5, Rga = Rgb = 1, ξa0 = ξb0 = 1, and τa = τb = 0.2.
For the constants in the semi-implicit integration, we use C1 = 1, C2 = 0.25,
C12

3 = 2, Cii
3 = 1, and C4 = 20. For the nonlinear optimization problem,

we set ∆s = 0.9, tol = 10−3, and compute all integrals over a region of size
[20Rg × 20Rg]. For the spatial resolutions 32 × 32, 64 × 64 and 128 × 128
we compute the integrals (20)-(21) using the resolutions 16× 16, 32× 32 and
32× 32.

In Table 3, we list the maximum time-step size ∆t for which the semi-implicit
integration scheme can complete 200 time-steps without diverging (we say
that the scheme diverges if the density or diagonal components of the stress
go below zero). Here we observe a linear decrease in the size of the maximum
allowable time-step as the spatial resolution is increased, which is due to the
first order derivative terms appearing in Equations (41)-(51). In contrast, due
to the fourth order derivative terms appearing in the equations for the den-
sity, explicit methods exhibit a quartic decrease in the size of the maximum
allowable time-step.
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Table 3
Resolution vs. maximum time-step

resolution 32× 32 64× 64 128× 128

max ∆t 10.4 6.4 4.6

4.2 Phase separation of a symmetric melt of elastic dumbbells in an initially
quiescent flow

In this example we use the random initial conditions ρ0
a = 0.5 + 0.1U [−1, 1]

(where U is a uniform random variable), ρ0
b = 1 − ρ0

a, ε0
a = ε0

b = 0, and
v0 = 0 and the parameters χ1 = 2, χ2 = 0.05, Rga = Rgb = 1, ξa0 = ξb0 = 1,
and τa = τb = 0.1. For the constants in the semi-implicit integration, we
use C1 = 1, C2 = 0.025, C12

3 = 2, Cii
3 = 1, and C4 = 40. We discretize

the domain [0, 40Rg] × [0, 40Rg] with a grid of size 128 × 128 points and for
the nonlinear optimization problem we use the pseudo time-step ∆s = 0.9,
tolerance tol = 10−3, and evaluate the integrals (20)-(21) over the domain
[0, 20Rg]× [0, 20Rg] using a resolution of 32× 32 gridpoints.

We integrate up to time t = 50 using the time-step ∆t = 0.05 and observe
the classic pattern of symmetric phase separation, with polymer a-rich phases
and polymer b-rich phases separated by a thin transition layer (Figure 1). In
the contour plots of the components of the stress, we observe less stress in
vertically aligned regions and higher stress in horizontally aligned regions, as
the fluid deforms in order to align the polymers and ultimately minimize the
free energy of the system.

For the above parameter values we find that the average number of iterations
per time-step required to solve the nonlinear optimization problem is 15.97 and
the total runtime is 11 hours and 22 minutes. We note that the forward Euler
method fails to converge for time-steps as small as ∆t = 3 · 10−3 (using the
above parameters) and thus the runtime associated with an explicit method
will be on the order of weeks for similar parameter values. Without the savings
gained by efficiently solving the nonlinear optimization problem, the runtime
will be even longer, on the order of months.

4.3 Effects of asymmetry between the fluid components

4.3.1 Droplet deformation

Here we investigate the effects of asymmetry in the polymer stress and friction
parameters starting with an elliptical droplet. We use the initial conditions
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Fig. 1. Contour plots at time t = 50 of ρa (top, yellow corresponds to a rich re-
gions), σ11a + σ11b

(bottom left), and σ12a + σ12b
(bottom right). In the bottom left

plot, yellow corresponds to higher (bulk) stress and is located in the horizontally
aligned regions and the fluid interfaces, whereas red corresponds to lower stress
and is located in the vertically aligned regions. In the bottom right, yellow and red
correspond to higher (shear) stress, located in the horizontally aligned regions, and
orange corresponds to lower stress, located in the vertically aligned regions.

(plotted in Figure 2),

ρ0
a = 0.5 + 0.45 · tanh

(√
3 · (x− 20)2 + (y − 20)2 − 9

)
, (91)

ρ0
b = 1− ρ0

a, ε0
a = ε0

b = 0, and v0 = 0 and the parameters χ1 = 1.5, χ2 = 0.25,
and Rga = Rgb = 1. In the first example we use ξa0 = 10, ξb0 = 0.1 and
τa = 10, τb = 0.1 and in the second example we reverse the parameters,
setting ξa0 = 0.1, ξb0 = 10 and τa = 0.1, τb = 10. For the constants in the
semi-implicit integration, we use C1 = 10, C2 = 1.25, C12

3 = 20, Cii
3 = 10, and

Ca
4 = 0.4, Cb

4 = 40 in the first example and Ca
4 = 40, Cb

4 = 0.4 in the second
example. We discretize the domain [0, 40Rg] × [0, 40Rg] with a grid of size
64× 64 points and for the nonlinear optimization problem we use the pseudo
time-step ∆s = 0.9, tolerance tol = 10−3, and evaluate the integrals (20)-(21)
over the domain [0, 20Rg]× [0, 20Rg] using a resolution of 32× 32 gridpoints.
For both examples we use the time-step ∆t = 0.01 up to time t = 0.25 (in
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order to satisfy the CFL condition) and ∆t = 0.25 up to time t = 150.

Fig. 2. Initial profile of the droplet given by Equation (91). Yellow corresponds to
the a-rich region. The initial area of the droplet is 146Rg2.

In Figure 3 we plot the droplets for each of the two examples at time t = 150,
as well as the total polymer stresses σ11a + σ11b

and σ12a + σ12b
. On the left,

the fluid in the droplet has smaller friction and stress relaxation parameters,
resulting in the inability of the droplet to store stress (compared to the droplet
on the right) and a greater mobility of the fluid in the droplet. Comparing
the two examples, we observe that the droplet on the left forms the energy
minimizing circular shape more quickly, whereas the droplet on the right,
due to its ability to store stress and smaller mobility coefficient, relaxes more
slowly. In the plots of the stress, we observe that the droplet on the left has
lower bulk stress in the center of the droplet (middle left plot) and shear stress
surrounding the fluid interface (lower left plot) in comparison to the droplet
on the right.

4.3.2 Viscoelastic phase separation

When strong asymmetries exist between the two components of the fluid, it
has been observed that phase inversion is possible [18]. Following [19], we
modify the frictional terms and replace Equation (23) with

ξ =
ξa0 − ξb0

2
· tanh

(
1

0.01 · tan(πρa0)
− 1

0.01 · tan(πρa)

)
+

ξa0 + ξb0

2
, (92)

which generates strong asymmetry between the mobilities of the two fluid
components. We use the random initial conditions ρ0

a = 0.3 + 0.001U [−1, 1]
(ρa0 = 0.3), ρ0

b = 1 − ρ0
a, ε0

a = ε0
b = 0, and v0 = 0 and the parameters

χ1 = 1.5, χ2 = 0.25, Rga = Rgb = 1, ξa0 = 1, ξb0 = 0.1, τa = 1, τb = 0.1.
For the constants in the semi-implicit integration, we use C1 = 10, C2 = 1.25,
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C12
3 = 20, Cii

3 = 10, Ca
4 = 4, and Cb

4 = 40. We discretize the domain [0, 40Rg]×
[0, 40Rg] with a grid of size 64× 64 points and for the nonlinear optimization
problem we use the pseudo time-step ∆s = 0.9, tolerance tol = 10−3, and
evaluate the integrals (20)-(21) over the domain [0, 20Rg]× [0, 20Rg] using a
resolution of 32× 32 gridpoints.

We use the time-step ∆t = 0.5 and in Figure 4 we plot the density at times
t = 2900, t = 3480, and t = 4000. Initially, due to the greater mobility of the
polymer b molecules, we observe the nucleation of polymer b molecules into
droplets. Since polymer b is the majority phase (ρb0 = 0.7), the droplets grow
in size and a network is then formed by the polymer a molecules. Finally, as
the droplets continue to grow, the network breaks down and phase inversion
occurs.

5 Concluding remarks

We presented a model for an incompressible melt of elastic dumbbell polymers
that connects the thermodynamic forces acting on the polymers with the dy-
namics of the flow via a statistical field theory. We imposed a mean-field ap-
proximation and then developed an efficient, semi-implicit numerical method
for the resulting system of PDEs, as well as a procedure to expedite the nonlin-
ear optimization component by exploiting the structure of the integrands and
by a parallel iterative approach. The semi-implicit method effectively removes
the high order stability constraints associated with explicit methods, allowing
for much larger time-steps to be taken. Additionally, the computational cost
associated with the nonlinear optimization problem was reduced by several
orders of magnitude, allowing simulations that would normally take months
to be completed in just a few hours. We believe that these computational ad-
vances will pave the way for studies of the coupled flow and microstructure of
more realistic multi-bead models of inhomogeneous polymeric fluids.
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Fig. 3. Contour plots at time t = 150 of ρa (top), σ11a +σ11b
(middle), and σ12a +σ12b

(bottom). The left corresponds to ξa0 = 10, ξb0 = 0.1, τa = 10, τb = 0.1 and the right
corresponds to ξa0 = 0.1, ξb0 = 10, τa = 0.1, τb = 10. On the left, due to the greater
mobility and shorter stress relaxation time of the fluid in the droplet (polymer b),
the droplet has formed a circular shape (minimizing the length of the interface) and
has decreased in area from 146Rg2 to 101Rg2. On the right, the fluid in the droplet
has less mobility and a longer stress relaxation time. Thus the droplet still has an
elliptical shape and fills a larger area of the domain (130Rg2). In the plots of the
stress, we observe that the droplet on the left has less bulk stress (middle left) and
shear stress around the fluid interface (lower left) in comparison to the droplet on
the right.
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Fig. 4. Contour plots of ρa (yellow) at times t = 2900 (top), t = 3480 (middle),
and t = 4000 (bottom). Initially, polymer b has greater mobility and nucleates into
droplets, even though it is the majority phase (top plot). Next the droplets grow
and a network is formed by the polymer a molecules (middle plot). Finally, the
network breaks down and phase inversion occurs (bottom plot).
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