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Abstract

We study the solution of the focusing nonlinear Schrödinger equation in the semiclassical limit. Numerical solutions are
presented for four different kinds of initial data, of which three are analytic and one is nonanalytic. We verify numerically the
weak convergence of the oscillatory solution by examining the strong convergence of the spatial average of the solution.
 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Many dynamics in nature undergo dispersive pro-
cesses, while the dissipative or diffusive mechanisms
are negligible [23,30]. Examples include the vortex
sheet problem of incompressible fluids [16], plasmas
[13,27], and certain aspects of nonlinear optics [11,
20]. When the dispersive parameter is small, there
appear regions in space–time which are filled with
small scale oscillations. Such phenomena have been
observed in collisionless shocks in plasmas [13] and
optical shocks in optical fibers [20,26]. A consistent
description of these nonlinear dispersive oscillations
is rather complicated. So far, it has only been possi-
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ble to study those oscillations governed by completely
integrable systems.

There are two types of nonlinear dispersive equa-
tions with small dispersion. The first type is given
by dispersive approximations of hyperbolic equations.
Examples, both integrable and nonintegrable, are am-
ple: the KdV equation [9,22], the generalized KdV
equation [8], the defocusing nonlinear Schrödinger
equation [10,11,17,18,20,28], Toda lattice [1,6] and
other dispersive difference schemes [15,23]. Numeri-
cal experiments reveal, and analysis confirms by proof
in some integrable cases, that the zero dispersion limit
exists in the weak, i.e., average, sense. Furthermore,
the weak limit dynamics, complicated though it is, is
hyperbolic [7,23].

The second type consists of “nearly unstable” non-
linear dispersive equations; they are in the form of
dispersive approximations of those evolution equa-
tions whose initial value problems are not well-posed.
An important example is the well-known vortex sheet
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problem in inviscid incompressible fluid dynamics.
When surface tension is absent, a vortex sheet is gov-
erned by the Birkhoff–Rott integral equation whose
initial value problem is ill-posed [5,16]. This ill-
posedness is caused by the Kelvin–Helmholtz insta-
bility. When surface tension is present, the evolution
of the vortex sheet is described by a dispersive ap-
proximation of the Birkhoff–Rott equation with sur-
face tension as the small dispersion [16]. Small scale
oscillations (capillary waves) are observed in the cur-
vature of the vortex sheet when surface tension is small
but nonzero. These oscillations are responsible for the
roll-over phenomenon on vortex sheets.

Another example is the focusing nonlinear Schrö-
dinger equation (NLS) with small dispersion [31].
This focusing NLS can be written as a dispersive ap-
proximation of elliptic Euler equations [2,17,25]. The
ellipticity gives rise to the Benjamin–Feir or modula-
tional instability.

The focusing NLS has applications in many areas
of sciences and technology. It has been used to de-
scribe the motion of a vortex filament in incompress-
ible fluids [14], and to model the fractal fiber archi-
tecture of aortic heart valve leaflets in the study of the
human heart [24].

There are very few analytical and numerical results
concerning oscillations generated by “nearly unstable”
nonlinear dispersive equations. In this Letter, we
study an integrable model of this type of oscillations.
Our obvious choice is the focusing NLS [31]. More
precisely, we study the solution of the following initial
value problem in the limitε → 0:

(1)iε∂tψ + 1

2
ε2∂2

xxψ + |ψ|2ψ = 0,

with the initial data

(2)ψ(x,0)=A0(x)e
(i/ε)S0(x),

for small ε, whereA0(x) is the initial amplitude and
S0(x) the real initial phase.

Recently, Miller and Kamvissis have cleverly made
use of an exact solution of the focusing NLS [25]. This
exact solution has an initial data of form (2):

(3)A0(x)= 2 sech(x), S0(x)= 0.

By numerically studying this exact solution forε =
0.4, 0.2, 0.1, they observed some persistent patterns
for small dispersion parameters. This suggests the

existence of some kind of weak limits. However, no
other exact solutions whose initial data has the form
of (2) are known to exist. Thus, it becomes desirable
to directly compute the solution of the focusing NLS
for small dispersion.

In this Letter, we present some numerical compu-
tations of the solution of the focusing NLS whenε
is small. This computational problem is notoriously
difficult. Numerical studies of the usual zero disper-
sion limits of nonlinear dispersive equations are ham-
pered by the fact that in order to resolve the dispersive
term in the equations for a tiny value of dispersion pa-
rameter, it requires a much tinier value of∆x [23].
What makes the focusing NLS much more difficult
than other dispersive equations, such as the KdV equa-
tion, is the modulational instability. However, we are
able to resolve the numerics for values of epsilon as
small as 0.00625. For each initial data that we exper-
imented, smooth and oscillatory regions are observed
and they seem to be independent of smallε. Within the
oscillatory regions, the oscillations appear to be quite
regular even whenε becomes smaller and smaller. The
velocity and amplitude of the soliton in the oscillations
can be predicted by the location of the eigenvalues of
the Zakharov–Shabat operator. By computing the spa-
tial average of the solution, we find strong evidence
for the weak convergence of the semi-classical limit
of the focusing NLS. These numerical observations
are consistent with those of Miller and Kamvissis on
the pure soliton solution. They are also in good agree-
ment with those of Bronski and Kutz [4], who stud-
ied the behavior of solitons in the focusing NLS for
ε = 0.1.

The organization of this Letter is as follows. In
Section 2, we present some analysis of the equation.
We discuss the eigenvalue problem and relation of
eigenvalues to the speed and amplitude of solitons.
In Section 3, we develop a numerical scheme to
compute the focusing NLS solution with smallε. In
Section 4, we discuss the numerical results, with four
kinds of initial data: zero initial phase data, symmetric
and nonsymmetric data with nonzero initial phase,
nonanalytic initial data. The main phenomena are
pointed out: the existence of smooth and oscillatory
regions and their propagation in space and time, the
observation of regular patterns and weak convergence
in the oscillatory region. Conclusions are given in Sec-
tion 5.
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2. Analysis of equations

The focusing NLS has infinitely many conservation
laws. The first two are

(4)ρt +µx = 0,

(5)µt +
[
µ2

ρ
− ρ2

2

]
x

= ε2

4

[
ρ(logρ)xx

]
x
,

whereρ = |ψ|2 andµ= −i(ε/2)(ψ̄ψx −ψψ̄x). Here
the bar denotes complex conjugate.

To describe the solution whenε is small, one
formally setsε = 0. The resulting equations (4), (5),
after substitutionµ= ρν, become

(6)ρt + (ρν)x = 0,

(7)(ρν)t +
[
ρν2 − ρ2

2

]
x

= 0.

These equations have characteristicsν± i
√
ρ and thus

are elliptic whenρ 
= 0. They are exactly the Euler
equations of one-dimensional gas dynamics with mass
densityρ, velocity ν and a strange pressure lawP =
−ρ2/2. SincedP/dρ < 0, the pressure decreases as
the density increases, and we have a gas that likes to
clump together around local density variations [2].

The initial value problems for Eqs. (4), (5) are well-
posed forε > 0 and ill-posed forε = 0 whenρ 
= 0.
It is therefore not obvious whether the solution of
Eqs. (4), (5) has any reasonable limit asε goes to zero.

One may attempt to solve the focusing NLS for
eachε using the inverse scattering method and then
let ε tend to zero. The solution of Eq. (1) begins with
the spectrum for the Zakharov–Shabat operator,

L=
(
iε ∂

∂x
iψ̄

iψ −iε ∂
∂x

)
.

This operator is not self-adjoint and its eigenvalues can
virtually be any complex number except real [31]. The
number of the eigenvalues tends to infinity asε goes
to zero. This makes the study of the spectrum ofL

extremely difficult for smallε [3].
It is known that each soliton of Eq. (1) corresponds

to a complex eigenvalueξ + iη of L [31]. The real
and imaginary parts of the eigenvalue are twice the
speed and height of the soliton, respectively. Since
eigenvalues may have the same real part, we can have a
bundle of solitons traveling at exactly the same speed.
That means that some solitons may not separate from

one another. This phenomenon makes it difficult to
analyze and compute the semi-classical limit of the
focusing NLS.

We next analyze, in more detail, the eigenvalues
of L when the initial data (1) has zero phase, i.e.,
S0(x) = 0. Since it is isospectral, we only need to
studyL at the initial time. Calculating the square of
L, we obtain

L2 =
(

−ε2 ∂
∂x

2 − |ψ|2 −εψ̄x

εψx −ε2 ∂
∂x

2 − |ψ|2
)
.

SinceS0(x)= 0, the off-diagonal term

εψx = [εA0x + iA0xS0x ]eiS0/ε = εA0x

goes to zero asε → 0. Accordingly,L2 behaves,
whenε is tiny, like a linear Schrödinger operator with
|ψ(x, t)|2 as the potential function. The eigenvalues of
L are thus almost pure imaginary for smallε.

For these initial data, further WKB studies show
that the number of eigenvalues is of orderO(1/ε)
and that the reflection coefficients are exponentially
small in ε. Roughly speaking, these data generate as
many as orderO(1/ε) solitons for smallε. Since the
eigenvalues are almost pure imaginary, these solitons
have negligible speed for tinyε and are not expected
to separate from one another.

In particular, for the initial data (3) studied by
Miller and Kamvissis, all the eigenvalues are exactly
pure imaginary and reflection coefficients are also ex-
actly zero whenε takes values from a sequence{2/n}.
This initial data generates the so called pure soliton so-
lutions and they are given by exact formulae. Recently,
Kamvissis, McLaughlin, and Miller have embarked on
the task of analyzing these soliton solutions for small
dispersion [19].

3. Numerical method

We describe now the numerical method we employ
to compute directly the solution of the initial value
problem for the focusing NLS.

The numerical computation of the NLS solution for
small values of the parameterε is a challenging prob-
lem. First, the solution is known to develop rapidly a
“sea” of solitons whose wavelength isO(ε). Thus, asε
is decreased the length scale shrinks and very high res-
olution is required to compute the solution accurately.
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Second, because the underlying initial value problem
with zero dispersion is ill-posed, there is great sensi-
tivity to round-off error noise whenε is sufficiently
small. If left uncontrolled, the initially small round-off
noise can quickly grow and destroy the accuracy of the
computations.

Nonlinear Fourier filtering [21] has proved to be
very useful to control the growth of the round-off
error in the computation of nearly ill-posed problems.
Here, we combine Fourier filtering with de-aliasing
smoothing and a semi-implicit time discretization to
obtain an efficient numerical method for the focusing
NLS.

To describe our method we begin by writingψ =
u+ iv, whereu andv are real-valued functions. Then,
the NLS forψ is equivalent to the following system of
equations:

(8)ut = −1

2
εvxx − 1

ε

(
u2 + v2)v,

(9)vt = 1

2
εuxx + 1

ε

(
u2 + v2)u.

All the sets of initial data we consider here decay
to zero fast as|x| → ∞ and the corresponding time
evolving solutions concentrate rapidly on a small inter-
val. However, to avoid boundary effects, we compute
the solution on a sufficiently large interval[−M,M].
Here we takeM = 10.

Our numerical scheme for (8), (9) can be written as
follows:

(10)

un+1
j − un−1

j

2∆t
= −1

4
εS2

hv
n+1
j − 1

4
εD2

hv
n−1
j

− 1

ε

[(
unj
)2 + (

vnj
)2]

vnj ,

(11)

vn+1
j − vn−1

j

2∆t
= 1

4
εS2

hu
n+1
j + 1

4
εD2

hu
n−1
j

+ 1

ε

[(
unj
)2 + (

vnj
)2]

unj ,

whereunj andvnj denote the approximation of the so-
lution att = n∆t andx = −M + jh with h= 2M/N .
N is the total number of grid points. HereSh stands
for the pseudo-spectral derivative approximation. That
is, Ŝhf k = −i(π/M)kf̂k, wheref̂k denotes the dis-
crete Fourier transform off . Because aliasing insta-
bilities can commonly occur over long time computa-
tions, we have introduced in our method a smoothed

pseudo-spectral derivativeDh. It is defined in Fourier
space aŝDhf k = −i(π/M)kr(kh)f̂k, wherer(x) is a
smooth cutoff function. The role ofr(x) is to damp
the highest modes to suppress aliasing. Here, we use
r(x)= e−10(x/2M)25

.
Note that the smoothing filtering is used in the

explicit derivative terms but not in the implicit ones.
This selective filtering is important to maintain the
regularizing effects at high modes for smallε. This
is more clearly seen when we invert system (10), (11)
in Fourier space:

(12)ûn+1
k = P̂k + (1/2)∆tε(πk/M)2Q̂k

1+ (1/4)(∆t)2ε2(πk/M)4
,

(13)v̂n+1
k = Q̂k − (1/2)∆tε(πk/M)2P̂k

1+ (1/4)(∆t)2ε2(πk/M)4
,

whereP̂k andQ̂k are the Fourier transforms of

Pj = un−1
j − ∆t

2
εD2

hv
n−1
j − 2∆t

ε

[(
unj
)2 + (

vnj
)2]

vnj ,

Qj = vn−1
j + ∆t

2
εD2

hu
n−1
j + 2∆t

ε

[(
unj
)2 + (

vnj
)2]

unj .

Smoothing filtering in the implicit derivative terms
would modify the denominator of (12), (13) to be-
come 1+ (1/4)(∆t)2ε2r4(kh)(πk/M)4. Thus, the ad-
ditional factor r4(kh) would suppress the high fre-
quency regularization.

In addition to the smoothing filter, we also apply
Fourier filtering to the solution at each time step. That
is, we set to zero all the solution Fourier modes whose
magnitudes are below a certain filter level. Here, we
take the filter level to be 10−12 as all our computations
are performed with double precision arithmetic.

Scheme (10), (11) is a second-order discretization
in time of Crank–Nicholson type. The formal accuracy
in space isO(h25) because of the smoothing filter.
A spectrally accurate filter is also possible but we did
not implement it here.

For smooth solutions, the formal accuracy is con-
firmed for short times. For longer times, some estimate
of the effective accuracy is provided by monitoring the
definite integral ofρ = u2 + v2, which is conserved in
time for the continuous system. This quantity is pre-
served up to at least six digits throughout all our com-
putations.
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As test to our numerical scheme, we computed the
NLS solution satisfying Miller and Kamvissis’ initial
data (3) and found agreement with their solution.

4. Description of numerical experiments

The graphs in this section are taken from numeri-
cally computed solutions of (10), (11) for four sets of
initial data. For our computations we takeN = 16384
(= 214), 32768, and 65536. The time step∆t varies
from 10−5 to 2.5 × 10−6, depending on the spatial
resolution and onε. The time step is chosen so that
decreasing it further would not result in a noticeable
change of the solution. Both the spatial and temporal
resolutions are selected to achieve an accurate compu-
tation of the smallest scales.

We present here computations for four kinds of
initial valuesA0(x) andS0(x).

(I) Zero initial phase data

A0(x)= e−x2
, S0(x)= 0.

This set of data is very similar to the pure soliton
data studied by Miller and Kamvissis:A0(x) =
2 sech(x), S0(x) = 0. For Miller and Kamvis-
sis’ data, the Zakharov–Shabat operator has pure
imaginary eigenvalues and the reflection coeffi-
cients are exactly zero. For our data, the eigen-
values are almost pure imaginary and the re-
flection coefficients are exponentially small for
smallε.

(II) Symmetric initial data with nonzero phase

A0(x)= sinh(2x)

cosh2(2x)
, S0(x)= 1

cosh(2x)
.

The eigenvalues generated by this data have
been numerically studied by Bronski [3]. The
eigenvalues are symmetric about the pure imag-
inary axis, and are located roughly on a convex
“parabola” whose vertex is at the origin. The top
of the “parabola” are points 0.5− i and 0.5 + i.
Thus, an eigenvalue has a bigger real part if it has
a larger imaginary part and different eigenvalues
have distinct real parts.

(III) Nonsymmetric initial data

A0(x)= 1

cosh(x)
, S0(x)= 2x

cosh(2x)
.

This example lacks the even/odd symmetry pos-
sessed by the first two initial data. Thus, the
eigenvalues are not right/left symmetric [3].

(IV) Nonanalytic initial data

A0(x)=
{

1− |x| if |x|< 1,
0 otherwise,

S0(x)= 1

cosh(2x)
.

This initial data is not analytic atx = 0 and
x = ±1.

Figs. 1–3 pictureρ = |ψ(x, t; ε)|2 of the solution
corresponding to the zero initial phase data on a grid
of values in space–time forε = 0.1,0.05,0.025, re-
spectively. We also computed the solution for smaller
ε’s such asε = 0.0125 andε = 0.00625, but the corre-
sponding space–time solution surfaces with adequate
graphical resolution produce too large a file to be in-
cluded here. Since this NLS solution is right/left sym-
metric, we plot only half of the solution surface. In
these figures, the quiescent and oscillatory regions are
clearly recognizable and they appear to be indepen-
dent of smallε. The number of oscillations is pro-
portional to 1/ε, indicating that the oscillations have
wavelengthO(ε). It is predicted by the WKB analy-
sis that the number of solitons, hence of oscillations,
is in the order ofO(1/ε). Overall, the oscillations
seem to be quite regular even asε decreases. This is

Fig. 1. Evolution of the zero initial phase data withε = 0.10.
N = 16384,∆t = 10−5.
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Fig. 2. Evolution of the zero initial phase data withε = 0.05.
N = 16384,∆t = 10−5.

Fig. 3. Evolution of the zero initial phase data withε = 0.025.
N = 32768,∆t = 5× 10−6.

rather surprising, considering that these solitons are
supposed not to separate from each other since they all
have negligible speeds for tinyε’s. These observations
are consistent with the numerical results of Miller and
Kamvissis for the pure soliton solutions.

What quantities of the focusing NLS solution might
converge (although perhaps weakly) asε goes to zero?
Eqs. (4), (5) suggest that the mass densityρ and
momentum densityµ are the two best candidates. To
verify the weak convergence ofρ(x, t; ε) as ε → 0,

Fig. 4. Indefinite integrals of the oscillatory densityρ(x, t, ε) for
the zero initial phase data illustrating weak convergence. Curves
with more “corners” correspond to smallerε’s. N = 32768,∆t =
5 × 10−6 for ε = 0.0125 andN = 65536,∆t = 2.5 × 10−6 for
ε = 0.00625.

we computed the indefinite integral

x∫
−∞

∣∣ψ(x ′, t; ε)∣∣2dx ′,

for variousε’s. In theory, the strong convergence of
the integral asε goes to zero would imply the weak
convergence ofρ = |ψ(x, t; ε)|2 with respect tox.
This is motivated by the works of Lax and Lever-
more [22] and Venakides [29] on the zero dispersion
limit of the KdV equation. Lax and Levermore wrote
the KdV solution as the second spatial derivative of
another function. They proved the weak convergence
of the KdV solution by showing that the latter function
converges strongly. Venakides improved Lax and Lev-
ermore’s result by integrating once instead of twice.
Finally, Goodman and Lax also used indefinite inte-
grals to numerically verify the weak convergence in
dispersive difference schemes [12].

Fig. 4 pictures the indefinite integrals att = 1 for ε
taking five different values: 0.1, 0.05, 0.025, 0.0125,
and 0.00625. Curves with more “corners” correspond
to smallerε’s. Fig. 4 clearly demonstrates the strong
convergence of the indefinite integral to a function of
space and time asε goes to zero. As mentioned above,
this implies the weak convergence ofρ(x, t; ε).
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Fig. 5. Evolution of the symmetric initial data with nonzero phase
with ε = 0.025.N = 16384,∆t = 10−5.

The importance of numerically verifying the weak
convergence can not be underestimated. The obser-
vation of regular patterns in oscillations alone is not
enough to guarantee weak convergence. Indeed, the
amplitude |ψ(x, t; ε)|, which is the square root of
ρ(x, t; ε), also exhibits nice patterns in oscillations as
ρ(x, t; ε) does. We computed the indefinite integrals
of the amplitude, and we did not observe any sign of
convergence.

We do not include the pictures of momentum den-
sity µ in this Letter. Observe that unlikeρ = |ψ|2,
µ = −i(ε/2)(ψ̄ψx − ψψ̄x) involves spatial deriva-
tives. Resolving the derivatives is more difficult be-
cause of the requirement of a much smaller∆x and the
sensitivity of the problem to round-off noise growth.
Differentiation amplifies round-off error noise.

The weak limit dynamics is an open problem. It is
believed that the dynamics is described by a family of
the Whitham equations, of which Eqs. (6), (7) form
the first member [10,25]. In particular, the limits ofρ
andµ are supposed to satisfy the latter equations in the
nonoscillatory region. However, the elliptic equations
(6), (7) may not have any solution for nonanalytic
initial data. Whether and how nonanalyticity of the
initial data may affect the existence of weak limits
will be discussed later in this Letter when we study
the nonanalytic initial data.

Fig. 5 picturesρ(x, t; ε) over space–time for the
second initial data. The parameterε takes the value
of 0.025. The oscillations for this initial data are the

Fig. 6. Indefinite integrals of the oscillatory densityρ(x, t, ε) for
the symmetric initial data with nonzero phase.N = 32768,∆t =
5 × 10−6 for ε = 0.0125 andN = 65536,∆t = 2.5 × 10−6 for
ε = 0.00625.

nicest and cleanest among the four initial data stud-
ied in this Letter. This is because the solitons in this
case have the simplest behavior: taller soliton always
run faster than shorter ones and different solitons have
distinct velocities. In view of the relation between an
eigenvalue and the velocity and height of the corre-
sponding soliton, these phenomena are predicted by
the location of the eigenvalues of the Zakharov–Shabat
operator. In particular, the eigenvalues with the largest
real parts and imaginary parts are 0.5− i and 0.5+ i.
That means that the leading solitons should roughly
have speed±1. We see from Fig. 5 that the bound-
ary separating the oscillatory and smooth regions has
a slope roughly equal to 1, implying that the leading
soliton in the figure has speed 1.

Fig. 6 pictures the indefinite integrals ofρ(x, t; ε)
for the second initial data att = 1.5. The parameter
ε takes the values of 0.1, 0.05, 0.025, 0.0125, and
0.00625. Again, curves with more “corners” corre-
spond to smallerε’s. Still, we see strong convergence
in the integrals.

Fig. 7 picturesρ(x, t; ε) at ε = 0.025 for the non-
symmetric initial data. Since the solution is not left/
right symmetric, we plot the solution surface forx ∈
[−2,2]. We see from the pictures that the oscillations
are first generated from the right at aboutt = 0.25.
Later, at approximatelyt = 0.8, new oscillations come
out from the left. These two wave trains begin to inter-



32 H.D. Ceniceros, F.-R. Tian / Physics Letters A 306 (2002) 25–34

Fig. 7. Evolution of the nonsymmetric initial data exhibiting the
interaction of two wave trains withε = 0.025,N = 32768,∆t =
5× 10−6.

Fig. 8. Indefinite integrals of the oscillatory densityρ(x, t, ε) for
the nonsymmetric initial data.N = 32768,∆t = 5 × 10−6 for
ε = 0.0125.

act att = 2. The oscillations appear to be quite regular
before and even during the interaction.

Fig. 8 pictures the indefinite integrals of the non-
symmetric solution att = 3 for ε equal to 0.1, 0.05,
0.025, and 0.0125. Timet = 3 is during the interac-
tion of the two wave trains. Strong convergence in the
indefinite integral is clear att = 3. Therefore, the den-
sity ρ(x, t; ε) still converges weakly even during the
interaction of the two trains of solitons.

Fig. 9. Evolution of the nonanalytic initial data withε = 0.025,
N = 32768,∆t = 5× 10−6.

Fig. 10. Evolution of the nonanalytic initial data withε = 0.0125,
N = 32768,∆t = 5× 10−6.

Figs. 9–11 pictureρ(x, t; ε) for the nonanalytic ini-
tial data. This time,ε = 0.025, 0.0125, and 0.00625.
Contrary to what many people expect [4], the oscilla-
tions appear to be quite regular even for smallε. What
is striking about this data is that the oscillatory region
in space–time is seemed to approach the origin at the
initial line t = 0 asε goes to zero. This phenomenon
can be explained by Eqs. (6), (7). Indeed, the initial
value problem for these equations has no local solu-
tion in the neighborhood of the origin. This follows
from the fact that Eqs. (6), (7) are elliptic whenρ 
= 0



H.D. Ceniceros, F.-R. Tian / Physics Letters A 306 (2002) 25–34 33

Fig. 11. Evolution of the nonanalytic initial data withε = 0.00625,
N = 65536,∆t = 2.5× 10−6.

and that the initial data

ρ(x,0)=
{
(1− |x|)2 if |x|< 1,
0 otherwise

has no derivative atx = 0.
Interestingly, Eqs. (6), (7) can also be used to ex-

plain why the oscillatory region does not touch the
initial line at x = ±1, which are the other two non-
analytic points in the initial data. The main reason is
that the initial value problem of (6), (7) has localC1

solutions in the neighborhood ofx = ±1. To see this,
observe that Eqs. (6), (7) lose ellipticity whenρ = 0
and that they have a trivial solutionρ = 0. Initially,
ρ(x,0) is positive for|x|< 1, zero for|x| � 1 andC1

smooth atx = ±1. To obtain a localC1 solution of
(6), (7) in the neighborhood of, say,x = 1, one needs
to connect the trivialρ = 0 solution from the right to
the nontrivialρ > 0 solution from the left. More pre-
cisely, we introduce

(14)At + νAx + 1

2
Aνx = 0,

(15)νt + ννx − 2AAx = 0,

which are obtained from Eqs. (6), (7) after the sub-
stitutionρ = A2. The initial dataA(x,0)= 1 − |x| if
|x| < 1 and vanishes otherwise, andν(x,0) = S′

0(x)

everywhere. We first continue analytically the solution
A(x, t), ν(x, t) of (14), (15) from the left to the right of
x = 1 by extendingA(x,0) analytically acrossx = 1;
the initial data then becomesA(x,0) = 1 − x in the
neighborhood ofx = 1. For each smallt > 0,A(x, t)

Fig. 12. Indefinite integrals of the oscillatory densityρ(x, t, ε) for
the nonanalytic initial data.ε = 0.10, 0.05, 0.025, 0.0125, and
0.00625.

strictly decreases from positive to negative values as
x increases in the neighborhood ofx = 1 because
A(x,0) has the same monotonicity initially. Hence,
the loci of zeros ofA(x, t) form a curvex = x∗(t) in
the vicinity ofx = 1 andt = 0.A(x, t) is then positive
whenx < x∗(t) and negative whenx > x∗(t). We then
connect the trivial solutionA(x, t) = 0 of (14), (15)
from the right to the positive solutionA(x, t) from the
left along the curvex = x∗(t) and leaveν(x, t), ob-
tained from the previous analytic continuation, intact.
Accordingly, ρ(x, t) = A2(x, t) will be C1 smooth
at each point on the curvex = x∗(t). In this way,
Eqs. (6), (7) are shown to have a localC1 solution in
the neighborhood ofx = 1 satisfying the initial condi-
tions.

Finally, Fig. 12 pictures the indefinite integrals
of ρ(x, t; ε) for the nonanalytic initial data att =
0.5. The parameterε takes the values of 0.1, 0.05,
0.025, 0.0125, and 0.00625. Strong convergence in the
integrals is obvious. This gives solid evidence for the
existence of weak limit even when the initial data is
not analytic.

5. Conclusion

The generation and propagation of oscillations is
an important natural phenomenon for “nearly unsta-
ble” nonlinear dispersive equations. Since the under-
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lying initial value problem with zero dispersion is un-
stable, the analytical and even numerical study of the
small dispersion problem has proved to be a road hard
to travel. In this Letter, we have developed a numerical
scheme to compute the solution of the focusing NLS
with small dispersion. We are able to resolve some of
the fine micro-structure of the oscillations. We observe
quiescent regions in space and time coexisting with re-
gions of rather regular oscillations. For all the initial
data we experimented, it is enough to smooth oscilla-
tions solely in space to capture weak convergence of
the solution. If true for other initial data, it would be
interesting to develop an analytical approach, imple-
menting this observation, to study the weak limit.
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