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We provide an in-depth study of pseudo-spectral numerical methods associated with

modeling the self-assembly of molten mixed polymer brushes in the framework of

self-consistent field theory (SCFT). SCFT of molten polymer brushes has proved

numerically challenging in the past because of sharp features that arise in the self-

consistent pressure field at the grafting surface due to the chain end tethering con-

straint. We show that this pressure anomaly can be reduced by smearing the grafting

points over a narrow zone normal to the surface in an incompressible model, and/or

by switching to a compressible model for the molten brush. In both cases, we use

results obtained from a source (delta function) distribution of grafting points as a

reference. At the grafting surface, we consider both Neumann and Dirichlet condi-

tions, where the latter is paired with a masking method to mimic a confining surface.

When only the density profiles and relative free energies of two comparison phases

are of interest, either source or smeared distributions of grafting points can be used,

but a smeared distribution of grafting points exhibits faster convergence with re-

spect to the number of chain contour steps. Absolute free energies converge only

within the smeared model. In addition, when a sine basis is used with the masking

method and a smeared distribution, fewer iterations are necessary to converge the

SCFT fields for the compressible model. The numerical methods described here and

investigated in one-dimension will provide an enabling platform for computationally

more demanding three-dimensional SCFT studies of a broad range of mixed polymer

brush systems.

a)Author to whom correspondence should be addressed. Electronic email:ghf@mrl.ucsb.edu
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I. INTRODUCTION

Polymer brushes are comprised of polymer chains that are tethered by one end to a

surface or interface on the 10 nanometer length scale6,11,13,31. Broad interest in polymer

brushes exists due to their uses in a variety of applications, such as colloidal stabilization,

membrane surface modification, biocompatible surfaces for medicine, tunable and switchable

surfaces, and templates for advanced microelectronic devices15,17,46,51. Polymer brushes can

be further classified as being either “pure” or “mixed”. A pure brush is composed of a single

type of end-grafted polymer; such a brush may either be in a dense liquid state (melt brush),

or swollen by a solvent (solution brush). In contrast, mixed brushes contain two or more

chemically dissimilar polymers that are end-tethered to a surface. Mixed brushes can also

be molten or solvated and can possess a rich variety of microphase separation behavior as

dissimilar segments spatially segregate under the constraints imposed by the grafting surface

and the interactions of the components with the free surface of the brush (usually air or

solvent)19. The present paper relates to numerical methods that can be used to predict the

self-assembly and microphase separation behavior of such mixed polymer brushes.

A powerful theoretical and computational tool for describing inhomogeneous polymer

melts and solutions is self-consistent field theory (SCFT)9,24. The SCFT construct is built

around field-theoretic models of interacting polymer systems, which are analyzed using a

simplifying “mean-field” approximation that comprises a saddle point approximation to the

functional integrals that define the partition function of a model. The resulting mean-field

or SCFT equations are highly nonlocal and nonlinear equations that can nonetheless be

tackled by a variety of spectral, pseudo-spectral, or real-space methods3,8,9,28,29. Numerical

implementations of SCFT have shown widespread success in anticipating and explaining the

self-assembly characteristics of a wide range of complex polymer systems including polymer

alloys, block and graft copolymers, polymer solutions, supramolecular polymers, and thin

films7,9,14,22,24,29.

Most of the early computational work on polymer brushes was conducted using a type of

lattice mean-field theory known as the Scheutjens-Fleer model44,50. While this has proved

to be a successful and simple approach for modeling brushes, such lattice methods can be

computationally expensive for high resolution, high dimensional simulations, and can result

in broken symmetries due to the lattice discretization of space. Even so, the Scheutjens-
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Fleer lattice model has been used to model a variety of systems, including pure and mixed

brushes in planar geometries4,39.

In contrast to the Scheutjens-Fleer model, SCFT models are formulated in continuous

space with continuous chain models, such as the continuous Gaussian chain model. In the

latter, polymers are modeled as elastic threads with no penalty for bending and a local har-

monic stretching energy9. Continuum models of polymer brushes can be easily constructed

in this framework by tethering the ends of the elastic threads to a grafting surface. In the

limit of high grafting density, where polymers must stretch away from the surface in order

to avoid overlap, a further analytical simplification of the SCFT equations can be made. In

this so-called “classical” or “strong stretching theory” (SST), the path integral comprising

the partition function of a polymer strand is approximated (by analogy with the path inte-

gral formulation of quantum mechanics) by the classical path32–34,45. Although many insights

have been gained by SST calculations, most experimental systems fall in the weakly or mod-

erately stretched categories. In spite of considerable effort made to correct the SST model,

where the entropy associated with the free chain ends of the brush, along with corrections

due to a proximal layer near the grafting surface were both incorporated18,21,23,26,38, numer-

ical approaches are necessary to study more realistic and complex systems. Notably, the

inhomogeneous mixed brushes of primary interest here are largely inaccessible by analytical

SST methods.

The full SCFT equations for pure and mixed polymer brushes have also been attacked by

a variety of numerical methods including real-space finite differences, Matsen’s fully spectral

(Galerkin) method, and pseudo-spectral (collocation) techniques. Specifically, brushes have

been studied using the fully spectral method by Müller35, Matsen23, Matsen and Gardiner27,

and Matsen and Griffiths25, while the pseudo-spectral method was employed by Meng et

al30. Although the numerical methods required to solve the SCFT equations for a brush are

much the same as for non-tethered polymeric systems such as blends and block copolymers,

there is a special difficulty in the case of brushes arising from the grafting constraint. In

particular, the polymer propagator used to sum over the paths emerging from a point on the

grafting surface has a Dirac delta distribution initial condition constraining the chain end to

the surface. This is problematic because the propagator, which satisfies a type of diffusion

equation, must be adequately resolved in both space and time (a fictitious time along the

chain contour) to enable accurate evaluation of polymer structures and free energies. Matsen
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et al.26,27 observed that a partially resolved delta function initial condition, in concert with a

reflective boundary condition at the grafting surface and the assumption of incompressibility

in a melt brush, produces a cusp in the self-consistent fields near the grafting surface. This

singular feature was observed to seriously deteriorate the convergence properties of Galerkin

spectral methods. The cusp was further analyzed for a one-component melt brush and was

attributed to the proximal layer, where an over expression of monomers near the substrate

produces an elevated density that is compensated by a singular pressure profile26,27. As we

detail below, this cusp exists irrespective of the boundary conditions applied at the grafting

surface and seems to be an artifact of the use of a continuous chain model and the strict

application of incompressibility.

Matsen argued that a delta function should be included in the pressure field of an in-

compressible model at the surface to compensate for the elevated segment density created

by grafting. Rather than attempting to numerically resolve that contribution, he argued

for an effective Robin type boundary condition on the propagator that approximately can-

cels the singularity in the pressure. In practice, this approach suppresses, but does not

completely eliminate, the pressure anomaly26,27. While Robin boundary conditions can be

easily implemented in the fully spectral formalism, we have found them to be problematic

in pseudo-spectral methods that are desirable for large-scale simulations of polymer brushes

implemented with parallel fast Fourier transforms (FFTs). The use of a Chebyshev basis

in principle allows for the imposition of Robin conditions in an FFT framework, but Robin

boundary conditions are not convenient in mixed brush systems where one would like to ac-

cess a broad variety of interactions between the substrate and the multiple segment species

of the brush.

Meng et al.30 also observed numerical instabilities associated with the delta function

initial condition when the SCFT equations for an incompressible melt are solved by spectral

collocation and Dirichlet boundary conditions at the grafting surface. These workers tried

to circumvent the problem by calculating the first few contour steps of the propagators using

a corresponding integral equation (a Chapman-Kolmogorov equation) before switching to

the modified diffusion equation for the remainder of the chain. Even so, we found that such

a technique alone does not resolve the pressure anomaly.

To address these various issues, in this paper we investigate spectral collocation using

sine and cosine bases to solve the SCFT equations for mixed polymer brushes, using both

5



compressible and incompressible models. In the sine basis case, we simultaneously specify a

mask or wall function9,20 which is necessary in the incompressible model to relieve an incom-

patibility with the use of a homogeneous Dirichlet condition on the polymer propagators.

The mask also provides a convenient way to impose selective wetting conditions of the brush

components at the grafting surface. To address the pressure anomaly, a smeared distribu-

tion of grafting points normal to the substrate is investigated and results are compared to

a point source distribution modeled with a Dirac delta function. By using this method, we

will show that convergence problems associated with the grafting constraint are alleviated

and quantities such as densities and free energies can be evaluated to high precision.

II. MODEL

In the present manuscript, we consider a two-component AB mixed polymer brush where

the A and B homopolymers are modeled as continuous elastic filaments by means of the

continuous Gaussian chain model. The theoretical construct will be self-consistent field the-

ory (SCFT), which uses a mean-field, saddle point approximation to evaluate the functional

integrals that appear in equilibrium statistical field theory models of inhomogeneous poly-

mers. Below we summarize the relevant equations and relaxation methods. Further details

about the derivation can be obtained from the monograph by Fredrickson9.

In the system under investigation, the brush is composed of nA and nB monodisperse A

and B tethered homopolymers bounded by nw “wall” particles in a volume V at an average

segment and wall particle density of ρ0 = (nAN + nBN + nw)/V . The statistical segment

lengths of the polymers (bA = bB = b) and the indices of polymerization (NA = NB = N)

are assumed to be equal for both components. The immobile wall particles are introduced as

a construct for implementing a mask as discussed below. One end of the A and B polymers

is grafted permanently to a planar surface of area A at a grafting density of σA = nA/A =

fn/A and σB = nB/A = (1 − f)n/A, respectively, where f is the volume fraction of A

segments and n = nA + nB. The chemical incompatibility of the two homopolymers are

modeled with a Flory-type monomer-monomer interaction parameter χ.

For the case of Dirichlet boundary conditions, we employ a masking method at the

bottom and top surfaces of the brush to confine the polymer segments and define finite-width

interfaces over which the segment density rises from zero to the bulk value in the brush.
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This renders Dirichlet conditions on the propagators compatible with the incompressible

melt and allows for the imposition of surface affinities for selective components2,14,20. Wall

particles distributed with specified volume fractions, φw1(x) and φw2(x), are introduced

to model the grafting and top surfaces, respectively, and a penalty function is introduced

to exclude the polymer segments from the boundary wall confinement regions. The wall

particles interact with the A and B segments through Flory-like interaction parameters,

χwA and χwB, respectively. In an incompressible model, the wetting characteristics of the

wall are dictated by the single parameter χw ≡ −(χwA−χwB)/2, where positive and negative

values correspond to A and B attractive walls, respectively. For the compressible model, we

arbitrarily set χwA+χwB = 0 as a second condition, so that χw is again the single parameter

controlling wetting behavior. Since two walls are present, this parameter is separately defined

for the grafting substrate and grafting-free surface (opposite the grafting surface) as χw1 and

χw2, respectively.

In addition to the harmonic stretching energy of the Gaussian chain and the segment

interaction energy, a penalty for local density fluctuations away from the average density,

ρ0, is modeled using either an incompressible or compressible model. For the incompressible

model, which is commonly used for melt systems, a local incompressibility constraint is

imposed by using a delta functional such as

δ

[∑
i

ρ̂i(r)− ρ0

]
, (1)

at each point r where ρ̂i(r) is the microscopic segment density of species i. In the com-

pressible model a harmonic functional energetic term is included in the partition function

in place of the local incompressibility constraint:

e
− ζ

2ρ0

∫
V dr(

∑
i ρ̂i(r)−ρ0)

2

, (2)

where ζ corresponds to a penalty for local density fluctuations away from the average

density ρ0, such that in the limit ζ → ∞, it approaches the incompressible model. The

polymer-polymer interactions are decoupled in favor of field-polymer interactions by means

of Hubbard-Stratonovich transformations, which introduce a pressure field µ+ and an ex-

change or composition field µ−. The field-theoretic Hamiltonian takes the following form
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H[µ+, µ−] = C

∫
V̄

dx

[
−µ+(x)φ(x)− 2µ−(x)

χN
(χw1Nφw1(x) + χw2Nφw2(x)) + (2f − 1)µ−(x)

+µ2
−(x)/χN

]
− Cfφ̄V̄

Ā

∫
Ā
dx⊥ logQ(x⊥; [µA])− C(1− f)φ̄V̄

Ā

∫
Ā
dx⊥ logQ(x⊥; [µB]). (3)

for the incompressible model. The Hamiltonian for the compressible model is obtained by re-

placing the first term inside the integral, −µ+(x)φ(x), with− 1
χN+2ζN

µ2
+(x)− 2ζN

χN+2ζN
φ(x)µ+(x).

Here, we introduced new dimensionless variables, x = r/Rg0, V̄ = V/R3
g0, Ā = A/R2

g0, each

scaled by the polymer radius of gyration, Rg0 = b(N/6)1/2. The dimensionless polymer

chain concentration is denoted by C = ρ0R
3
g0/N and the spatial average of the total (A and

B) polymer volume fraction, φ(x), is designated as φ̄ . An integral over grafting points x⊥

on the substrate is denoted by
∫
Ā dx⊥.

In Eq. (3), the normalized single chain partition function for a polymer chain tethered to

the grafting point, x⊥, Q(x⊥; [µK ]), can be calculated through

Q(x⊥, s; [µK ]) =

∫
V̄

dx qx⊥(x, s; [µK ])q(x, 1− s; [µK ]) (4)

for component K = A or B and arbitrary contour location s, where qx⊥(x, s; [µK ]) is the

chain propagator initiated from the grafting plane, and q(x, s; [µK ]) is the propagator initi-

ated from the free-end.

The free-end propagator, q(x, s; [µK ]), is the probability that a polymer chain of contour

length s has its end located at spatial position, x. It can be obtained by solving the following

modified diffusion equation

∂

∂s
q(x, s; [µK ]) = ∇2q(x, s; [µK ])− µK(x)q(x, s; [µK ]), (5)

where the µK(x) are the potential fields experienced by segments of type K:

µA(x) = µ+(x)− µ−(x)

µB(x) = µ+(x) + µ−(x),
(6)

The free end propagator is subject to the initial condition q(x, 0; [µK ]) = 1.

The chain propagator initiating from the grafting point x⊥, denoted as qx⊥(x, s; [µK ]),

also satisfies the modified diffusion equation (5) but its initial condition takes into account

the distribution of grafting points. For a chain grafted at point x⊥, the local volume fraction

contributed by that chain and the overall chain partition function are also functions of x⊥.
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With a high and uniform grafting density assumption, the quenched average over chain end

grafting points is affected by the integrals in Eq. (3) over the grafting surface. However, the

surface integral can be absorbed into the initial condition for a new averaged propagator

originating from the surface called the complementary propagator qc(x, s, [µK ])35–37. This

object also satisfies Eq. (5), but with the following initial conditions for species A and B,

respectively:

qc(x, 0; [µA]) =

∫
Ā
dx⊥

fV̄

ĀQ(x⊥; [µA])
qx⊥(x, 0; [µA]), (7)

qc(x, 0; [µB]) =

∫
Ā
dx⊥

(1− f)V̄

ĀQ(x⊥; [µB])
qx⊥(x, 0; [µB]). (8)

To calculate the local volume fraction of species K, the following expression can be used:

φK(x; [µK ]) = φ̄

∫ 1

0

ds qc(x, s; [µK ]) q(x, 1− s; [µK ]), (9)

For the incompressible model, the mean-field configurations of the pressure and exchange

field are determined from the following saddle-point equations:

δH[µ+, µ−]

δµ+(x)
= φA(x; [µ∗A]) + φB(x; [µ∗B])− φ(x) = 0, (10)

and

δH[µ+, µ−]

δµ−(x)
= (2f − 1) +

2µ∗−(x)

χN
− 2χw1N

χN
φw1(x)

−2χw2N

χN
φw2(x)− φA(x; [µ∗A])

+φB(x; [µ∗B]) = 0, (11)

where µ∗+ and µ∗− denotes the values of the fields at the saddle point. For the compressible

model, the last term −φ(x) in Eq. (10) is replaced by
(
− 2
χN+2ζN

µ∗+(x)− 2ζN
χN+2ζN

φ(x)
)

.

III. NUMERICAL METHODS

To obtain the mean-field configurations for µ+ and µ−, we use the following iterative

scheme:

1. Initialize the fields, µ+ and µ−.

2. Solve the modified diffusion equation for both q and qc.
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3. Calculate Q, φA and φB.

4. Update the fields, µ+ and µ−.

5. Repeat steps 2-5 until a convergence criterion is satisfied (when the l1 norm of the

sum of the saddle point equations is at machine precision).

In this section, we describe the numerical methods used to calculate these quantities

within the scope of the pseudo-spectral method, with particular attention to the complica-

tions arising from the grafting of the polymers to a surface. Moreover, we restrict attention

to a one-dimensional planar mixed brush system where pressure and composition variations

occur normal to the grafting plane z ∈ [0, L̄z]. Two different set of boundary conditions are

considered: homogeneous Neumann and homogeneous Dirichlet conditions. The numerical

methods presented in this manuscript can be easily adapted to a multidimensional system.

Neumann (reflective) boundary conditions are appropriate when it is desired to model

a neutral surface for the two polymers at the grafting and free surfaces of the brush. In

this case, the wall particles are omitted and no mask is applied. This is achieved by setting

nw = 0, φw1(x) = 0, and φw2(x) = 0 in the model described in Section II. Correspondingly,

the average polymer volume fraction is φ̄ = 1.

To model surface affinity for type A or B segments at the boundaries, we introduce masks

at each surface coupled with Dirichlet boundary conditions; this is similar to the work on

lateral confinement of block copolymers in14. Although we consider Neumann boundary

conditions for a neutral surface, a surface affinity can be added as a local or finite-range

interaction. In the case of Dirichlet boundary conditions, the wall volume fraction, φw(z),

is defined such that its value is one at the boundary and decays to zero into the brush over

a length d much less than the brush thickness L̄z. At the grafting surface z = 0, we make

the simple choice φw1(z) = [1+cos(πz/d)]/2; at the grafting-free surface we similarly choose

φw2(z) = [1+cos(π(L̄z−z)/d)]/2. This wall profile has the desirable properties that its first

derivative is peaked a distance d/2 from the wall and is zero both at the wall and at z = d.

The function (φ
′
w(z))2, when normalized, is therefore a convenient choice as a distribution

function for smearing the grafting points throughout the wall region. This will be described

further in Section III B. Bosse et al.2 observed that the value of d, i.e. the wall interface

width, does not affect mesoscopic polymer assembly as long as it is set below the scale of Rg0.

For the moderately stretched brushes considered in this manuscript, which are only a few
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multiples of Rg0 thick, the volume of the wall region is a non-negligible fraction of the overall

brush volume. Thus, most comparisons are made at the same value of d, and in comparing

results at different brush thicknesses, we also maintain the same spatial resolution to ensure

consistent resolution of the wall regions.

In our study, we use spectral collocation with a sine or cosine basis and a uniform col-

location grid in the spatial coordinate z. We also apply equispaced points in the s chain

contour variable. The number of collocation points and chain contour steps are denoted by

Nz and Ns, respectively.

A. Modified Diffusion Equation

The most computationally expensive step in the SCFT method involves solving the mod-

ified diffusion equation for the chain propagators, q and qc. In this section, three different

second-order accurate methods that can be used to calculate these objects are discussed:

an operator splitting method, a backwards differentiation formula, and an exponential dif-

ferentiation formula. All of these methods require transformations between real and spec-

tral/Fourier space. To efficiently transform between the values of functions f(z) sampled

on a uniform grid and its cosine (f̂m) and sine (f̆m) Fourier coefficients, the FFTW pack-

age is used10, where the cosine and sine transforms are denoted by REDFT00(DCT-I) and

RODFT00(DST-I), respectively. The inverse transforms are given by the same routines,

but are normalized by multiplying by 1/(2(Nz − 1)) or 1/(2(Nz + 1)) for the cosine or sine

transforms, respectively.

1. Operator Splitting Method (OSM)

An attractive way to solve the modified diffusion equations is the pseudo-spectral operator

splitting method (OSM)9,41,48,49. This is an unconditionally stable, fast, O(∆s2) accurate

algorithm for solving the modified diffusion equations. In Eq. (5), we can identify a linear

operator L = ∇2 − µ(z), where in the current 1D case ∇2 = ∂2
z . Values of q(z, s) can be

calculated at a set of discrete contour points, s, by propagating forward along the polymer

contour according to

q(z, s+ ∆s) = e∆sLq(z, s), (12)
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starting from an initial condition q(z, 0) = 1. The OSM algorithm is based on the Baker-

Campbell-Hausdorff identity43, which affects an O(∆s2) accurate splitting of e∆sL:

e∆sL = e−∆sµ(z)/2e∆s∂2/∂z2

e−∆sµ(z)/2 +O(∆s3). (13)

This equation is solved by spectral collocation12, transforming between real space and Fourier

space with FFTs. Since the potential field µ(z) is diagonal on a uniform collocation grid

in real space for a planar system, and the Laplacian operator is diagonal in Fourier space

(sine or cosine basis), the three operators appearing on the right hand side of Eq. (13) can

be applied as local multiplications in the appropriate space.

2. Backwards Differentiation Formula (BDF)

The backwards differentiation formula (BDF) is a multistep, implicit-explicit scheme.

In terms of the modified diffusion equation, this method implicitly treats the Laplacian

term and explicitly treats the source using an Adams-Bashforth formula. In other contexts,

this method has shown remarkable features, such as improved stability properties and high

frequency damping that can reduce aliasing in low resolution simulations1,42.

The second-order BDF (BDF2) scheme applied to Eq. (5) takes the following form:

1

2∆s
[3q(z, s+ ∆s)− 4q(z, s) + q(z, s−∆s)] = (14)

∇2q(z, s+ ∆s)− µ(z)[2q(z, s)− q(z, s−∆s)] +O(∆s3).

To initialize this scheme, the first step is taken using a first-order accurate Euler method,

and then Richardson extrapolation40 is used to produce a second-order accurate value for

q(z,∆s).

3. Exponential Differential Formula (EDF)

Exponential time differencing is another method commonly used to solve stiff ordinary

and partial differential equations. This method first involves an exact integration of the

equations through the use of an integrating factor. Any integrals with nonlinear parts

are then approximated through a Taylor expansion up to a desired order5. Although this

method can thus be used to obtain schemes of arbitrary order16, only the second-order

method applied to Eq. (5) will be presented.
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The second-order accurate exponential differential formula (EDF) is defined by:

q(z, s+ ∆s) = L1q(z, s) + L2(µ(z)q(z, s)) (15)

+L3(µ(z)q(z, s−∆s)) +O(∆s3)

L1 = e∆s∂2/∂z2

(16)

L2 =

(
∂2

∂z2

)−1
(

2− L1 +
1

∆s

(
∂2

∂z2

)−1

(1− L1)

)
(17)

L3 = −
(
∂2

∂z2

)−1
(

1 +
1

∆s

(
∂2

∂z2

)−1

(1− L1)

)
(18)

Like the BDF2, the EDF2 requires a single-step scheme to initialize the algorithm.

B. Complementary Diffusion Equation

As mentioned in the Introduction, several authors such as Matsen23, and Meng et al.30

observed difficulties obtaining accurate values for the free energy, fields, and densities for

grafted polymer brushes, which they attributed to the Dirac delta function in the initial

condition for the complementary propagator. Below we present a smearing method that is

used to resolve the initial condition for the complementary propagator for the one dimen-

sional planar system. In this method, the grafting points are smeared over a finite-width

function.

C. Smeared Distribution of Grafting Points

For the one dimensional case, setting s = 0 and substituting qx⊥(z, 0; [µK ]) = δ(z− ε) for

ε→ 0+ into Eqs. (7) and (8), the initial conditions for the complementary propagators take

the following form

qc(z, 0; [µA]) =
fL̄z

Q(ε; [µA])
δ(z − ε), (19)

qc(z, 0; [µB]) =
(1− f)L̄z
Q(ε; [µB])

δ(z − ε). (20)
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One can directly apply this initial conditions, which is associated with a source dis-

tribution, by approximating the Dirac delta function as a Kronecker delta function or by

performing an approximate analytic propagation of the initial condition for one contour

step23,30. We adopt the latter approach here in all results labeled “source” – namely, we

apply the operator splitting formula (OSM) for a single contour step in tandem with the

Green’s function for the heat equation with either Dirichlet or Neumann boundary conditions

to deduce the form of qc(z,∆s).

Since the main complication with the initial condition for the complementary propagator

arises from an inability to numerically resolve the Dirac delta function, one way to avoid these

complications would be to smooth out the function. A convenient choice is to approximate

the Dirac delta function as a Gaussian centered around z = ε with a variance α:

qx⊥(z, 0; [µK ]) ≈ exp[−(z − ε)2/(2α)]√
πα/2

, (21)

which is normalized such that:∫ ∞
ε

dz
exp[−(z − ε)2/(2α)]√

πα/2
= 1. (22)

The Dirac delta function is then recovered in the limit of α → 0. This technique is similar

to connecting the polymer chains to the surface using a stiff harmonic potential21. By using

this approximation, the grafting points are no longer constrained to the surface at z = ε,

but are instead smeared over a half Gaussian.

Although the Gaussian satisfies the boundary condition at z = 0 (in the limit of ε→ 0)

it does not always satisfy the reflective boundary conditions at z = L̄z:

∂

∂z

[
exp[−z2/(2α)]√

πα/2

]
z=L̄z

= − L̄z exp[−L̄2
z/(2α)]

α
√
πα/2

, (23)

To rectify this, a small term can be added to the initial condition

qx⊥(z, 0; [µK ]) =
exp[−z2/(2α)]√

πα/2
+
z2 exp[−L̄2

z/(2α)]

2α
√
πα/2

, (24)

which is exponentially small for large L̄z or small α. Several different formulations of this

term can be employed, but for moderately small values of α, such as α = 0.01, it is essentially

equal to zero, and in the limit of α→ 0, the Dirac delta function is recovered.
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Plugging this expression into Eq. (4), the partition function for the one component system

takes the following form

Q[µK ] =

∫
L̄z

dz

[
exp[−z2/(2α)]√

πα/2
(25)

+
z2 exp[−L̄2

z/(2α)]

2α
√
πα/2

]
q(z, 1; [µK ]).

Using this form of the partition function, along with the Gaussian approximation, the initial

condition for the complementary propagator of the one component system becomes

qc(z, 0; [µK ]) =
fKL̄z exp[−z2/(2α)] + fKL̄zz

2 exp[−L̄2
z/(2α)]/(2α)∫

L̄z
dz
[
exp[−z2/(2α)] + z2 exp[−L̄2

z/(2α)]/(2α)
]
q(z, 1; [µL])

(26)

where the spatial integral can be calculated spectrally.

In situations where the masking method is used, rather than using a Gaussian it is more

desirable to smear the grafting points over the width of the wall. Such a grafting distribution

removes the additional variable α associated with the Gaussian method, thus simplifying

the parameter space. A simple approach is to approximate the Dirac delta function as the

square of the first derivative of the wall volume fraction located at the grafting surface,

φ′w1(z), where the prime denotes the first derivative in respect to z. This approximation

assumes that the grafting points are distributed with a probability density proportional to

(φ′w1(z))2

qx⊥(z, 0; [µK ]) =
(φ′w1(z))2∫

L̄z
dz(φ′w1(z))2

, (27)

which is normalized to unit area. As in the case of the Gaussian approximation, this method

modifies the form of the single chain partition function which is now given by

Q[µK ] =
1∫

L̄z
dz′(φ′w1(z′))2

∫
L̄z

dz(φ′w1(z))2q(z, 1; [µK ]). (28)

This leads to the following form for the initial condition for the complementary propagator

qc(z, 0; [µK ]) =
fKL̄z(φ

′
w1(z))2∫

L̄z
dz′(φ′w1(z′))2q(z′, 1; [µK ])

. (29)

This wall smearing could be conducted in a slightly different way. In the source distri-

bution, we have assumed that each chain end is grafted at exactly the same plane (z = ε).

However, since the masking method allows us to model the surface as a diffuse substrate
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with a certain transition width, we could also distribute the grafting ends throughout the

wall transition. In this case, qx⊥(z, 0; [µK ]) and Qx⊥ [µK ] for the chain grafted at x⊥ take

the same form of those for a source distribution, but qc(z, 0; [µK ]) has an additional factor

to account for the normalized grafted ends distribution function g(z).

qc(z, 0; [µK ]) =

∫
Ā
dx⊥

fV̄ g(z)

ĀQ(x⊥; [µA])
qx⊥(x, 0; [µA]). (30)

We can choose the same distribution function as before g(z) =
(φ′w1(z))2∫

L̄z
dz(φ′w1(z))2 , which leads to

qc(z, 0; [µK ]) =
fKL̄z

q(z, 1; [µK ])

(φ′w1(z))2∫
L̄z
dz(φ′w1(z))2

. (31)

Although the resulting qc(z, 0; [µK ]) has a different normalizing denominator than Eq (29),

we obtained very similar numerical results independent of which wall smearing method is

used. As a consequence, for simplicity, we only have used the first smearing method in this

paper.

D. Quadrature for Local Volume Fraction

To numerically calculate the local volume fraction for the A and B component defined in

Eq. (9), a fourth-order accurate open extended formula40,47 is used∫ 1

0

f(s)ds = ∆s

[
55

24
f(s1)− 1

6
f(s2) +

11

8
f(s3)

+f(s4) + f(s5) + ...+ f(sNs−5) + f(sNs−4) (32)

+
11

8
f(sNs−3)− 1

6
f(sNs−2) +

55

24
f(sNs−1)

]
+O(∆s4).

The open-quadrature excludes the end points, and consequently the (integrable) ∼ s−1/2

singularity at s = 0 which is observed for the source point distribution of grafting points.

When the grafting points are adequately smeared the singularity at s = 0 is avoided, and

closed-quadrature schemes can be used to accurately calculate the density.

E. Field Relaxation

To determine the field configurations µ∗+(z) and µ∗−(z) that correspond to the mean-field

solution for this system, it is necessary to solve the saddle point equations given in Eqs. (10)
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and (11). To solve these nonlinear equations, we employ the method of continuous steepest

descent, where we introduce a fictitious time variable t, and relax in the direction of the

field-gradient of the Hamiltonian. For this particular system the saddle point search is a

steepest ascent in µ+ and a steepest descent in µ−. We use the following equations to obtain

the saddle point configurations for µ∗+ and µ∗−:

∂

∂t
µ+(z, t) =

∂H[µ+, µ−]

∂µ+

, (33)

∂

∂t
µ−(z, t) = −∂H[µ+, µ−]

∂µ−
. (34)

To numerically implement these two equations, we can use the explicit forward Euler

method which takes the following form:

µn+1
+ (z) = µn+(z) + ∆t

∂H[µ+, µ−]

∂µ+

, (35)

µn+1
− (z) = µn−(z)−∆t

∂H[µ+, µ−]

∂µ−
, (36)

both of which can be followed by a constant shift to center the fields around zero and improve

stability. Here the superscript n denotes steps in the ficticious time variable t. Although

this scheme is easily implemented, the algorithm’s poor stability significantly restricted the

size of the time step ∆t that could be employed.

Ceniceros and Fredrickson proposed a more stable semi-implicit-Seidel (SIS) algorithm

for a periodic system3. In this approach, the random phase approximation is used to expand

the density operators (field gradients) to first order in µ±, then the linear terms are added

and subtracted at the future and present time step, respectively, to produce the following

algorithm:
µn+1

+ − µn+
∆t

= −g ∗ µn+1
+ +

∂H[µn+, µ
n
−]

∂µn+
+ g ∗ µn+, (37)

µn+1
− − µn−

∆t
= −(2/χN)µn+1

− −
∂H[µn+1

+ , µn−]

∂µn−
+ (2/χN)µn−. (38)

where the asterisk denotes a spatial convolution and g is the Debye scattering function. For

the periodic system, the Debye function in Fourier-space is expressed as:

ĝ(k) = 2φ̄(e−k
2

+ k2 − 1)/k4, (39)
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where k is the magnitude of the Fourier wavevector. Although this form of the Debye

function is not appropriate for grafted chains, since it is obtained by performing the RPA

on a non-tethered homopolymer in a periodic cell, it can still be used in the semi-implicit-

Seidel update for the brush system. Using this approximate form of the Debye function in

the saddle point update algorithm will not affect the final field configuration, but in some

cases can increase the stability of the scheme.

As the simulation time (iteration number) increases, the fields configurations are updated

based on Eqs. (33) and (34) until our convergence criterion is met, which is when the error

is at machine precision. The error is defined as the l1 norm of the sum of the saddle point

equations, Eqs. (10) and (11), which gives

error =
1

Nz

Nz−1∑
j=0

|φA(zj) + φB(zj)− 1| (40)

+|(2f − 1) + 2W (zj)/χN − φA(zj) + φB(zj)|,

and

error = (41)

1

Nz

Nz−1∑
j=0

∣∣∣∣(− 2

χN + 2ζN
µ+(x)− 2ζN

χN + 2ζN
φ(x)

)∣∣∣∣
+|(2f − 1) + 2W (zj)/χN − φA(zj) + φB(zj)|,

for the incompressible and compressible models, respectively. Self-consistency is achieved

exactly when the error equals zero.

IV. RESULTS AND DISCUSSION

All of the methods above were implemented in FORTRAN 90 on a 2.00 GHz Intel Xeon

CPU, where the discrete cosine (DCT-I) and sine (DST-I) transforms were performed using

the FFTW package10. The initial field configurations were composed of random numbers

uniformly distributed over [-0.5,0.5], unless otherwise noted, and the same initial field con-

figuration was used for each individual study. In conducting field relaxations, the time step

was selected to be as large as allowed by the stability of method.

For brevity, we introduce a shorthand notation to identify the various approaches, mod-

els, and boundary conditions. We have 8 different cases dependent on the compressibility,

18



boundary condition, and the distribution of grafting points. To identify these cases, a tag

derived from a combination of three words is used, which indicate either an incompress-

ible (incomp) or compressible (comp) model, whether Neumann (cosine) or Dirichlet (sine)

boundary conditions are imposed, and if we are considering a source (source) or smeared

(smear) distribution. For example, an incompressible symmetric binary melt brush where

Neumann boundary conditions are considered in the z-direction with a source distribution

of grafting points is labeled incomp cosine source. For situations where we consider both a

source and smeared distribution, the last index is omitted, e.g. incomp cosine.

A. Solving the Modified Diffusion Equation

In general, we find that the operator splitting method (OSM) is better suited to solve

the modified diffusion equation for grafted systems than either the BDF or EDF algorithms

due to the OSM’s superior handling of large peaks in the fields µA and µB near the grafting

surface at z = 0. When Neumann boundary conditions are considered, the large peaks

have amplitude O(10). This is demonstrated for a one-component incompressible brush in

Figure 1. The results are very similar for a two-component mixed brush system.

Although the field theory model is known to be invariant to a constant shift, µ0, in the

field, which allows a uniform shift to be subtracted at each field update to add stability, when

this shift is employed with the BDF or EDF method there is an accumulation of numerical

error which prevents driving the error to machine precision. The operator splitting method

avoids this problem since the numerical algorithm involves only the exponential of the field

such that a constant shift manifests in Q[µ] as a multiplicative factor exp[−µ0∆s]. This

factor cancels out exactly when calculating the density −(1/Q[µ])∂Q[µ]/∂µ using OSM, but

when BDF or EDF are applied, the cancellation is not exact and numerical error accumulates

at each field iteration. When the constant shifts are removed, the BDF and EDF methods

are capable of producing converged solutions with an error of O(10−13), but the spatial

average of the fields tends to drift away from the origin as shown in Figure 1. Although we

have also observed drifts in the field in non-tethered systems, the magnitude of the drift is

much larger in polymer brushes. This field drift can lead to very large or very small values

of the single chain partition function and propagators depending on the direction of the drift

towards either large positive or negative values. As a consequence, the BDF and EDF are
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FIG. 1. (a) Comparison of the converged field µ for an incompressible one-component brush

(reflective boundary conditions and source distribution) where the modified diffusion equation is

solved using either the OSM, BDF, or EDF method, and the fields are not shifted. The error

when the fields are (b) shifted or (c) not shifted. System parameters are L̄z = 3, Nz = 512, and

Ns = 256.

problematic algorithms for conducting SCFT studies of polymer brushes.

B. Complementary Diffusion Equation and Grafting Point Smearing

As was described above, one approach to resolving the problematic initial condition for

the complementary propagator is to replace the Dirac delta function by a half-Gaussian
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distribution. Here we report results for such a smeared Gaussian distribution in the case

of Neumann boundary conditions (cosine basis functions), and results obtained using a

smearing distribution function constructed from the wall derivative for the case of Dirichlet

boundary conditions (sine basis functions + masking method). Results from the source

distribution will also be presented for comparison purposes.

In Figure 2, the converged fields and volume fractions, respectively, are shown for the

incomp cosine source and comp cosine source cases. Unlike an untethered binary melt that

exhibits macrophase separation, the grafted system can only microphase separate due the

surface tethering of the polymers. The labels of A and B are arbitrary since the symmetry

in chain length and composition produces a bi-stable system. In both compressible and in-

compressible systems, the configuration that the system adopts is due to an optimal balance

between enthalpic repulsion of dissimilar segments and conformational entropy penalties as-

sociated with chain stretching. An optimal configuration of the fields µA and µB, minimizes

the total mean-field free energy of the system. The rapidly varying features in µA and µB

near z = 0 are a manifestation of the forces of constraint attempting to minimize density

variations and overcrowding near the grafting surface. Since the magnitude of µA is greater

than that of µB at the surface, the A polymers are repelled with a greater force at the wall

and thus the A polymers are forced to stretch away from the grafting surface towards the

grafting-free surface at z = L̄z = 3. Around L̄z = 2 the value of µB becomes greater than

µA, which constrains the B polymers to the region near the grafting surface.

Although the density and field profiles for the incompressible and compressible cases

exhibit similar behavior, slight differences are observed near the grafting surface. We observe

that for the compressible model both A and B density profiles exhibit cusps near the grafting

surface. The cusp in the density profiles is somewhat suppressed in the corresponding

incompressible model since it produces a total density that exceeds one. In addition, the

compressible model reduces the height of the first peak and damps a secondary u-shaped

peak in the field profiles, both of which embody the repulsion of the polymers from the

grafting wall.

When the grafting points are smeared over a Gaussian, the results from smeared sim-

ulations match those of the source approach when the variance, α, approaches 0, as seen

in Figure 3 for the comp cosine smear case. As the value of the variance increases, which

corresponds to the smearing of grafting points over a Gaussian of larger width, the rapidly
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FIG. 2. Equilibrium configuration of µA/B (left) and φA/B (right) for (a,b) incomp cosine source

and (c,d) comp cosine source cases. System parameters are f = 0.5, χN = 12.5, ζN = 100, L̄z = 3,

Nz = 4096, and Ns = 400.

varying features in the fields µA and µB near z = 0 are suppressed, while the remainder of

the field profiles are relatively unaffected. This field suppression manifests localized changes

in the density profiles near the grafting substrate as seen in Figure 3, while the larger scale

density features are seen to be relatively insensitive to changes in α.

When a confinement wall is modeled using the masking method with a sine basis and a
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FIG. 3. Equilibrium configurations for µA and φA for the comp cosine smear case. System param-

eters are f = 0.5, χN = 12.5, ζN = 100, L̄z = 3, Nz = 4096, and Ns = 400.

source grafting distribution, we obtain similar trends for the fields and local volume fractions.

This is shown in Figure 4 for the incomp sine source and comp sine source cases and a

wall transition region of width d = 0.01. Due to the Dirichlet boundary conditions, the

local volume fraction is forced to be zero at z = 0 and z = L̄z. Because of this and the

incompressibility requirement, µA and µB assume large negative values near the boundaries,

which attracts segments to satisfy the specified total density profile near the two boundaries.

In the absence of the incompressibility constraint, we observe a depletion layer, where the

total density (φA + φB + φw1 + φw2) deviates from one near the boundaries (see Figure 4 d).

In the limit of ζ →∞ where the compressible model approaches the incompressible model,

large negative field values with magnitude O(−102) are observed near the walls. These

features are notably suppressed in the compressible model (e.g. for ζN = 100 field values

are O(−10)).

When walls of different widths are used to smear the grafting points, we do not expect to

see convergence in d (as was observed upon reducing the Gaussian variance α in the Neumann

case) since different wall profiles will produce different field and density profiles. Although

the field values do not converge as d decreases, for small enough d the field profile does match

that obtained using the source distribution as shown in Figure 5 for µA. The broader the
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FIG. 4. Equilibrium configuration of µA/B (left) and φA/B (right) for (a,b) incomp sine source and

(c,d) comp sine source cases. System parameters are d = 0.05, f = 0.5, χw1N = 0, χw2N = 0,

ζN = 100, L̄z = 3, Nz = 4096, and Ns = 400.

wall profile becomes (increasing d), the further the grafting profile deviates from a source

distribution, and larger discrepancies are observed between the two field profiles. In Figure 5,

we observe substantial differences in µA between the source and smeared distributions for

d = 0.5, while the source and smeared fields coincide at d = 0.05 for both the incompressible

and compressible systems. Although the fields are sensitive to the value of d, the local
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volume fractions outside the surface boundary layers are relatively insensitive to the width

of the wall transition region.

C. Local Volume Fraction Quadrature

As mentioned in Section III D, the local volume fraction was calculated using an open

composite quadrature formula, which omits the integrable ∼ s−1/2 singularity. Although

this quadrature scheme is fourth-order accurate, the observed order is limited by the order

of the operator-splitting method, which is second-order accurate. When the quadrature for-

mula is used with a broad, smeared distribution of grafting points such as for α = 0.1, and

a prescribed (smooth) potential field, we observe an order of approximately 2, as shown in

Figure 6. This order is calculated using the error defined as maxi|φ(xi, Ns; [µ])−φ(xi, Ns =

10000; [µ])|. As the value of α is decreased to approach a source distribution, the observed

order drops significantly to ≈ 1. This reflects a slow convergence of the fields, and con-

sequently the density, with the chain contour resolution Ns. As the grafting points are

adequately smeared, faster convergence with Ns is observed. This behavior is also observed

for the incomp sine smear and comp sine smear cases when the width of the wall transition

region approaches zero, d→ 0. The convergence of the field with Ns is further discussed in

the following section.

D. Spatial and Contour Resolution Dependence of the Free Energy

In the case of a source distribution of grafting points, we have seen that a cusp is produced

in the self-consistent fields near the grafting surface that contributes to a host of numerical

problems including slow convergence with respect to field updates and subsequently the free

energy. Matsen and Griffiths27 observed similar behavior with the fully spectral method and

Neumann boundary conditions, where they showed that the free energy converged slowly

with the number of basis functions. Although this problem is manifest when absolute free

energies are desired, these authors observed that relative free energies between two phases

can be accurately calculated since numerical errors affect each phase in a similar manner

when compared using the same number of basis functions.

In Figure 7, we observe relatively rapid convergence of the absolute free energy with
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increased spatial resolutionNz when smeared distributions are employed. Special care should

be taken to ensure that Nz is sufficient to adequately capture the sharp peaks in the field

profiles, although we have observed that the local volume fraction and field configuration

are relatively insensitive to Nz provided this condition is met. The insensitivity of volume

fraction profiles to Nz was also noted by Matsen and Griffiths 27. Figure 7 shows the

magnitude of the free energy plotted against Nz, where the free energy was shifted for visual

comparison so that its value calculated at the lowest spatial resolution is zero. As seen in

Figure 7, faster convergence is observed for compressible and incompressible models and

both types of boundary conditions when the grafting points are smeared. This is again due

to the smoother field profiles produced by the smeared models.

We have observed a particularly slow convergence of both fields and free energy with

the contour resolution, Ns when a source distribution is employed. This is observed in

Figure 8, which shows the field profiles for the incomp cosine and comp cosine cases. The

volume fraction profiles are omitted since they are similar, although they exhibit a weaker

dependence on Ns. For both the incompressible and compressible models, the peak near the

grafting source increases as the contour resolution increases with no signs of convergence

when the grafting is modeled as a source distribution (Figures 8 a and c). When the grafting

points are smeared over a Gaussian this dependence on the contour resolution is suppressed,

and we observe markedly faster convergence in the field profile near the grafting surface as

shown in Figure 8 b and d for a variance of α = 0.01.

A more problematic sensitivity to Ns arises when Dirichlet boundary conditions are ap-

plied in tandem with wall masking. For the incompressible model, the peak in the field profile

near the grafting source appears to increase with the contour resolution in a similar manner

as we observed with incomp cosine source. By using a smeared distribution, we begin to

observe convergence with Ns, but at a much slower rate than for incomp cosine smear (Fig-

ure 8 b and 9 b). This is due to the confinement wall, which also produces slow convergence

with Ns in the case of confined non-grafted polymer melts such as those studied in Ref14.

However, when the compressible model is applied to a non-grafted confined melt using the

masking method, the fields quickly converge with Ns suggesting an incompatibility of the

incompressibility constraint with the masking method. In Figure 9, we show configurations

of µA in the wall region for the incomp sine and comp sine cases of a grafted binary brush,

where the full field profile exhibits the same features as in Figure 4. Convergence is evidently
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improved both by adopting a compressible model as well as by smearing the grafting points.

Both steps tend to smooth the potential fields and damp the anomalous wall features.

Since the free energy (mean-field Hamiltonian) is dependent on the field configuration as

seen in Equation 3, it also exhibits a dependence on the contour resolution. This is shown in

Figure 10, where the magnitude of the free energy is plotted as a function of Ns and the same

shift is performed as in Figure 7. For a source distribution of grafting points, the convergence

is much slower than in the equivalent smeared case, and the rate of convergence increases

with the width of the smearing. Between our four models (incomp cosine, incomp sine,

comp cosine, and comp sine), the incomp sine source model exhibits the poorest behavior

with no sign of convergence of the free energy up to Ns = 800. This poor behavior of the

incomp sine source model is again due to the incompatibility of the confinement wall with

the incompressibility constraint; switching to a compressible model speeds up convergence

significantly.

Even though convergence of the absolute free energy requires large values for Ns, when

comparing the stability of two phases only the difference in free energy, i.e. the “relative”

free energy, is important. At fixed spatial resolution, we have observed that numerical errors

associated with chain contour discretization tend to cancel in the relative free energy. Shown

in Figure 11 are the free energies of mixed brushes at χN = 12.5 and χN = 2.0, and the

relative free energy between the two states, plotted versus Ns for the incomp sine source

and comp sine source cases. Although the absolute free energies converge very slowly with

Ns, the relative free energy converges extremely rapidly with Ns for both compressible and

incompressible models. This also proves true for a broader set of models with smeared distri-

butions of grafting points and Neumann boundary conditions. We conclude that boundaries

between phases that have been simulated at the same spatial resolution Nz can be accurately

located by means of simulations with surprisingly small contour resolution Ns.

E. Field Relaxation

Our results up to this point suggest that both compressible and incompressible mod-

els, with either source or smeared grafting distributions, can be applied to mixed brush

SCFT simulations if densities and relative free energies are the objects of primary interest.

Nonetheless, one area where we observe significant differences between the models relates to
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the difficulty of field relaxation. As should be expected, we observe significantly faster field

convergence for the compressible system (vs. incompressible) when the sine basis and mask-

ing method are used to mimic a confining surface, and more rapid convergence of smeared

models in comparison with source grafting models.

As discussed in Section III E, the potential fields can be updated by a continuous steepest

descent using methods such as explicit forward Euler (FEU) and the semi-implicit-Seidel

(SIS) method3. Although the SIS method is approximately twice as expensive as the FEU

scheme for this binary brush system, the added stability of the method for some models can

permit a larger update time step and thus faster convergence.

For the incomp cosine and comp cosine models, the SIS method allows the fields to relax

significantly faster than the FEU method. In Figure 12, the FEU and SIS performance is

compared for incomp cosine source, where similar convergence benefits were observed for a

smeared distribution and for our comp cosine systems. A maximum time step of ∆t = 6.4

can be used with the explicit forward Euler method, where the error is reduced to 10−12 in

1250 iterations (cpu time = 1009.77 sec). With the more stable semi-implicit-Seidel scheme,

the added stability allows the time step to be increased to ∆t = 140, where an error of 10−12

can be obtained in 132 iterations (cpu time = 216.79 sec). In this case the SIS method

effectively damps high frequency modes of the fields, improving stability and allowing for a

larger time step. The high frequency mode damping also confers improved stability at the

early stages of simulations that are initiated from (rough) random fields. It is notable that

in the present implementation of SIS we do not use the exact kernel of the linearized force,

but instead use an approximate (and cheaper to compute) form derived for a non-tethered

binary blend. Nonetheless, the implemented SIS considerably outperforms the FEU method,

which utilizes no information about the linear forces in the model.

While SIS outperforms FEU for Neumann boundary conditions, unfortunately when

Dirichlet boundary conditions are imposed in tandem with a wall mask, the SIS scheme does

not outperform the FEU, regardless of how the grafting points are distributed or whether an

incompressible or compressible model is employed. This is not surprising since the bound-

ary condition and the wall mask both affect the high frequency modes, such that the Debye

function is no longer an accurate representation. In addition, the wall pressure anomaly is

more severe (c.f. Figure 4) for the Dirichlet plus masking models relative to the Neumann

models. We note that Hur et. al14 was able to use the SIS method with a larger time step
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than FEU for a similarly confined incompressible diblock copolymer melt utilizing Dirichlet

plus masking, although the wall function was of a different shape than that employed here.

The FEU scheme for the Dirichlet case demonstrates significantly better convergence

properties by using a compressible model vs. the incompressible model. For a system

system with L̄z = 3, f = 0.5, χN = 12.5, Nz = 4096, Ns = 400, and ζN = 100, and

with a source grafting distribution, we were able to decrease the error to machine precision

in 81,000 and 480 iterations for the incompressible and compressible models, respectively,

where we used a time step of 5.0 for the pressure and 1.0 for the exchange/composition

fields. As steps 2-5 in Section III are iterated, the peak in the pressure field near the walls

continuously increases in order to suppress the polymer segment density. This feature is

relaxed by going to a compressible model and the smoother equilibrium pressure field is

more rapidly attained.

Lastly, it has been previously observed that is very difficult to relax the fields for highly

stretched brushes23. To produce a thicker brush requires that the grafting density also in-

crease, which sharpens the impact of a source grafting distribution on the pressure anomaly.

By smearing the grafting points, we are able to compensate this effect and thereby simulate

thicker brushes. For a pure source distribution, brush thicknesses beyond ≈ 3Rg0 become

problematic, but even with moderate smearing (α = 0.5), we have found it straightfor-

ward to converge SCFT simulations for brushes approximately 5Rg0 in thickness. Although

thicker brushes could in principle be simulated by employing broader smearing profiles, such

systems are of limited experimental relevance.

V. CONCLUSIONS AND OUTLOOK

We have investigated a variety of numerical issues associated with the simulation of

grafted AB binary brushes in the pseudo-spectral approach to SCFT. The grafting and free

surfaces were modeled by using either Neumann boundary conditions, or Dirichlet boundary

conditions coupled with a mask to specify diffuse boundaries for the polymer film. For both

types of boundary conditions, our study was restricted to neutral surfaces for the A and B

species, but the Dirichlet plus masking approach is more flexible in allowing for arbitrary

surface affinities to be imposed. Several numerical problems were seen to arise from the

Dirac delta function initial condition for the complementary chain propagator that relates
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to the chain ends tethered at grafting surface. In particular, the need to accurately resolve

and propagate this singular function leads to slow convergence in the fields, poor convergence

of quadrature formulas to obtain the density operators, and a sensitivity of the potential

fields and free energy to the chain contour resolution, Ns.

To address these numerical problems, we have considered grafted brush models that

replace the Dirac delta function with a smeared distribution of grafting points normal to

the grafting surface. This smearing can achieved, e.g., by approximating the Dirac delta

function as a Gaussian with variance α centered at the grafting point. When the Dirichlet

plus masking model is used, the grafting points can be conveniently smeared over the wall

profile (of width d), so no additional smearing width parameters need be introduced. By

smearing the grafting points, not only did we observe faster convergence in the free energy

and field profiles, but we were also able to achieve approximately second-order accuracy in

contour resolution for the density operators.

When the sine basis (Dirichlet conditions) is used in tandem with masking for an in-

compressible brush model, a singular feature is generated in the pressure field that slows

convergence, particularly with respect to chain contour refinement. This behavior is not

limited to brushes, but is also observed for non-tethered systems such as polymer melts.

The problem can be resolved by employing a compressible melt model, which allows the

density to adapt to tethering and constraint forces near a surface. For the mixed brush

system, we have found that the pressure anomaly is greatly reduced by application of a

compressible model and this has a dramatic effect on accelerating convergence, with respect

to the number of field iterations as well as to space and contour resolution.

The numerical work reported here was restricted to one spatial dimension, although most

applications of polymer brushes demand fully three-dimensional solutions and a flexible mod-

eling platform that can accommodate a wide variety of wetting conditions at both grafting

and free surfaces. All factors considered, the most robust and computationally efficient

model for large-scale, three-dimensional SCFT simulations of mixed polymer brushes is the

compressible model utilizing Dirichlet conditions plus masking and a smeared distribution

of grafting points.
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FIG. 5. Equilibrium configurations for µA, where the grafting points are smeared over a wall width

of (a,c) d = 0.5 or (b,d) d = 0.05 for cases of (a,b) incomp sine smear and (c,d) comp sine smear.

The profiles obtained using the source and smeared distribution are shown in red and black,

respectively. System parameters are f = 0.5, χN = 12.5, χw1N = 0, χw2N = 0, ζN = 100,

L̄z = 3, Nz = 4096, and Ns = 400.
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FIG. 8. Equilibrium configurations (zoomed in) for µA for different contour resolutions, Ns for

(a) incomp cosine source (b) incomp cosine smear (α = 0.01), (c) comp cosine source, and (d)

comp cosine smear (α = 0.01) cases. System parameters are f = 0.5, χN = 12.5, ζN = 100,

L̄z = 3, and Nz = 513.
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L̄z = 3, and Nz = 511.
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