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Abstract. The possibility of a finite-time topological reconnection in the ex-
panding Hele–Shaw flow of immiscible fluids is numerically investigated. The ini-
tial conditions correspond to those of a zero-surface tension exact solution found
by Howison that develops cusp singularities by interface overlapping and thus con-
stitute a natural candidate for potential topological singularities in the presence
of small surface tension. Using a spectrally accurate boundary integral method
it is found that in the case of an air bubble surface tension regularizes the cusped
singularities and the solution clearly exist for all times forming the well known
fingering and tip-splitting patterns. On the other hand, the presence of a viscous
fluid in the interior of the bubble creates side-fingering and a complex evolution
signalling finite-time topological reconfigurations of the fluid interface. With high
resolution the collapsing exponent is obtained and it is found that the minimum
distance between adjacent parts of the interface decreases linearly with time.
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1. Introduction

A Hele–Shaw cell is a device used to investigate the two-dimensional flow of viscous fluids in
a narrow gap between two parallel plates. Hele–Shaw flow provides a relatively simple model
to study pattern formation which is crucial to the understanding of technologically important
processes such as dendritic crystal growth and directional solidification. This type of flow can
also be linked to oil displacement in a porous medium.

It is well known that surface tension plays a crucial role in pattern formation and can act
as a length-scale selection mechanism. However, can topological singularities (in the form of
fluid entrainment) occur in finite time or does the solution exist for all times in the presence of
small surface tension? Constantin and Pugh [1] have rigorously shown that such singularity is
not possible for an initial interface close to a circle and in the absence of pumping. Almgren [2]
demonstrated convincingly that this result is, in general, not true and that for a Hele–Shaw
flow solely driven by surface tension a topological singularity can develop in finite time. In [2]
the initial interface is a smooth ‘dumbbell’ bounding a viscous fluid from surrounding air with
no pumping of fluid. Goldstein et al [3] have also provided strong evidence of topological
reconnection in Hele–Shaw flows driven by gravity, in the unstably stratified configuration.
In [3], the flow consists of a thin fluid layer against a wall with gravity acting perpendicular to
it. But for immiscible flows that expand due to the presence of a source the question is still
open. This work is intended to address this question and give some insight via highly accurate
numerics.

We concentrate on initial conditions that correspond to a zero-surface tension exact solution
of an air bubble found by Howison [4]. This zero-surface tension exact solution develops cusp
singularities by interface overlapping and thus is a good candidate for potential topological
singularities in the presence of small surface tension. However, due to the ill-posedness of the
zero-surface tension problem [5, 6], the numerical investigation of the small surface tension flow is
quite difficult [7, 8]. In addition, the possibility of singularity formation demands extremely high
resolution. Here we employ a spectrally accurate (infinite order) boundary integral method with
fourth-order time integration [9] that uses the small-scale decomposition technique of Hou et al
[10] to remove the high-order stability constraint induced by surface tension. Our highly accurate
numerics reveal that in the case of an air bubble, surface tension regularizes the cusped-flow and
the solution appears to exist for all times. The solutions develops the well known patterns of
fingering and tip-splitting but shows no signs of an eventual topological reconnection. However,
when the bubble is filled with a viscous fluid (unstable two-phase flow) the interior fluid leads
to the formation of complex side fingering and extremely thin jets with clear indications that
finite-time topological reconfigurations will occur. The collapsing exponent is obtained and it is
found that the minimum distance between adjacent parts of the interface decreases linearly in
time.

The rest of this paper is organized as follows. In section 2, we present the equations that
govern the motion of the interface in a Hele–Shaw. In section 3 we describe briefly the numerical
method used. In section 4 we present the numerical results and give some final remarks in
section 5.
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2. Governing equations

In a Hele–Shaw cell two viscous fluids are confined between two closely spaced parallel plates.
We assume that the fluids are incompressible and immiscible and that they have different but
constant viscosities. The gap-averaged velocity ujj = 1, 2 of each fluid is given by Darcy’s law,

uj = − b2

12µj
∇pj , (1)

where the subscripts 1 and 2 represent the interior and exterior fluids, b is the cell gap, µj is
the viscosity and pj is the pressure. By the incompressibility condition ∇ · uj = 0 it satisfies
Laplace’s equation ∇2pj = 0. The interface motion is subject to the following conditions:

[u · n̂]|Γ = 0, (2)
[p]|Γ = τκ, (3)

where [·] stands for the jump across the interface taken as the difference of the interior minus
the exterior quantity and Γ denotes the interface. Here, n̂ is the exterior unit normal to Γ, τ is
the surface tension and κ is the interface mean curvature.

Let the interface Γ be represented, at any instant t, by (x(α, t), y(α, t)) where α ∈ [0, 2π]
defines a counter-clockwise parametrization of Γ and x and y are periodic functions of α.
Introducing the complex interface position z = x+iy, the equations of motion can be recast into
a vortex sheet (boundary integral) formulation. We nondimensionalize the governing equations
by taking as the unit of length the initial radius of the bubble and letting the source Q = 1.
Since we have the freedom of choosing the tangential velocity of the interface, the evolution
equations can be written as [11]

z̄t =
1

z(α, t)
+

1
2πi

∫ 2π

0

γ(α′, t)
z(α, t) − z(α′, t)

dα′ + A(α, t)
z̄α(α, t)
|zα(α, t)| , (4)

γ = 2Aµ Re
(

zα(α, t)
z(α, t)

+
zα(α, t)

2πi

∫ 2π

0

γ(α′, t)
z(α, t) − z(α′, t)

dα′
)

+ Sκα, (5)

where the bar denotes the complex conjugate, γ is the vortex sheet strength, Aµ = (µ1−µ2)/(µ1+
µ2) is the Atwood viscosity ratio, S is a dimensionless surface tension parameter and A(α, t) is
arbitrary tangential velocity. The subscripts t and α denote partial differentiation with respect
to those variables.

We concentrate here on initial conditions that corresponds to a zero-surface tension solution
found by Howison [4]. This solution develops four symmetric 5/2-cusp singularities as the flow
tends to overlap when expanding. After passing the singularity time the solution continues to
exist for all times. Exact solutions of air bubbles in Hele–Shaw flows without surface tension
are usually obtained via a conformal map from the unit disc (in the complex ζ-plane) into the
fluid domain transforming the boundary of the disc into the fluid interface. In particular, the
interface position for Howison’s exact solution is given by the map

x + iy =
a(t)
ζ

+ log
(c(t) − ζ)
(c(t) + ζ)

+ i log
(ic(t) + ζ)
(ic(t) − ζ)

, (6)

where the air–fluid interface corresponds to ζ = eiα taking the principal branch of the logarithm.
c(0) = c0 > 1, a(0) = a0 > 0 and for t > 0 these coefficients satisfy the equations

a(4c − a) =
Qt

π
+ a0(4c0 − a0) (7)

g(a, c) = ac − ln[(c2 + 1)/(c2 − 1)] − 2 arctan c2 = k. (8)
This zero-surface tension solution develops the 5/2 cusps when a = c = 31/4 but then continues
to exist after this time (see figure 1).
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Air Viscous fluid

Figure 1. Howison’s zero-surface tension exact solution with c0 = 3, a0 selected
so that k =

√
3 − log(2 +

√
3) − 2π/3. The solution is plotted at different times,

t = 0, 1.3, 4.9 and 10.

3. Numerical method

Surface tension introduces the term κα which causes high-order stiffness for explicit time
integration methods and makes implicit methods difficult to implement. We use the small-scale
decomposition method of Hou et al [10] which efficiently removes this stiffness. The method is
based on the reformulation of the equations of motion in terms of the tangent angle θ to the
interface and the arc-length metric σ =

√
x2

α + y2
α which are variables more naturally related

to the curvature. It also identifies the small-scale terms that contribute to the surface-tension
induced stiffness. The evolution equations in the new variables are given by,

σt = Tα − θαU (9)

θt =
1
σ

(Uα + Tθα) (10)

where T and U are the tangential and normal velocities respectively. The stiffness is hidden at
the small spatial scales of Uα in the θ-equation. The leading order behaviour of U at small scales
is given by [10],

U(α, t) ∼ S

2σ
H

[(
θα

σ

)
α

]
(α, t), (11)

where H is the Hilbert transform and S is dimensionless surface tension parameter. By choosing
the tangential velocity as

T (α, t) =
∫ α

0
θα′U dα′ − α

2π

∫ 2π

0
αθα′U dα′, (12)
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σ is kept constant and equal to its mean at all times. Setting σ(t) = L(t)/2π, where L(t) is the
total length of the curve, the equations of motion simplify to

Lt = −
∫ 2π

0
θα′U dα′, (13)

θt =
S

2

(
2π

L

)3

H[θ]ααα + P, (14)

where P represents lower-order terms at small spatial scales. To remove the stiffness it is
sufficient to discretize implicitly the leading order in equation (14) and treat the lower-order
term P explicitly. We use the SBDF fourth-order explicit/implicit multi-step method presented
in [12]. The principal value integral is approximated with the spectrally accurate alternate-point
trapezoidal rule [13] and spatial derivatives are computed pseudo-spectrally. Symmetry is taken
into account to speed up the computations.

4. Numerical results

We numerically investigate the evolution of an expanding ‘bubble’ that is surrounded by a more
viscous fluid and whose initial condition coincides with that of Howison’s exact zero-surface
tension solution (6). Our computations are performed with standard double precision with the
Fourier filter level set to 10−12. To mitigate the effects of round-off noise further we also use a
selective filtering based on the four-fold symmetry of the solution (all the modes of θ − α and
of γ that are not multiples of 4 are set to zero). High resolution is of paramount importance in
this problem. In all our calculations we maintain a spatial resolution such that the minimum
distance between any two adjacent parts of the interface is greater that six mesh points. We
begin all the computations with N = 2048 and we double N as soon as the magnitude of the last
mode of θ(α, t) − α is greater than the filtering level or the minimum distance criterion is not
satisfied. The time step is reduced by half every time that the number of grid points is doubled.
At the final stage of motion, the number of interface particles increases to N = 215 = 32 768.

We now examine how surface tension modifies the cusped zero surface tension flow depicted
in figure 1. We are particularly interested in the small surface tension values. We will see that
the fluid interface develops very different behaviours depending on whether the bubble is filled
with air or with a viscous fluid (whose viscosity is smaller than that of the surrounding fluid)
and we study both cases separately.

4.1. Development of the interface for Aµ = −1 (air bubble)

We select the nondimensional surface tension parameter S = 0.001. As figure 2 shows the
presence of even very small surface tension regularizes the cusp singularities. Strong surface
tension effects are seen well before the zero-surface tension singular time. Although physically
counter-intuitive, this can be understood from the daughter singularity theory of Tanveer [14] and
Siegel et al [15]. A complex (daughter) singularity approaches the physical domain well before the
zero-surface tension singularity does. The solution exists past the zero-surface tension singular
time developing the well known continuing pattern of fingering and tip-splitting competition but
there is no indication that a topological singularity will form. Our numerics strongly support the
all-time existence of the solution for this type of flow in the presence of fixed small but non-zero
surface tension.

It is natural to ask how the presence of another fluid other than air would modify the flow
dynamics and perhaps lead to topological singularity as the interior viscous fluid pushes the flow
outwards in the expansion process. We now investigate this possibility.
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Figure 2. Interface development for Aµ = −1 and S = 0.001. The interface is
shown at times t = 0 − 3.5 with 0.25 time intervals.

Figure 3. Interface at t = 0.635 for Aµ = −0.6 and S = 0.000 25. Initial
conditions: equation (6) divided by four.

4.2. Development of the interface for Aµ = −0.6

The presence of an interior viscous fluid completely changes the flow behaviour and leads to a
surprising interface development. To better resolve the eventually very large expanding ‘bubble’
we scale down Howison data by a factor of four and also decrease the surface tension by a similar
factor and take S = 0.000 25. Similar behaviour is obtained for S = 0.001 and unscaled initial
conditions.

The interface position at t = 0.635 for Aµ = −0.6 and S = 0.000 25 is presented in figure 3
where near topological singularities can be observed. The interface develops a convoluted pattern
with ‘sideways’ merging of a finger into the base of a longer one giving rise to extremely narrow
jets that are on the verge of collapsing. The time behaviour of the jet width can shed some
light on the possible scenario. This is presented in figure 4. After a long nonlinear behaviour,
the minimum distance appears to settle to an almost linear rate toward the late stage of the
motion. This behaviour gives a strong indication that the interface would collapse in finite
time. It is important to note that the resolution at all times is such that the jet width dmin(t)
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Figure 4. The time behaviour of the minimum distance between adjacent
interface segments enclosing the thin jet.

Figure 5. The collapsing exponent as a function of time.

is greater than six times the spacing between consecutive interfacial markers. It has been well
documented [16, 10] that the alternate point trapezoidal rule (used to approximate the boundary
integral) requires such resolution for accuracy. We fit the collapsing width with the Ansatz

dmin(t) ∝ (t∗ − t)β. (15)

Using the linear least-squares method for the last ten data points we find t∗ = 0.7033. We
then perform exponential least-squares fits over a sliding set of 100 data points to determine the
exponent β. The results of the fit are shown in figure 5. The collapsing exponent is fairly close
to one and decreases toward this value as t approaches t∗. It is interesting to note that such
approximate linear behaviour was also reported by Goldstein et al [3] but for a very different
driving mechanism, namely gravity.

5. Conclusion

We have presented a numerical investigation of the effects of surface tension on the potential
formation of topological singularities in the long-time evolution of expanding Hele–Shaw flows.
With highly accurate numerics we provide evidence that strongly suggest a finite-time topological
reconfiguration for a particular kind of two-phase immiscible Hele–Shaw flow in the presence of
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small surface tension. The topological reconfiguration occurs through ‘sideways’ merging of a
finger into the base of a longer one. This side-fingering phenomenon has been well documented
for miscible flows (see, for example, [17, 18]). Side fingering develops due to the presence of
favourable pressure gradients in the flow. When these pressure gradients dominate capillary
tension a topological singularity may develop in finite time. For an air bubble no such gradients
can exist (constant pressure). This explains the striking difference between the behaviour of the
one-phase and two-phase flows and makes the formation of topological singularities unlikely for
expanding air bubbles.
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