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Abstract. An efficient adaptive moving mesh method for investigation of the

semi-classical limit of the focusing nonlinear Schrödinger equation is presented.
The method employs a dynamic mesh to resolve the sea of solitons observed

for small dispersion parameters. A second order semi-implicit discretization is
used in conjunction with a dynamic mesh generator to achieve a cost-efficient,
accurate, and stable adaptive scheme. This method is used to investigate with
highly resolved numerics the solution’s behavior for small dispersion parame-
ters. Convincing evidence is presented of striking regular space-time patterns

for both analytic and non-analytic initial data.

1. Introduction. Consider the initial value problem for focusing nonlinear Schrödinger
equation (FNLS) in one space dimension:

iεψt +
1
2
ε2ψxx + |ψ|2ψ = 0 −∞ < x <∞ , t > 0, (1)

ψ(x, 0) = A0(x)eiS0(x)/ε , (2)

for small ε and where A0(x) is the initial amplitude and S0(x) is the real initial
phase. The FNLS is connected to many applications in science and technology. For
example, it has been tied to the motion of a vortex filament in inviscid impressible
fluids with the celebrated transformation of Hasimoto [7] and is has also been used
to model the fiber architecture of aortic heart valve leaflets [13].

The limit ε→ 0 is called the semi-classical limit and considerable attention has
been given recently to the investigation of its existence and structure [12, 2, 5, 9].
The dynamics of the limit is an open problem. While there is an apparent general
belief that the weak limit does exist and that the solution develops a quite regular
pattern for analytic initial conditions there is lack of consensus [2, 5] for such
regularity in the case of non-analytic data. One of our goals here is to contribute
to a clarification of the solution’s behavior for the non-analytic case.

Numerically this is a notoriously difficult problem; extremely high resolution
(both in space and time) is required to capture accurately the solution’s strong
self-focusing and a fairly localized “sea” of solitons whose wavelengths are O(ε).
Since the computational domain has to be a large spatial interval to avoid boundary
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effects (we assume here that A0(x) decays rapidly to zero or that it has compact
support) uniform meshes become inefficient for small ε. To make things worse, the
ε = 0 problem is ill-posed. This can be viewed by using two of the infinitely many
conservation laws the FNLS has, namely (see e.g. [5])

ρt + µx = 0 , (3)

µt + [
µ2

ρ
− ρ2

2
]x =

ε2

4
[ρ(logρ)xx]x , (4)

where ρ = |ψ|2 and µ = −i ε2 (ψ̄ψx − ψψ̄x) and the bar denotes complex conjugate.
For ε = 0, (3) and (4) become an elliptic system which is exactly Euler equations in
one-dimensional gas dynamics with a strange pressure law: the pressure decreases as
the density (ρ) increases. This underlying ill-posedness gives rise to the Benjamin-
Feir or modulational instability and brings high sensitivity of the solution to round-
off error noise for sufficiently small ε.

The small length scale, the localization of the solution, and the need of a rela-
tively large computational domain call for an adaptive method. Cleverly designed
moving mesh methods have been used to study the finite-time blow-up of the FNLS
in higher dimensions [3, 14]. But, as we illustrate in this work, moving mesh meth-
ods are difficult to apply in the non-singular but highly dispersive one-dimensional
FNLS. One of the main difficulties stems from the introduction of the mesh ad-
vection term into the underlying FNLS. This advection term, absent for a uniform
mesh, can become dominant for small ε and lead to innacuracies and instabilities.
Another main difficulty is that solution develops large derivatives in a highly os-
cillatory region and not in one isolated point. In fact, we find that because of the
latter a standard static adaptive approach, i.e. remeshing at fixed time intervals,
fails.

Here, we construct a stable and cost efficient moving mesh method for (1)-
(2). Our building block is the mesh generator proposed by Ceniceros and Hou [4]
combined with a semi-implicit second order time discretization and a fourth order
approximation of the mesh advection term. The semi-implicit scheme is chosen
with asymptotic high modal damping to stabilize the advection term. No artificial
smoothing or interpolation is applied at all. Using this robust adaptive method
we present convincing evidence that the behavior of the FNLS solutions as ε goes
to zero appear to be surprisingly regular for both analytic and non-analytic initial
data. This confirms independently and with superior resolution the results reported
in [5]. Most importantly, the highly resolved numerics make transparent the space-
time regularity of the solution for non-analytic initial conditions and shed some
light on the limit structure.

The organization of this paper is as follows. In Section 2 the numerical method
is described in detail and the issues of time and spatial discretizations are discussed
as they affect stability and performance. The numerical results are presented in
Section 3 and some concluding remarks are given in Section 4.

2. The Numerical Method. There are three main components in our numerical
method that determine its stability and overall efficacy (resolution vs computational
cost): the dynamic mesh generator (or moving mesh PDE) and the time and spatial
discretizations. We address separately these components in this section.
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2.1. The Moving Mesh. We consider the FNLS in the spatial interval [−M,M ]
where M > 0 is sufficiently large. A moving mesh is produced via a continuous
time-dependent mesh map or coordinate transformation x(ξ, t) from [−M,M ] to
itself. Here ξ is called the computational or logical variable. The goal is to find a
mesh map x(ξ, t) to spread the very localized solitons of wavelength O(ε) along the
whole computational domain [−M,M ] . Viewed in the computational space the
solution Ψ(ξ, t) = ψ(x(ξ, t), t) would be much less localized and therefore could be
resolved more efficiently.

Letting σ = 1/xξ, the evolution equation (1) is transformed to:

iεΨ̇ +
1
2
ε2σ(σΨξ)ξ + |Ψ|2Ψ = iεẋσΨξ (5)

where the dot stands for the time derivative keeping ξ fixed.
Recently, Ceniceros and Hou [4] proposed a variant of the traditional Winslow

map and combined it with the PDE moving mesh idea of Huang and Russell [8]
to produce an effective dynamic mesh for potentially singular problems. The mesh
generator in [4] is given, for the one dimensional case, by the nonlinear PDE:

ẋ = (wxξ)ξ, (6)

where w is a solution-dependent monitor function which in our context would have
the form:

w =
√

1 + β2|Ψξ|2 + f2(|Ψ|), (7)

where β = β(t) is a time-dependent scaling and f is a function that can be chosen
to reflect the leading order dynamics of the underlying problem, specially when
there is finite-time singularity formation, or to penalize for large values of |Ψ|.

For the FNLS on [−M,M ] we would like to have a mesh map for which

‖Ψξ‖∞ = O

(
‖Ψ‖∞
2M

)
, (8)

so that the localized regions will be spread completely in [−M,M ]. Taking f ≡ 0,
and using w ∼ const/xξ, and Ψξ = ψxxξ we find that (8) implies

β(t) = O

(
(2M)2 ‖ψx‖∞

‖ψ‖2∞

)
. (9)

Because the FNLS in 1D does not exhibit finite-time singularity formation one can
choose f to penalize for large values of |Ψ| and improve the mesh distribution. The
simplest choices would be f = α|Ψ| or f = α|Ψ|2, where α is a constant. The latter
choice preserves the scaling invariance of the FLNS: ψ(x, t) → 1

λψ(xλ ,
t
λ2 ) just as

in the moving mesh invariant method of Budd, Huang, and Russell [3] used for
the radially symmetric problem with finite-time blow-up. In our present context,
we observe no significant difference in the mesh quality for these two choices of
f . We do observe however that a time-dependent β appears to give rise to strong
mesh advection which is difficult to resolve and that ultimately affects severely the
performance of the adaptive method. Hence, we choose a constant scaling β and
the monitor function is given by

w =
√

1 + β2|Ψξ|2 + α2|Ψ|4, (10)

β = (2M)2 ‖ψ0x‖∞
‖ψ0‖2∞

c, (11)
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where both c and α are constants selected so that the initial data is well spread in
the computational domain and ψ0 = ψ(x, 0).

2.2. Time Discretization. The coupled moving mesh-FNLS system is given by
(recall σ = 1/xξ):

ẋ = (wxξ)ξ, (12)

Ψ̇ = i
ε

2
σ(σΨξ)ξ + i

1
ε
|Ψ|2Ψ + ẋσΨξ. (13)

This is a very stiff system due to the mesh equation and the second derivative
(dispersive) term in the FNLS. One numerical approach [8] is to solve (12) and (13)
alternately in time; first, (12) is solved for one time step to obtain a new mesh and
then this new mesh is turn used to solve (13) also for one time step. This procedure
is repeated every time step.

In [4], the following discretization was used to compute the moving mesh equa-
tion (12) at every time step:

xn+1 − xn

∆t
= anxn+1

ξξ + (wnxnξ )ξ − anxnξξ, (14)

where an = maxwn and ∆t is the time step size. Discretizing the spatial derivatives
with standard second order finite differences one gets a tridiagonal system which
can be inverted fast at the optimal low cost of O(N) operations, where N is the
total number of grid points. The semi-implicit discretization (14) is only a first
order accurate approximation to (12). But the accuracy with which the moving
mesh PDE is solved does not affect the accuracy of the underlying solution Ψ.
In fact one can regard (14), with the corresponding discretizations for the spatial
derivatives, as our dynamic mesh generator and assume that the mesh is computed
exactly. The moving mesh PDE (12) is a highly nonlinear diffusion equation. The
high diffussivity of this equation and the numerical dissipation associated with a
first order scheme make (14) a very stable and robust discretization.

Due to the dispersive nature of the FNLS plus the introduction of the mesh
advection term ẋσΨξ (not present when a static uniform mesh is used) it is difficult
to obtain accurate and stable semi-implicit discretizations for (13) and fully implicit
discretizations would too costly. To find a stable and cost efficient scheme we use as
a guide the multi-step implicit/explicit (IMEX) methods studied by Ascher, Ruuth,
and Wetton [1]. We consider two second order IMEX methods applied to (13). The
semi backward difference formula (SBDF) scheme, also called extrapolated Gear:

1
2∆t

[3Ψn+1 − 4Ψn + Ψn−1] = i
ε

2
σn+1(σn+1Ψn+1

ξ )ξ

+ 2
[
i
1
ε
|Ψn|2Ψn + ẋnσnΨn

ξ

]
−
[
i
1
ε
|Ψn−1|2Ψn−1 + ẋn−1σn−1Ψn−1

ξ

]
,

(15)

and the more popular Crank-Nicolson Leap Frog (CNLF) scheme:

1
2∆t

[Ψn+1 −Ψn−1] = i
ε

4
σn+1(σn+1Ψn+1

ξ )ξ + i
ε

4
σn−1(σn−1Ψn−1

ξ )ξ

+ i
1
ε
|Ψn|2Ψn + ẋnσnΨn

ξ .

(16)
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It was found in [1] that SBDF has the mildest stability constraint among second
order IMEX schemes for the prototype advection-diffusion equation ut = aux +
νuxx and that it also has strong asymptotic high frequency decay which eliminates
aliasing errors when pseudo-spectral derivatives are used. In contrast, CNLF has a
smaller truncation error than SBDF but its asymptotic high frequency decay tends
to 1.

A stability analysis for either (15) or (16) is extremely difficult however one can
gain some insight by doing von Neumann analysis (see for example [15]) for the
schemes applied to the linear advection-dispersion equation

ψt = iεψxx + ψx, (17)

where ε is a constant that measures the dispersion/advection ratio. The von Neu-
mann amplification factor g for SBDF applied to (17) using standard second order
discretization for the spatial derivatives satisfies the quadratic equation

(3 + i
8λε
h

sin2 θ

2
)g2 − 2(2 + i2λ sin θ)g + 1 + i2λ sin θ = 0 θ ∈ [0, π], (18)

where λ = ∆t/h and h is the mesh size. On the other hand for CNLF we have:

(1 + i
4λε
h

sin2 θ

2
)g2 − i2λ sin θg − (1− i4λε

h
sin2 θ

2
) = 0 θ ∈ [0, π]. (19)

A plot of |g| against θ for the largest root of the amplification factor for both
schemes is presented in Figure 1. Here, ε = 0.05, h = 0.01, and λ = 0.5. The
SBDF has a strong high frequency decay whereas CNLF has none. Thus, it is
reasonable to expect that SBDF would produce a more stable scheme for the FNLS
coupled with the moving mesh. Indeed, through numerical experiments we find
that SBDF is quite stable but CNLF experiences instabilities. It is conceivable
that these instabilities are due to the high frequency components (which CNLF
fails to damp) of the truncation error introduced by the discretization of the mesh
advection term (we elaborate more on this in the next section). Finally, we note
that the von Neumann analysis reveals that for ε = 0 SBDF is unstable whereas
CNLF is stable but only marginally (|g| = 1) under the condition λ ≤ 1. Thus, we
anticipate that as ε gets smaller SBDF would require a smaller λ for stability.

2.3. Spatial Discretization. Any particular choice of spatial discretization for
the FNLS (13) affects the stability, accuracy, and cost of the overall adaptive
method. Pseudo-spectral approximations have been common in FNLS computa-
tions [2, 5]. With a uniform mesh, semi-implicit discretizations such as SBDF or
CNLF can be inverted at a cost of O(log2N) operations using the Fast Fourier
Transform (FFT) ( see e.g [5]). However, FFT cannot be used for the variable
coefficient system produced by a non-uniform mesh. In this case one would have
to employ an iterative method at each time-step which would increase the compu-
tational cost and may introduce some numerical instability.

It is natural to ask whether a discretization of the type (14), i.e. extracting a
constant coefficient leading order term and discretizing it implicitly, can be used
for (13). This would transform the implicit part into a constant coefficient term
that can be inverted as easily as for a uniform mesh. Unfortunately, we have
found through numerical experiments that such a discretization for (13) is highly
unstable, in contrast to the very stable behavior of the scheme in the case of the
moving mesh equation (14). This behavior disparity can be accounted for by the
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high frequency mismatch between the variable coefficient term and the constant
coefficient one, the difference being treated explicitly. On one hand the moving mesh
equation is strongly dissipative with additional numerical dissipation introduced
by the first order Euler discretization. This high dissipation keeps under control
the high frequency components of the explicitly-treated difference. On the other
hand, the FNLS (13) is dispersive and there is no natural damping to the high
frequency components of the difference. We find that a CNLF discretization of the
type (14) for the FNLS is unstable whereas the high frequency damping of SBDF
produces a stable discretization only if the solution is sufficiently smooth. Hence,
a discretization of the type (14) for non-dissipative equations should be avoided.

A second order discretization in space of the implicit term σn+1(σn+1Ψn+1
ξ )ξ

appears to be more cost effective and robust than a spectral discretization when
a non-uniform mesh is used, particularly when the solution has large derivatives
and/or is not analytic. But special care must be taken to discretize the mesh
advection term ẋψx. As pointed out by Li, Petzold, and Ren [10] this term, absent
for a uniform mesh, can introduce instabilities and degrade the accuracy to the
extent that the moving mesh results are inferior to a corresponding uniform mesh
computation. For example, if a centered approximation is used to discretize ψx one
has [10]

ψj+1 − ψj−1

xj+1 − xj−1
= ψx +

1
2
h2(xξξψxx +

1
3
x2
ξψxxx) + . . .

= ψx +
1
2

(∆xj)2(
xξξ
x2
ξ

ψxx +
1
3
ψxxx) + . . . ,

(20)

where ∆xj = xj+1 − xj and h is the mesh size in ξ. Thus, the truncation error
introduces a numerical diffusion with a variable coefficient xξξ/x2

ξ that could be
negative and hence destabilizing. Moreover, as remarked also in [10], large mesh
variations (large compressions) would imply a significant truncation error (xξξ/x2

ξ

could be very large!). Indeed, we implemented the moving mesh method discretizing
the advection term ψx with a centered second order finite difference and observed
that both the accuracy and the stability deteriorate quickly.

At this point one could think that a static adaptive mesh approach in which a
new mesh map is computed at fixed time intervals is preferable for this problem.
Using the mesh generator (12) solved to steady state we have found that such a
static approach fails as soon as sea of solitons appears.

Li, Petzold, and Ren [10] propose two strategies for overcoming the difficulties
tied to the moving mesh advection term . One is to use high order upwinding
schemes [11] and the other is to distribute more nodes to the unstable region.
Here we opt for an alternative: discretize ψx with a standard fourth order finite
difference to reduce the truncation error and rely on the SBDF asymptotic damping
to stabilize this term.

With these observations, our fully discrete adaptive method can be written as
follows. First we have the moving mesh generator:

xn+1 − xn

∆t
= an

xn+1
j+1 − 2xn+1

j + xn+1
j−1

h2
− an

xnj+1 − 2xnj + xnj−1

h2

+
1
h2

[
wnj+1/2(xnj+1 − xnj )− wnj−1/2(xnj − xnj−1)

]
,

(21)
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where an = wn, and the monitor function w is given by (10). As it is common
practice in adaptive methods w is smoothed with a low pass filter wj ← (wj−1 +
2wj + wj+1)/4 applied four times. Initially, this equation is solved to steady state
and after this only for one step at a time. Once xn+1 is obtained from (21) we
compute σn+1 = 1/xn+1

ξ and the mesh speed ẋj = (xn+1
j − xn−1

j )/(2∆t) and use
them to update Ψ with the SBDF scheme:

1
2∆t

[3Ψn+1
j − 4Ψn

j +Ψn−1
j ] =

i
εσn+1
j

2h2

[
σn+1
j+1/2(Ψn+1

j+1 −Ψn+1
j )− σn+1

j−1/2(Ψn+1
j −Ψn+1

j−1 )
]

+2

[
i

ε
|Ψn
j |2Ψn

j + ẋnj
Ψn
j−2 − 8Ψn

j−1 + 8Ψn
j+1 −Ψn

j+2

xnj−2 − 8xnj−1 + 8xnj+1 − xnj+2

]

−

[
i

ε
|Ψn−1
j |2Ψn−1

j + ẋn−1
j

Ψn−1
j−2 − 8Ψn−1

j−1 + 8Ψn−1
j+1 −Ψn−1

j+2

xn−1
j−2 − 8xn−1

j−1 + 8xn−1
j+1 − x

n−1
j+2

]
,

(22)

with the boundary condition Ψ = 0. Note that the mesh advection term is dis-
cretized using fourth order finite differences.

Because Ψ is a complex-valued function one cannot use a tridiagonal solver to
find Ψn+1. Instead we write Ψ = U + iV , where U and V are real-valued functions
and get for (22) an equivalent coupled linear system of the form:

3Un+1
j +

∆tε
h2

(αjV n+1
j−1 − βjV

n+1
j + γjV

n+1
j+1 ) = Pj , (23)

3V n+1
j − ∆tε

h2
(αjUn+1

j−1 − βjU
n+1
j + γjU

n+1
j+1 ) = Qj , (24)

where the coefficients αj , βj , and γj are known from the (n + 1)st update of the
moving mesh solution and Pj and Qj are known from previous time step informa-
tion. Solving (24) for V n+1 and substituting in (23) yields a pentadiagonal linear
system for Un+1. This system can be solved fast with a pentadiagonal solver [6] in
O(N) operations per time step. Once Un+1 has been found then V n+1 is computed
from (24). The overall semi-implicit method maintains the same order of operations
of an explicit method.

3. Numerical Results. We consider two types of initial conditions, one is analytic
with zero phase and the other one is non-analytic with non-zero phase. Our spatial
and physical domain is [−10, 10] (M = 10).

3.1. Analytic initial condition. We consider first the zero-phase analytic initial
condition [5]:

A0(x) = e−x
2
, S0(x) = 0 , (25)

and take ε = 0.05. Figure 2 shows in close-up a sequence of snap-shots of ρ = |ψ|2
at different times. The plotted results are obtained using the moving mesh adaptive
method with two different resolutions: N = 512, ∆t = 1 × 10−4 and N = 1024,
∆t = 5 × 10−5. The results are indistinguishable within plotting resolution and
illustrate the convergence of the method. The solution first self-focuses around
t = 0.45, see Figure 2(a), forming a sharp and very localized spike. After this
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self-focusing solitons of wavelength O(ε) are produced forming a clearly separated
oscillatory region.

Figure 3 shows the real part of ψ in both the physical (displaying the position
of the mesh points) and the computational domain. The moving mesh achieves
a maximum compression (minxξ) of 1.57 × 10−2. Note that the adaptive mesh
map completely spreads the solution in the whole computational interval yielding
a much less localized function that can be effectively resolved with relatively few
nodes. A uniform mesh would require 32768 nodes to achieve the same resolution.
Two numerical approximations of ρ = |ψ|2 at t = 0.9, one using the adaptive mesh
and N = 1024, ∆t = 5×10−5 and the other the pseudo-spectral method in [5] with
a uniform mesh and N = 32768, ∆t = 1 × 10−5, are compared in Figure 4. The
approximations coincide within plotting resolution.

We now reduce ε to 0.025. Figure 5 presents ρ = |ψ|2 plotted at the same times
as those chosen for ε = 0.5 (Figure 2). The smaller ε demands a much higher
resolution both in space and time because, as predicted by WKB theory, the length
scale shrinks. We take N = 4096 and ∆t = 2.5 × 10−6. Although high, the
computational cost of the adaptive method is still a fraction of that required by a
uniform mesh for such a small ε. A comparison with Figure 2 shows an astonishing
regularity of the solution hinting the existence of a weak limit and in agreement with
the numerical evidence presented in [5] where a very different numerical method
was used. The solution behavior also resembles that of the pure soliton data studied
by Miller and Kamvissis [12] who considered exact solutions for ε = 0.4, 0.2, and,
0.1. Figures 2 and 5 show further that a clear limiting envelop emerges as ε is
decreased.

The efficacy of the adaptive mesh is demonstrated in Figure 6 where the real
part of ψ at t = 1.0 is plotted in both the physical and the computational domain.
Note how the adaptive mesh effectively stretches out the very localized and highly
oscillatory region to give as a result a well-resolved solution in the computational
space.

A ξ-t surface plot of the solution for ε = 0.025 is given in Figure 7. The quiescent
and the oscillatory regions and the strikingly regular pattern can be clearly distin-
guished. Note that this is a zoomed-in plot (because the computational ξ variable
is used) of the very localized solution in the physical space where ρ is confined
essentially to the interval [−1, 1]. A similar regularity was observed by Bronski and
Kutz [2] who numerically studied the FNLS for ε = 0.1.

3.2. Non-analytic initial condition. We now consider the following non-analytic
initial condition [5]:

A0(x) =
{

1− |x| if |x| < 1
0 otherwise , S0(x) =

1
cosh(2x)

, (26)

and start with ε = 0.05. Resolving the solution for non-analytic conditions is a
challenging task. The Fourier spectra shown in Figure 8 illustrate the slow algebraic
modal decay of the initial condition and contrast the adaptive mesh transformation
with the uniform mesh. The mesh map transforms the initial condition into one
that has a fast smooth decay in the low band of the spectrum and lowers the
amplitude of the algebraically decaying tail. For the uniform mesh the spectrum
(of the physical initial condition) is very rough before setting to the asymptotic
decay whose amplitude is larger than that for the adaptive mesh. This, tied to the
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second differentiation in the FNLS, make uniform mesh computations require an
extremely small ∆t and a fairly large N .

We now present detailed adaptive mesh computations to investigate and clarify
the solution’s behavior for the non-analytic condition (26). A ξ − t surface plot
of ρ is given in Figure 9. The adaptive moving mesh zooms in the solution which
in the physical domain is fairly localized to the interval [−1, 1]. Just like in the
case of analytic initial conditions, the solution develops a quite regular pattern in
space-time. This is in disagreement with the apparently irregular patterns reported
by Bronski and Kutz [2].

One may think that perhaps the observed regularity is a numerical artifact pro-
duced by high frequency damping of the SBDF time stepping scheme (there is no
other regularizing mechanism in our scheme). If this were the case, the numerical
solution would change noticeably when changing the time and space resolutions and,
more importantly, one would not observe convergence of the solution’s spectrum.

To investigate this issue, we compare six resolutions with N equal to 512, 1024,
2048, 4096, 8192, and 16384 and ∆t raging from 2 × 10−5 to 1.25 × 10−6. As the
resolutions are refined, we see a clear convergence to the regular pattern shown in
Figure 9. To illustrate also the convergence and behavior of the numerical approx-
imation in Fourier space we present in Figure 10 two different cases of refinement.
Figure 10(a) shows the spectra of the real part of numerical approximation at
t = 0.5 obtained using N = 2048 and two different time step sizes, ∆t = 2× 10−5

and ∆t = 1× 10−5. Figure 10(b) shows the spectra for two spatial approximations
N = 2048 and N = 4096 and the same time step ∆t = 1 × 10−5. In both cases
the spectra corresponding to the different resolutions lie on top of one another and
we can clearly observe the asymptotic algebraic modal decay of the solution. Thus,
with these observations, it does appear that the regularity for the non-analytic data
is genuine.

We consider now ε = 0.025 to learn more about the structure of the possible
(weak) limit. The initial condition is now more oscillatory because of the nonzero
initial phase. A plot of the real part of the initial condition in the physical and
computational spaces is given in Figure 11. A ξ − t surface plot of ρ is provided
in Figure 12. Again, the solution was checked using two different resolutions. The
regularity is striking. One can also observe that the solitons begin to disperse
around t = 0.5. Note that, as remarked in [5], the oscillatory region in space-
time appears to approach the origin as ε is decreased. To conclude, we show in
Figure 13 the real part of ψ in the physical and computational spaces at t = 0.5.
The mesh map smoothly spreads out in the entire computational domain [−10, 10]
the highly oscillatory and localized solution. The adaptive mesh reaches a maximum
compression of 2 × 10−2 in this case and the solution is perfectly well resolved in
the computational domain. A comparable resolution with a uniform mesh would
require 204800 nodes.

4. Concluding Remarks. The semi-classical limit of the focusing nonlinear Schrö-
dinger equation presents a great computational challenge. Not only does the
method have to resolve accurately the solution self-focusing (where a sharp “spike”
is produced) but also the subsequent highly oscillatory regions of solitons with
wavelengths of O(ε). One of the main difficulties in applying adaptive moving
mesh methods to this problem originates from the introduction of the mesh advec-
tion term into the underlying equation which otherwise has no physical advection
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at all. For small ε, the mesh advection can dominate the dispersion and, as a re-
sult, can lead to innacuracies and numerical instabilities. We have shown here that
with the right semi-implicit scheme and a high order discretization for the mesh
advection term it is possible to obtain accurate, cost-efficient, and stable moving
mesh methods.

The numerical results reported here support with superior resolution the evi-
dence given in [5] about the regularity and possible existence of the weak limit.
Particularly important is the clarification of the solution’s regular space-time pat-
terns for non-analytic data for which there has not been a consensus [2, 5] and there
is much ongoing investigation. We believe that the method presented here is a very
valuable tool and can be used to learn more about the structure of the solutions
limiting behavior for non-analytic initial conditions.
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Figure 1. Comparison of the amplification factor for the SBDF
(solid line) and the CNLF(dotted line) corresponding to the model
equation ψt = iεψxx + ψx. The parameters are ε = 0.5, h = 0.01
and λ = 0.5.
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Figure 2. Close-up of ρ = |ψ|2 in [−1, 1] at different times for
the Gaussian initial condition and ε = 0.05. Two adaptive mesh
resolutions are used: N = 512, ∆t = 1 × 10−4 and N = 1024,
∆t = 5 × 10−5. (a) t = 0.45, (b) t = 0.60, (c) t = 0.90, and (d)
t = 1.0.
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Figure 3. The real part of ψ at t = 0.9 for ε = 0.05 in (a) the
physical (showing the position of the adaptive mesh points) space
and (b) the computational domain.

Figure 4. Close-up of ρ = |ψ|2 in [−1, 1] at t = 0.9, two numerical
approximations are plotted together: one using the adaptive mesh
and N = 1024, ∆t = 5 × 10−5 and the other a uniform mesh and
N = 32768, ∆t = 1× 10−5.
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Figure 5. Close-up of ρ = |ψ|2 in [−1, 1] at different times for the
Gaussian initial condition and ε = 0.025. Adaptive mesh compu-
tation with N = 1024, ∆t = 5 × 10−5. (a) t = 0.45, (b) t = 0.60,
(c) t = 0.90, and (d) t = 1.0.
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Figure 6. The real part of ψ at t = 0.56 for ε = 0.025 in (a)
the physical space and (b) the computational domain plotted with
equal aspect ratio.
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Figure 7. A ξ-t surface plot of ρ = |ψ|2 for ε = 0.025.
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Figure 8. Fourier spectrum of the real part of the non-analytic
initial condition for ε = 0.05 obtained with N = 2047 and (a) the
adaptive mesh, .i.e., the spectrum of U(ξ) = u(x(ξ)) is shown and
(b) the uniform mesh.
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Figure 9. A ξ − t surface plot of ρ for the non-analytic initial
condition with ε = 0.05.
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Figure 10. Fourier spectrum of U(ξ) at t = 0.5 for two different
resolutions. (a)∆t = 2 × 10−5(o) and ∆t = 1 × 10−5 (+) for the
same N = 2048 . (b)N = 2048 (o) and N = 4096(+) for the same
∆t = 1× 10−5.
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Figure 11. The real part of the non-analytic initial condition for
ε = 0.025 in (a) the physical space and (b) the computational
domain with equal aspect ratio.
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Figure 12. A ξ − t surface plot of ρ for the non-analytic initial
condition with ε = 0.025.



22 HECTOR D. CENICEROS

Figure 13. The real part of ψ for the non-analytic initial condi-
tion and ε = 0.025 at t = 0.0 in (a) the physical space and (b) the
computational domain with equal aspect ratio.


