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ABSTRACT ARTICLE HISTORY

We consider the nonlinear problem of determining a connection and a Received 13 October 2016
Higgs field from the corresponding parallel transport along geodesics ~ Accepted 22 January 2017
on a compact Riemannian manifold with boundary, in any dimension. KEYWORDS

The problem can be reduced to an integral geometry question of some Attenuated ray transform;
attenuated geodesic ray transform through a pseudolinearization argu- connection; inverse problem;
ment. We show injectivity (up to natural obstructions) and stability microlocal analysis; parallel
estimates for both the linear and nonlinear problems for generic simple transport

metrics and generic connections and Higgs fields, including the real-

analytic ones. We consider the problems on simple manifolds to make ?S;EILV:QI\;CIZEUBJECT
the exposition of the main ideas clear and concise, many results of this 53C65: 35R30: 35505
paper still hold under some assumptions weaker than simplicity. ' '

1. Introduction

Let (M, g) be a compact Riemannian manifold with smooth boundary dM, n = dim M > 2.
Let A be a connection on the trivial bundle M x CF of rank k, which simply means that A
is a k x k matrix whose entries are 1-forms on M with complex values. We also introduce a
Higgs field & € C*°(M; Ckxky a complex matrix function on M, and denote the pair (A, ®)
by A. We define the parallel transport associated with A of a vector ug € C* along a geodesic
y [0, T] = M, y(0),y(T) € dM, as the solution of the following ODE

u+ Ay, Y)u=0, u(0) = ug. (1.1)

Here A(y,y) = A, (y) + ®(y). In the mean time, there is a fundamental matrix solution
U :[0,T] — GL(k,C) of (1.1) which satisfies

U+ A(y,y)U =0, U(0) = id. (1.2)

It is easy to see that u(t) = U(t)uo, thus the information of the parallel transport is encoded
in the fundamental matrix U. We are interested in the inverse problem of recovering the pair
(A, ®) on M from the information of the parallel transport at the end point, i.e., U(T), given
there are enough geodesics y covering the manifold.

To make the exposition of the main ideas clear and concise, in this paper, we assume that
(M, g) is a simple manifold, which means that 9 M is strictly convex and the exponential map is
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a diffeomorphism at any point x € M. In the mean time, we can always assume that (M, M)
is equipped with a real-analytic atlas (the metric ¢ may not be real-analytic).

Let SM be the unit sphere bundle of M and dSM be its boundary, we define two subsets of
OSM

0+SM := {(x,v) € ISM : (v, v(x))y > 0},

where v(x) is the unit inward normal vector to M at x. Given (x,v) € SM, we denote yx,
the unique maximal geodesic on M satisfying y.,(0) = x, yx,(0) = v, let T(x,v) (7_(x,v))
be the positive (negative) time the geodesic yy, exits M. T and 7_ are smooth in SM\S(IM)
and continuous on SM. On the other hand, for any (x, v) € SM, there exists unique (xo, vo) €
04+ SM such that yy, ., (—7—(x,v)) = (x,v). Thus one can define U4 : SM — GL(k,C)
by

Ualx,v) = U(=1-(x,v)),

where U is the fundamental matrix solution of (1.2) along yx, v,- U4 satisfies the following
transport equation

XUp+AUg =0, Uals,sm =id,

where X is the generating vector field of the geodesic flow. It is easy to see that U4 has the
same regularity as 7.
Now we can define the scattering data associated with A

CA:9.SM — GL(k,C)

by Ca(x,v) := UA(Yx(T (6 ), Yxu(T(x,v))), or C4 = Unls_sm in short. Our first result
is regarding the recovery of 4 = (A, ®) from C 4. Notice that there is a natural gauge of this
problem: let p : M — GL(k,C) with plypm = id, then Ca,0 = Cy-1454p-14p, p-10p- Define
dap == [(d + A)p, Pp], then the equality just means that C4 = C;-14 ,,- Thus one can only
expect to determine A up to the gauge.

Theorem 1.1. Let M be a real-analytic simple manifold with real-analytic metric gy. Let Ay, Bo
be real-analytic, there exists € > 0 such that whenever there are another metric g and pairs
A = (A, D), B = (B, V) satisfying

lg — gollcrany <€ A= Aollcsan + 1B — Bollcsany < €

(1) if C4 = Cp w.r.t. the metric g, then there is p : M — GL(k, C) with p|ym = id, such that
B=p~tdap;

(2) if | Ao — Bollczuy < € and * A = *B with 1 : M — M the canonical inclusion, then
there exists p : M — GL(k,C) with plyp = id such that the following stability estimate
holds w.r.t. the metric g

1B = p~'dapliizuy = ClICB = Callan a,sm)
for some uniform constant C > 0 which depends only on g, Ao, Bo.
Notice that A is complex-valued, we say that 4 is real-analytic if both the real and

imaginary parts of 4 are real-analytic. || - ||y« is the natural H* norm for pairs, k > 0, see
Section 2 for the definition.
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Theorem 1.1 shows that the rigidity result (up to the natural gauge) hold for generic
simple metrics and generic connections and Higgs fields, including the real-analytic ones.
There are previous works on the determination of connections from the parallel transport
along straight lines in the Euclidean spaces [3, 4, 15, 35]. Injectivity results are valid on
simple surfaces [16], simple manifolds for connections which are C! close to a given one
with small curvature [24] and negatively curved manifolds with strictly convex boundary [7].
Though [7] allows the existence of trapped geodesics, above references on general manifolds
all require the connections (and Higgs fields) to be unitary. The only exception is [20] which
considers manifolds of dimension > 3 with strictly convex boundary that admits a strictly
convex function, in particular, the last assumption is true if the manifold has non-negative
sectional curvatures. In the current paper, we put no restrictions on the connections and Higgs
fields, the dimension or the curvatures, and the simplicity assumption indeed can be much
weakened, see Remark 1.4. In particular, our method also applies on simple surfaces (n = 2)
to nonunitary connections.

To prove Theorem 1.1, which is regarding a nonlinear rigidity problem, we will reduce
it to an integral geometry problem through a “linearization” of the scattering data, which is
inspired by the idea of [26] and already appeared in e.g. [16, 20]. In particular, this motivates
us to consider some type of weighted geodesic ray transforms.

Notice that the inverse of U 4, denoted by W 4, satisfies

XWy=WaA  Wals,sm =id.

Given @ € C®(T*M,CF) and f € C®(M,CF), we consider the following geodesic ray
transform along yy,, (x,v) € 0;:SM

T(x,v)
Lalen f1x, ) = fo WAz V) (@ Gi) +f () ) el

So I 4 is an attenuated geodesic ray transform with attenuation .A. The natural elements of the
kernel of I 4 are d 4p with p € C® (M, Ck), p|ap = 0. If they consist of the whole kernel, then
we say I 4 is s-injective. When A = 0, i.e., W4 = id, the question is reduced to the injectivity
of the usual (unweighted) geodesic ray transform of functions or tensor fields (known as the
tensor tomography problem), which has been extensively studied. The geodesic ray transform
of functions [13, 14] and 1-forms [1] are s-injective on simple manifolds. See [17, 19] and the
survey [18] for recent developments of the tensor tomography problem on simple manifolds.
Much less is known for the case with attenuations, the question of the s-injectivity of I 4 is still
open on simple manifolds. Some partial answers to this question can be found in [7, 16, 22].
It is also worth mentioning that recently tools from microlocal analysis lead to several new
local and global results [6, 20, 31, 34].

If one restricts the objects in the real-analytic category, there is another approach by apply-
ing the analytic microlocal analysis which was initiated in [28] by Stefanov and Uhlmann, and
further developed in [29] for the ordinary tensor tomography problem. The next theorem,
which can be viewed as a generalization, shows that I 4 is s-injective for real-analytic simple
metric g and real-analytic .4 in any dimension.

Theorem 1.2. Let M be a real-analytic simple manifold with real-analytic metric g, let A be
real-analytic, then 1 4 is s-injective.
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Remark. For the sake of simplicity, we carry out all the arguments with the original complex-
valued A and W 4. Indeed one can reduce everything to real-valued objects and consider an
equivalent problem in the real category, see Appendix A.

We also remark that there are related studies in the analytic category of weighted X-ray
transforms in [5, 8, 9], they either only consider the function case or impose extra conditions
on the 1-forms which make the kernel of the ray transform trivial and the arguments simpler
too.

Similar to Theorem 1.1, we also get generic s-injectivity and stability estimates for I 4 by
investigating some normal operator involving I 4 through microlocal analysis. The method
goes back to the study of the stability estimates of the geodesic ray transform of tensor fields
by Stefanov and Uhlmann [27, 28]. To state the results, we need to make extensions of the
manifold (M, g) and A. Let M; be a slightly larger compact manifold with boundary, so that
M € MY, where MY is the interior of M. In particular, one can consider My as M U (M X
[—&,0)) with M x [—e¢,0) a thin annulus around M for 0 < ¢ <« 1. We also extend g and A
continuously (e.g., under Holder norms) onto M; so that M is simple too. We can keep M;
being equipped with real-analytic atlas too, and the extended g and A are real-analytic if the
original ones are real-analytic.

Let U 4 be the fundamental matrix on SM;

XU+ AUy =0, 0A|8+SM1 = id.

Similarly we denote the inverse of U4 by W_4. We extend the pair [a, f] by zero onto M; and
consider the new ray transform associated with the extended system

TAlanf160,) = [ Watrw i)y G + ) )

for (x',v') € 3,SM;. Given (x,v) € 0,SM, there exist t > 0 and (x’,v') € 8;SM; such that
(x,v) = (Yw v (1), Yx v (1)), generally I aler, f1(x, v) # Ile, f1(x',v'). However we will show
in Section 2 that one can manipulate the difference, thus knowing I 4[e, f] is equivalent to
knowing jA[ot,f].

Let j; be the adjoint of T 4 under the L? inner product, we define the normal operator on
M

Ny = j; I A-
We denote [«, f] by h, there exists a unique orthogonal decomposition (w.r.t. L? inner product)
ofhon M
h = hy; + d ap,

where p € C*°(M, (Ck),PlaM = 0,and 6 4h;; = 0 on M (we use h to denote both a function on
M and its extension by zero on M;). Here § 4 is the adjoint of d 4 under the L? inner product.
See Section 2 and Appendix B for more detail.

Theorem 1.3. Let (M, g) be a simple manifold and A be a pair [A, ], assume that 14 is
s-injective,
(1) let h = [a,f], then the following stability estimate for N 4 holds

IRy llzan < CINARIg ()3
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(2) there exists 0 < € < 1 such that the estimate in (1) remains true if g and A are replaced
by g and A satisfying g — gllcsomy) < € A — Allcsm,) < €. The constant C > 0 can be
chosen uniformly, only depending on g, A.

It is easy to see that Theorems 1.2 and 1.3 together imply that the s-injectivity of I 4 and the
stability estimates hold for generic simple metrics and generic connections and Higgs fields.

Remark 1.4. Several results of this paper, especially the results of the linear problem, will still
hold on a compact manifold satisfying some microlocal condition, which essentially says that
the union of the conormal bundles of nontrapped geodesics that are free of conjugate points
covers the cotangent bundle T*M. In dimension 2, this microlocal condition excludes the
existence of conjugate points, and it is known that conjugate points could be a problem [12]. In
dimension 3 and higher this condition allows the existence of trapped geodesics and conjugate
points, so one only has access to partial data, and the boundary is not necessarily convex, see
[5,29] and Remarks 3.2, 4.3, 6.1 for more details.

Remark 1.5. We just consider the inverse problem on ordinary geodesics in this paper,
however, the results can be generalized to general smooth curves, even with nonconstant
speed, see previous studies [5, 9] and the local problem [34, Appendix].

Remark 1.6. The arguments of this paper also work for X-ray transforms of vector-valued
functions with smooth invertible matrix weights, see Section 5 for the statements of the
results. The scalar case was considered in [5], and a version for Radon transforms was studied
in [10]. Investigations of some related local problems in dimension > 3 can be found in
[20, 30, 36].

The paper is organized as follows. Section 2 discusses the necessary properties of I 4 for
carrying out the arguments of the paper. We prove Theorem 1.3 in Section 3 and Theorem 1.2
in Section 4. In Section 5, we discuss the analogous results for weighted ray transforms of
functions on M, there is no natural gauge in this case. The proof of Theorem 1.1 is given
in Section 6. There are two appendices at the end: Appendix A shows that one can reduce
everything from complex to real; Appendix B establishes an orthogonal decomposition of
pairs of functions and 1-forms with respect to A.

2. Preliminaries
Consider h = [«, f] as an element of the space HF(M), k > 0, with the norm
3k agy = otk apy + 1 gk apy-
By Theorem B.1, there is a unique orthogonal decomposition of 4 with the form
h=hr +dap

for some h* € HY(M) and p € H*1(M) with plam = 0. Recall that d 4p = [dp + Ap, Pp],
let 8 4 be the adjoint of d 4 under the L? inner product, then § 4/° = 0. Note that § 4 [, f] =
Sa + A*(a) + ©*f. We call I* and d 4p the solenoidal and potential part of h, respectively.
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Denote A 4 = §.4d 4, it is easy to see that A 4 is an elliptic operator. One can check that p
solves the following regular elliptic Dirichlet boundary value problem

Aap=3dah,  plom =0.
We denote the solution operator, which is the Dirichlet realization of A 4 on M, by Aﬂ, thus
p = (AD) 718 4h. Define two projections
Pa = dA(AB‘)_IS_A, Sa=1d—"Py,

then h* = S 4h. One can check that NAS4 = SAN4 = Ngand NgP4 = PaNy = O.
If we denote S 4 H*(M) and P 4HF (M) the subspaces of solenoidal and potential pairs (w.r.t.
A) of H¥(M), respectively, then obviously

Sa:H M) — SAH M), P4 :H M) — PAHN M)

are bounded. Moreover, S 4 and P 4 continuously depend on g and .A.

Lemma 2.1. Given (g, A) € C'(M), there exists € > 0 small such that for any (g, A) with
”@7 -’4) - (g) A)”CI(M) <e€

IS4 — Sagllesre = Ce P g5 = Paglliesye < Ce

with C > 0 a locally uniform constant depending on g and A only.

A proof in the absence of A can be found in [28, Lemma 1], similar arguments will work
for the case with A.

Given h = [, f] on M, we can extend it by zero onto M, still denoted by h. We want to
compare I 4h and 1 4h. Notice that on M

X(WAW LD = WagAW ' — Wa AW, =0,

ie, WAWZ‘I is constant along geodesics on M. Given y a geodesic on M; connecting
boundary points of dM;, assume that y N M # ¢

Tah(y) = f Wi b pydi= [ Waty)h(y. ) dr
Y yNM

= WA IWL (1 IWaly, Yy, y) dt
yNM

— () / WA(y, (7)) dt
yNM

= C(y)Lah(y),

where C(y) is some constant that depends on y and is known if ¢ and A are given. Thus once
I ah is given, we know the values of 1 4h and vice versa. From now on, we use I 4 to represent
both ray transforms.

Since C*®° (M) is dense in L?(M,), it is easy to check that I 4 : L2(M;) — L[ZL (04SMy) is
bounded, here Li(8+SM1) is the L2 space on 9, SM; under the measure dju = (v, V)g dx—2
with dX2"~2 the standard measure on dSM;. So the adjoint If4 : LIZL(8+SM1) — L2(M)) is
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bounded too. By a simple calculation, one can show that the integral expression of I’} is
< / it OV W (e, v)uf (x, v) dv) dx’
x VL1

FHu(x) = ,

WZ (x, v)ub (x, v) dv
SyMy

where W is the conjugate transpose of W 4, u” is the invariant extension of u along geodesics,
ie,uf(x,v) = UV (T= (%, V), Px.v(T— (x, v))) with 7_ (x, v) the negative exit time of y, , from
IM;.

Remark 2.2. One can also consider the boundedness of I 4 and I’y on HF spaces for k > 0.
Notice that we only consider i = [, f] with supph C M, and W 4 is smooth in SMY? (so is
W), it is not difficult to check that

La: HEM) — HY((0:SM1)°) and  I* : HF((94SM1)°) — HF(M))

are bounded on simple M; for k > 0. See [23, Theorem 4.2.1] and [21, Proposition 5.3] for
the ordinary geodesic ray transform.

3. Stability estimates

We will study the microlocal properties of the operator N 4 and prove Theorem 1.3 in this
section.

3.1. Ellipticity of N 4

Lemma 3.1. N4 is a WDO of order —1 in M{. It is elliptic on solenoidal pairs at any (x,&) €
T*M9\O.

Proof. Notice that N 4 is an operator acting on pairs, similar cases were considered before in
(2, 9]. It is not difficult to check that the integral operator has the following form

N4 o _ Nﬁ N}f o
f NG NQJ\f)
where
(NYa)i(x) = /S y / it OV IV (6, VWA (Vo (8), Yo (D)0 (Vo (£)) 7 (8) ditdy,
(NYfix) = /S y / Gt COVEW (6, V) WA (P (8), Y (D) (e (1)) dtdly,

N%a(x) = /S y / W 6 V) WA (i (8, T (D) (Y (6)) 72.(0) dltclv,

NYf(x) = /S y / W (6 VWA (Vi (1), Y (D)f (v () dtdv.
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Then following [2, Proposition 4.1], it is easy to see that N 4 is a WDO of order —1 in MJ.
Moreover, the principal symbol 0, (N 4) satisfies

ap (N, §) = / it OV W (6, V)W (6, VIS (& - v) dbv,

SxMy
op(ND)i(x, €) = /S y it OV Wi (6, V)W A (x, VS (E - v) dv,

op(NYQY (x,6) = /S y Wi e VWA MVS(E - v) dv,

UP(N%)(X,g) :[SM W;(x,v)WA(x,v)S(Sm) dv.

Now for (x,&) € T*M7\0 given [, f] in the kernel of 0, (8 4) (x, §), i.e.,g‘jaiéj = 0. Notice
that at a fixed point x, we can assume that the geometry is trivial, i.e., g;j(x) = J;j, so we can
identify & = (§;) with its dual £* = (§') = (g¢j). Assume that (0, (N4)[e, f], [a, f]) = 0,
which implies that

o=
SxMy

Thus WA(x, V) (v +f) = 0for (x,v) € S;M; N £1. Thus we can find n vectors vy, .. ., v,
from SyM; NEL such that {v,—v1, . .., v,—v1} form a basis of €. Since W 4 (x, v) is invertible,
wegetav; +f =0forj=1,...,n,thus

WA(x, v)(ai(x)vi +1) 28(5 V) dv.

a,-(vj—vl)izo, j=2,...,n

The fact that {v; — vi,...,v, — v} is a basis for & L together with the assumption & ia; = 0,
implies that @ = 0. Therefore f = 0 too, and this proves the lemma. O

Remark 3.2. Lemma 3.1 still holds under the microlocal condition mentioned in Remark 1.4.
In fact the microlocal condition implies that there exists a smooth cutoff function p on SM;
such that for any (x,£) € T*M{ there is v € SyM; so that p(x,v) # 0. In the mean time,
W 4 is well defined and smooth in an open neighborhood of supp p, thus one can show that
Ny =1y p? 14 is an elliptic WDO of order —1 acting on solenoidal pairs.

3.2. Stability up to an error

By Lemma 3.1, (N 4, DS 4) form an elliptic system in M¢, here D = (4 ) with A a properly
supported parametrix of A 4 in M¢ with principal symbol |&|~2. Thus there is a parametrix
for the system in MY, denoted by (P, Q), such that

PN4 + QDS 4 = Id + K, (3.1)

where P, Q are WDO’s of order 1, K is a smoothing operator.

Let M’ be a compact extension of M such that M € M’ € Mj, in particular, we can choose
M = MU (M x [—&/2,0)) if one recalls the definition of M; in the introduction. Let x
be a smooth cutoff function on M; with supp x C M{ and x = 1 in a neighborhood of M'.
Given a pair h = [«, f] with supph C M, by Appendix B, there is a unique decomposition
h = hy, + da¢m, on M. Since suppaxhy, C Mi\M’, by the pseudolocal property of
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WDO’s, QDS 4 x hjwl is smooth near M’, then by (3.1), we have
PNaxhy, = hy, + Kihy, = by +Kih in (M)° (3.2)

with K, K] both smoothing operators, and K| = K; Sy, .
For the term on the left-hand side of (3.2), notice that x4 = h on M;

PN g xhy;, = PNAh — PNAxd apm, (3.3)

we want to rewrite the second term on the right-hand side as some compact operator acting on
h. For this purpose, using the fact that A ¢y, = §.4h, so ¢y, = (AL )M 8 4h. In the mean

time, let A’ be a parametrix for A 4 on MY such that A’A 4 = Id — K for some smoothing
operator K, then

(MDD = ANSah = (AD) 8.4 — NS APy, h
= (AD )M Sah— N AqA )MlaAh

= KDy sah=Kh in (M)
for some K’ with the same property as K. Thus in (M’)°
PN axdady, = PNAxdA(A 8 4h+ K'h)

= PN Adax(A'8 4h + K'h) — PN A(dx)(A'8 4h + K'h)

= —PNA(dx)(A'8 4+ K)h = Kzh,
where K3 is a WDO of order —1. Now by (3.2) and (3.3)
PNah =hy +Ksh in  (M)° (3.4)
where K3 is a new WDO of order —1. Thus
I ey S IN AR oy + 1Ala-1 ) (3.5)

Next we want to change the term on the left-hand side of (3.5) from the L2 norm of hfwl to
the L? norm of k- Notice that

hy = h —dadm = by, + daldm, — om)s (3.6)
denote u = ¢p, — Pum, then u satisfies the elliptic boundary value problem
Aau=0, ulam = éumloms

and the following estimate holds

lda(Pm, — o) llzan S o — oMl S 10 L2 0m- (3.7)
By (3.4) and the fact that supp h C M,
dagm, = —hy, = —PNgh+Ksh in M\M. (3.8)

For ¢ small enough, M'\M = dM x [—¢&/2,0) is within some semigeodesic neighborhood
of dM’, so that for any x = (x/,t) € M'\M, there is a unique geodesic yx : [0,{] - M'\M
normal to M with y,(0) = (x,0) and y,(t) = x. Thus by the fundamental theorem of
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calculus and the fact X(WA¢M1) = VVAdA¢>M1 on SM;, we get
t
WA (x, 3@, (x) = Wa((x',0), 3¢, (¥, 0) + / WA(=PNah + K3h) (¥, 5), 3y) ds.
0

On the other hand, ¢y, = (ABl ;411 8 ah, we define ¢y, (x/,0) = Kyh(x). Since h = 0 outside
M, ¢, is smooth near dM’, this implies that Ky is a smoothing operator in M"\ M. Therefore

b, () = U, at)(Vv AWK x) + | WA(=PN 4k + K3h) ds). (3.9)
Yx

By (3.9), (3.8) and the trace theorem
loan Nemzonny S o oy S IN AR 01y + 1A=L 01 - (3.10)
Combine (3.5)-(3.7) and (3.10) we achieve the following estimate

Lemma 3.3. For any h € L*(M)

Imyllzon S INAbg o) + Tl 00 (3.11)

Remark 3.4. By (3.11), if h € S4L?>(M) N Ker I 4, then Ngh = 0, so

1Al < hlla-1 o)

Since the inclusion L>(M) <> H~!(M)) is compact, it is easy to see that this implies that
the space S4L*(M) N Ker I 4 has finite dimension. Moreover, by (3.1) and the pseudolocal
property, h is smooth in the interior of M. Indeed one can show that S 4L?(M) N Ker I 4 is
included in C*° (M) [27, 28]. This implies that the s-injectivity on L2(M) is equivalent to the
s-injectivity on C*°(M).

3.3. Generic stability
Proof of Theorem 1.3 (1). To prove part (1) of Theorem 1.3, we need the functional analysis
lemma below, see [32, Proposition V.3.1].
Lemma 3.5. Let X, Y, and Z be Banach spaces, T : X — Y be an injective bounded linear
operator, and K : X — Z be a compact operator. If for any x € X
Ixllx S ITxlly + [1Kx| 2,
then the following improved estimate holds
lxllx < 11Ty

Now let X = S4L?>(M), Y = HY (M), and Z = H '(M), let T = N4 and K be the

inclusion map L?>(M) <> H~!(M). Assume that I 4 is s-injective, then it is easy to see that

N4 : SAL2 (M) — HY(M,) is injective. Notice that NoS 4 = N4, by Lemmas 3.3 and 3.5,
we have the following stability estimate

Ihvllzan S INABla o) (3.12)
for any h € L2(M). O
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Next we want to show that (3.12) is still true for (g, .4) in some sufficiently small neighbor-
hood of (g, A) under proper Holder norms. We need the following lemma on the continuous
dependence of Ny 4 on (g, A).

Lemma 3.6. Given (g, A) € C®° (M), let (§, A) satisfy lg—Zllciay) < € A=Al < €
for some sufficiently small € > 0, then the manifold (M, g) is still simple and there exists a
constant C > 0 which only depends on g, A such that

[(Ng,4 = N Dhlla o) < Cellhllz
for any h € L2(M).
The proof of Lemma 3.6 can be carried out in the same spirit of [5, Proposition 4] and [9,
Proposition 3], see the related references for more detail. In particular, [| X —X|c3 < |g—&llc+
where X and X are the generating vector fields of the geodesic flows under metric g and g,

respectively. In the mean time, || Wg, A — Wg illcs < € under the assumptions of the lemma
[8, Lemmas 5, 6].

Proof of Theorem 1.3 (2). Given h € L?>(M), by Lemmas 2.1, 3.6 and (3.12)
”hij’g’A”LZ(M) < ||8g,Ah;VLg’A”L2(M) + [[(Sga — Sg)A)hjw,g’A”Lz(M)
< COHNg,AthI)g’A”Hl(Ml) + Ce””ljw’g’A“Lz(M)
< C0||N§,AhL)§,A||H1(M1) + Coll(Ng,a — Ng,_,&)hjv[)g’AHHl(Ml)
+ C€||hjw’§,j||L2(M)
< CollNg ihllwr oy + C0C€||hjw)§’A||L2(M) + CGthVLg’A”LZ(M)-
Notice that h = hj\/[,g,A + dA¢M,g,A on M, ¢M,§,A|3M = 0. We may extend h, hjv[,g,A and

. N 1 A . o - _
¢M,§,A by zero (;:sltOMl (so d)M}f’A € HO(MI)),thenNg)AquﬁM’g’A = Qalsoas ¢M,§,A|3M1 =
0 too, i.e., Ng,A Mg A 5,40

Now lete < 5> we get that

1
2(CoC+C
”hjw’g’A“Lz(M) < 2ColINg illlmr (ay)-

Notice that Cy is the constant from Theorem 1.3 (1), which only depends on g, A, this
completes the proof. O

4, S-injectivity in the real-analytic category

In what follows, analytic means real-analytic. We will first show that if ¢ and A are analytic
and I 4h = 0, then A° is analytic on M, i.e., h* € A(M). It is easy to see that if A is analytic,
then W 4 is analytic too. We denote WF, (h) the analytic wave front of h.

Proposition 4.1. Assume that g and A are analytic. Given (x9,&y) € T*MP°\O, let yy be a
geodesic through xo normal to &y. If for some h = [a,f] € L*(M), I4h(y) = O fory ina
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neighborhood of vy, and § A4h = 0 near xo, then
(x0,50) & WEq(h).

Since WF,(h) is closed, above proposition also implies that a neighborhood of (xy, &) is
away from WF,(h).

Proof. Assume yp : [£7,€7] — My, y0(0) = xpand £~ < 0, £ > 0 with yp(£7), yo(¢1) €
M;\M. We can define analytic coordinates in a tubular neighborhood U of y in M; with
x= 0, ¥ =L, x" Hsuchthat U = {|¥| <& €~ —e <t < £+ + ¢} for some
smalle > 0,x) = Oand yp = {(0,...,0,t) : £~ < t < £*}. Then if ¢ is small enough,
(', €7), (x,€T) € M]\M for any |x'| < e. See also [29, Section 2.1]. In particular, one
can assume that the geometry at xop = 0 is trivial, i.e., g&;(0) = &, then & = (&;,0). Thus
Yo = Vxow Withvo = (0,...,0,1).

For curves in a neighborhood of yy, we give a local parameterization under the analytic
coordinates above. Given |z’| < € and |[V/| < 1 small, we consider curves y, v := ¥(z,0),(v.1)
with v, () = exp(, ) (t(V, 1)). Then for |z| < 2¢/3and || < 1, the curve Yo (L7, €7])
will stay in U as well and y,/ v (¢*) € M;\M. Thus Lah(yy ) = 0for |Z/| <2¢/3, V| K 1.

Much of the complexity of analytic microlocal calculus is due to the difficulty of localizing
in the analytic category, as there are no suitable cutoff functions. Similar to [29], we instead use
a sequence of cutoft functions yx € CSQ(R”_I) satisfying supp (xn) C {|Z/| < 2¢/3}, xnv =
1 for |Z/| < &/3 and

108 xn(2)| < (CN)Pl, vz e R, 18] < N (4.1)

for some C > 0 independent of N. The existence of such cutoft functions can be found in [33].
Let ;£ > 1 be a large parameter, then for § = (§',&") in a complex neighborhood of &,
we have

/ e an (@) / WAz (0 72 (0) (€ (0) +f (72, (1)) dtdz’ = 0.

Notice that with the help of the cutoft function xx, we may make analytic coordinates change
(Z,v,t) > (x,&) near v/ = 0 with v/ = v/(§) (so v/ is sufficiently small when £ is close
enough to &) such that (v/(§),1) - & = 0,V/(&) = 0. In particular, x = y, ,/(¢). Thus

f M) Wy (x,6) (0 (D' (%, 6) + () ) dx = 0. (42)

Here ¢(x,&) = Z/(x,v(§)) - & is the phase function. Wy is an analytic matrix function
for & sufficiently close to &y, independent of N near y and satisfies (4.1) too. u(x,&) =
(U (x, &), ...,u"(x,£)) isan analytic vector field. Note that Wy (0,£) = WA(O, W), 1) =
Wa(0,u(0,8)).

Now we are going to apply the method of complex stationary phase [25], see also [11, 29].
Notice that our phase function ¢ is the same as the one considered in [29], in particular, we
have the following lemma.

Lemma 4.2. The phase function ¢ in (4.2) satisfies the following properties:

(1) 0g0x@(0,&) = Id, thus ¢ is a non-degenerate phase function near (0, &y);

(2) thereexists § > 0 such that if 0z p(x,&) = e (¥, &) for somex € U, |y| < 8 and |§ —&| <
3, then x = y.
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Now let |y| < 8, [n — &| < §/2, let p be a smooth cutoff function such that supp p C
{I€] < é}and p(§) = 1for |€] < §/2. We multiple (4.2) by

in( 4E—n)?- (3:‘))
p(&—n)e”“‘(zg ees)

and integrate in £ to get

/ / P ED Ty (3,8, 1) (i (6,6) + ) dxdg = 0, (43)
where

D (x, y,&,1) = é@ P+ Q) — e E), W(6En) = p(E — MW ().

To estimate the left-hand side of (4.3), we first study the critical points of the function
£ > ®(x,5,&,1n). Note that

I @ (x, 3,8, 1) = i(§ — ) + 0:9(x,§) — I (y,8).

By Lemma 4.2 (2), when x = y, the only critical point of ® is & = 1 which is non-degenerate.
Therefore, for |x — y| < 8/Cop, some Cy > 0, there is at most one (complex) critical point
& =&:(x,y,n) in |€ — n| < §, while none if |x — y| > §/Co.

Denote ¢ := dx¢(y, 1), by Lemma 4.2 (1), we can change variables (x, y,n) — (x,5,¢) in
a sufficiently small neighborhood of (0, 0, &) and define

V(x,9,8) = P(x, 3,60 1).

Then
V(x,x¢) =0, 0¥Yxxl)=¢ d¥xxl)=—¢

and

Im W (x,,¢) > |x = y*/C.
Note that Wy is analytic and independent of N on |x — y| < §/Cp, we apply the complex
stationary phase lemma [25, Theorems 2.8, 2.10] to (4.3) to get that

/| e VIO (6,3, 5 0) (i) (6,3, 0) + 00 ) dx = OO, (44)
x—y|<

where W is an analytic matrix weight. Note that the right-hand side of (4.4) is independent
of 8, for fixed §, we simply replace §/Cy with some positive number C.

For the following argument, we consider the left-hand side of (4.4) as an operator with a
matrix-valued symbol acting on the pair [, f], thus (4.4) can be rewritten as

/ eiu\IJ(x,y,Op(x,y’ T3 1) (ot) dx = (’)(e_M/C), (4.5)
|[x—y|<C f

where P(x,y,{; 1) = W(x, ¥, &5 ) (uCep.d) sk Idixk ) is a classical analytic symbol. Notice
that u(0,&p) = vo = (0,...,0, 1), the principal symbol satisfies

0p(P)(0,0,&) = W.4(0,u(0,£0)) (u(0, &) dixkc  Idixk) = W.A(0,v0) (voldixk Ik
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(note that o and f are vector-valued 1-forms and functions). Recall that vy L &, in any small

neighborhood of vy, we can find another #n — 1 unit vectors vy, ..., v,—1 at xo = 0 such that
vi L&,j=1,...,n—1and {v; — vo,...,vs—1 — vo} form a basis of the orthogonal plane
£;-. Moreover, the geodesic Yxowjpj = L,...,n—1will stay in U for the time interval [£, 0]

with Vo (£*) e My\M if vj is sufficiently close to vo. We repeat the argument above under
the new coordinate change (', v,t) — (x, &) with v(§) = v; to get totally n equations

. a
/ e’“\pf(x’y’g)Pj(x,y, C3 ) dx = O(eM©), j=0,1,...,n—1 (4.6)
l—yl=C f

with W and Py being exactly ¥ and P in (4.5),
0p(P)(0,0,8) = WA(0,v)) (vildixk Idixr) - (4.7)

To make the system (4.6) into an elliptic system, we need one more equation from the
property that § 4, f] = 0 in some neighborhood V of xg = 0. As in [29], let x be a smooth
cutoff function on M; supported in VN U and x = 1 near 0, thus x5 4w, f] = 0. Applying
the integration by parts,

1 . 1 . o
0= / —e’“%("’y’{)x(SA[a,f] dx = _f _dA(em‘I’o(X,)’,C)X) ( ) dx
% w f

) 1
_ _/et/ub‘lfo(x,)’:f) (i)(ax\llo(x,y,{) + ﬁ(dx + Ax) iCDX) (j:) dx

= —/e"“%(x’)”;)Q(x,y,{) (j:) dx.

Notice that 9, W (x, x, ) = ¢, therefore
ap(Q)(0,0,80) = (§oldkxk 0). (4.8)

We combine the n + 1 equations above into one system

Po(x, .85 1)

. . . : o
/ diag{e’”%,. et Y-t elM‘I’O}(x’y’ 9 : ( ) dx
lx—y|<C Py ) | \f

Q(x, 3, )

. . . o
B / diag{e""0,..., &1, &) (x, y, £)P(x, i, 65 1) ( ) o
x—yl=C f

where P is a matrix-valued classical analytic symbol near x = 0. We claim that the system
is elliptic at (0, 0, &), which is equivalent to the invertibility of the principal symbol o, (P) at
(0,0,&p). Assume 0, (P)[, f](0,0, &) = 0, by (4.7) and (4.8),

WA(O,Vj)(Vj-oz—i—f)=0,j=0,1,...,n—1; & -a=0.

By an argument almost identical to the one in Lemma 3.1, one can show thatee = Oandf = 0,
so the system with classical analytic symbol P is elliptic at (0, 0, &).
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Now follow the argument in [9, 29], see also [25, Proposition 6.2], we can reduce the system
to a new one of the forms

/ FLAISOES) P (a dx = O(e M©),
lx—y|<C f

for (y,¢) close to (0,&p). This shows that (0,&) ¢ WEF,([o,f]) in the sense of [25
Definition 6.1] and completes the proof. O

Remark 4.3. One can easily see from the proof of above proposition that for each (x,£) €
T*MP°\0, we only require the existence of some v € SxM conormal to £ and an arbitrarily
small neighborhood of yy , whose elements are all “good” geodesics, in particular, this is true
under the microlocal condition of Remark 1.4.

Proposition 4.1 shows that I 4h = 0 implies that #° is analytic in M?, i.e., i* € A(MP?), the
next lemma shows that 4° indeed is analytic up to the boundary d M. The proof of the lemma
is almost identical to the one of [29, Lemma 6], so we omit it here.

Lemma 4.4. Assume that (M, g) is simple, g and A are analytic, if [ah = 0, then h* € A(M).
We also need the following lemma which will be useful for the proof of Theorem 1.2.

Lemma 4.5. Assume that I 4h = Ofor some h € C*® (M), then there exists ¢ € C°(M) with
®los = O such thatif h .= h — d 4¢ = [&.f], then
3% hlom = 0
for all multiindices o and
a, =0

in boundary normal coordinates near d M.

Proof. If h = [a,f], we consider the following equation in boundary normal coordinates
(x,x"), 0 < x" < & « 1near IM = {x" = 0}
0@+ And =y,  Plxn=0 = 0. (4.9)

We solve (4.9) by integrating along x” to get ¢ in a neighborhood of 9M, and one can check
that ¢ is well defined (independent of local coordinates) and smooth near d M. By multiplying
¢ with a proper cutoff function, we can assume that ¢ is globally defined on M. Then we define
h = [af] =h-— dA¢ by (4.9) &, = O near x" = 0.

Next we show that /1 vanishes to infinite order on M. Extend h by zero to M, still denoted
by h, then by the assumption I 4h = 0, we have N, Ah = 0in MY, in particular N, Ah is smooth
near M. On the other hand, if we replace the condition o;&" = 0 by @, = 0 in the proof
of Lemma 3.1, it is not difficult to check that (o,(N.4)(x,&)[a,f], [, f]) = 0 together with
oy = 0 implies that [«, f] = 0 for &, # 0. This means that N 4 is elhptlc for (x, &) conormal
to M. ThusN*(aM)ﬂWF(h) = ¢.Since h = 0in M;\M, wegetthata h|xn —0=0,Vk>0.
After rewriting the conclusion in an invariant way, the proof is done. O
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Proof of Theorem 1.2. Assume I 4h = 0 and h = h’, then by Lemma 4.4 h € A(M). Applying
Lemma 4.5, there exists ¢ € C (M) with ¢p|5p = 0 such that h = h—d 4 satisfies 3 h|yp =
0 for all multiindices 0. Since A and h are analytic on M, and ¢ solves the Eq. (4.9), then ¢,
and therefore, & are analytic near M in the boundary normal coordinates. Since h vanishes
to infinite order on x" = 0, we get that /1 actually vanishes in a neighborhood of 3M in M,
i.e, h = d q¢ near IM.

Now applying the analytic continuation argument as in the proof of [29, Theorem 1], one
can show that indeed h = d 4 ¢ in M for some ¢pg € A(M) with ¢g|5pr = 0. However, h = I°,
this only can happen if h = 0, so I 4 is s-injective. O

5. The X-ray transform of functions with matrix weights

By modifying the two sections above, we can prove similar results for weighted geodesic ray
transform acting on vector-valued functions, if the smooth weight (matrix) W is invertible.
Note that in the scalar case, this just means that the weight is non-vanishing [5]. The study of
the local invertibility of such ray transforms was carried out in [20, 30]. Given f € C®(M, Ck),
we define

Iwf(y) = / Wy (0, 7 (O)f (0 (1) de.

In this case, one can expect the kernel of Iy to be empty, in particular, this is true for real-
analytic simple metric and weights.

Theorem 5.1. Let M be a real-analytic simple manifold with real-analytic metric g, let W be
real-analytic, then Iy is injective.

Define Ny = I, Iy.
Lemma 5.2. Ny is an elliptic WDO of order —1 in M3.
One can also show the following generic stability result.

Theorem 5.3. Let (M, g) be a simple manifold and W be a smooth invertible weight on SM,
assume that Iy is injective,
(1) given f € L*(M) the following stability estimate for Ny holds

If 2 < CINwS 1 )5

(2) there exists 0 < € < 1 such that the estimate in (1) remains true if g and W are replaced
by g and Wsatzsfymg 1§ — gllcramy) = € IW — Wi,y < €. The constant C > 0 can
be chosen locally uniformly, only depending on g, W

Similar to [5], above results hold on a general family of smooth curves under some
microlocal condition associated with these curves.
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6. The non-linear problem

Now we move to the nonlinear problem of recovering the connection and Higgs field from
the corresponding scattering data.

Given a geodesic y : [0, T] — M, let ¢(t) = (y(¢), y(¢)) be the corresponding geodesic
flow on SM. Define the matrix-valued function

F(t) = Wa(@ &)W, (6(1)),
by the fundamental theorem of calculus and the definitions of W4, Wp

T
E(T) — F(0) = /0 W) (B(¢) — A@) W' (¢) dt. (6.1)

We define W by

WU = wgUW,',  UeC®(SM;CHh,
then the right-hand side of (6.1) indeed gives the following weighted geodesic ray transform
of B—A:

/ W(B — A) dt. (6.2)
Y

By the definition of W, it is obvious that Wla . sM = id. Given a matrix-valued function U, we
have

X(WUW ) = WBUW ' + WsXU)W ;' — WpUAW ',
which implies that
(XW)U = W(BU — UA).

If we define A by AU = BU — UA, we get exactly XW = WA, ie., (6.2) is the attenuated
geodesic ray transform with the attenuation A, we denote it byl ;.

Similar to the linear problem, recall the discussion in Section 2, one can extend .4 and B
onto M in a stable way and consider the equivalent ray transform on Mj, still denoted by
I ;. This works if we consider the integrand B — A as extended by zero to M; (we treat the

integrand B — A and the weight W as independent with each other).

Proof of Theorem 1.1. We first consider the injectivity, if C4 = Cp, then Wa(¢(T)) =
Wg(¢(T)), ie., F(T) = F(0) = id, so we get

1 A (B—A) =0.
Let AyU = ByU — U.A, then since Ay, By, and go are analytic (also extended to M;
analytically), by Theorem 1.2, I ; is s-injective. By the assumptions of Theorem 1.1 Ay —
A||c3 < €. Then Theorem 1.3 (2) implies that I ; is s-injective, i.e., B — A = d ;U for some

U e C®M;CHdy Ulapy = 0 wrt. (g,fl). Notice that dAU = dU + BU — UA, thus
u = id — U satisfies the transport equation

Xu+ Au =0, ulapm = id,



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 797

in particular, u is invertible. Let p = u™!, we get that

B=pldap, plom=id.
Equivalently, B= p~ldp + p~!Apand ¥ = p~1dp.

Then we consider the stability of the nonlinear problem. By the assumptions of
Theorem 1.1 *A = *Band |B — Al =< 26, it is not difficult to see that one can
find p : M — GL(k, C) such that p|yy = id, (dp, 0)|om = B — Algm and [p —idllcrar) S €.
Now consider

A =p~tdp+p~t Ap,

s0 C 4 = C.4.Moreover, B—A'|yp = B—A—(dp,0)|ym = 0, we get that B— A" € H!(M?)
if we extend B — A’ by zero on to M;. Then it is easy to check that | A" — Agllc3p) < Ce
for some C > 0 depending on || Aol c3(ap)- If we define A by A'U = BU — UA’, we have the

similar bound that || A — A, lc3 < €, therefore we can apply Theorem 1.3 to A
By Theorem B.1, there exists U with U|yp = O such that B— A" = (B—A')* +d 4 U,

M,g,A/
letid — U =V, V|ym = id, thus
NS _ _ I — ] .
(B_A)M,g,A' =dV+BV-VA =d,;V.
Moreover, the following estimate in Holder norm holds
Uz S 1B — Al

Since || B — A'llc2uy S € and Ulypy = 0, this implies that V' = id — U is invertible. On the
other hand, by Theorem 1.3 (2) and the assumptions of the theorem again

(B — A/)j\/l’g’A/”LZ(M) N ||Ng’A/(B — Al oy
Since B — A’ € H!(M?) (notice that B — A’ = 0 in M;\M), by Remark 2.2 and (6.1)

INg i B = Dl = I 4L 4B = Al oy
< ||jg,A/(B — Al o, smy)
N ||Ig,A/(B — Ao, sm
S IWB = Wa) W o sm

S ICB = Callgo,smy = 1CB — Call o, smy-

Notice that W 4 is smooth on d_SM. Here we use the equivalence of || bl o, sumy) and

I A/hH H'(3,.SM) forh € H(l) (M) due to the equivalence of I b and I W mentioned in Section 2,
see [21, Lemma 6.2].
Finally by the definition of A’

dV +BV — VA =dV + BV - V(p~ldp+p ' Ap)
= (@V)p~' +BVp~ = Vp~dp)p~' = Vp~ ' A)p
= (du+ Bu— uA)p =B —udqu ")V,
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where u := Vp’1 is invertible, u|yp = id. Combine above results

1B = udau lzany < CIB =AYy, 4 llean < CICs = Callm,sm)-

Moreover, it is not difficult to check that the constant C > 0 can be chosen locally uniformly
near gy and Ay. ]

Remark 6.1. When the manifold only satisfies the microlocal condition mentioned in
Remark 1.4, so is not simple in general, the scattering data are not well defined on the whole
0+ SM. However, in view of the discussions in Remarks 3.2 and 4.3 of the linear problem, it
is reasonable to only consider the scattering data on supp p N 94 SM, which now becomes a
partial data problem. We do not expand the details here.
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Appendix A. A complex to real reduction

Given A = A" + i A’ with real A" and A’, consider the solution W to the transport equation

XW = WA, Wly, sm = id.
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Similar to A, we write W as W = W' + iW/, then givenh = [o,f] = h" + ik
I4h = /(W’ + W) + ik dt = /(W’h’ — WK dt + i/(w’h" + WK dt.

Thus we can separate the real and imaginary parts of I 4/ and rewrite the X-ray transform as

o)1)

with

Lemma A.1. The matrix weight W is invertible if and only if W is invertible.

Proof. By the linear algebra
det W = det (W' — iW") det (W' + iW’) = det W det W = |det W7,

this implies the lemma. O

It is easy to check that
AT —A

XW=WA with A=
A A

) , Wl sm = id.

The natural elements in the kernel of Iy are

~ P h"
R (P") ) (h">
with p"|om = pila M = 0, which is equivalent to that

d+ A" +ip") =h,

the natural elements in the kernel of I 4 by defining p = p” + ip’. Based on above discussions,
it is easy to see that I 4 and Iyy are equivalent. While it is pure in the real category when
considering Iyy.

Appendix B. An orthogonal decomposition of pairs h = [«, f]

The following theorem is an analogue of [24, Theorem 3.3.2] on the decomposition of
symmetric tensor fields.

Theorem B.1. Let M be a compact manifold with boundary. Let k > 0, for every pair h €
H* (M), there exist unique h* € H*(M) and p € H**' (M) such that

h=h +dap, a0 =0, plom=0.
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Proof. Consider the following Dirichlet boundary value problem
Sadau=¢, ulagy=0. (B.1)

Ifforany g € H*1(M), (B.1) hasa unique solution u € HM1(M), then we take ¢ = 8 4h, and
R = h—d puto prove the claim. So now the main task is to study the Dirichlet problem (B.1).
First it is easy to see that 0, (6 4d 4) (x, &) = [& 2,50 8.4d 4 is an elliptic differential operator
of order 2, and the Dirichlet boundary condition is coercive in this case. Thus we only need
to show that the elliptic problem has trivial kernel and cokernel.
If § 4d Au = 0 and u|yp = 0, by the ellipticity, u is smooth and by Green’s formula

0= (badaw,u) = |daulz

ie,dau = 0. Now for any xo € M°, there exists a geodesic y : [0, T] — M connecting x
with the boundary dM at y with (y(0), y(0)) = (¥, vo) € 9+SM. Notice that for (x,v) € SM

0= W(x,v)dgu(x,v) = W(x,v) Xu)(x,v) + (WA (x, v)u(x) = X(Wu)(x,v),
thus % W(y @),y (#))u(y (¢)) is constant along any geodesic. We get that
W (xo, ¥ (T))u(xo) = W(y, vo)u(y).

Since u(y) = 0 by assumption, and W is invertible, we conclude that u(x) = 0, which implies
that u = 0 on M.

To show that the cokernel is trivial, it is enough to pick an arbitrary ¢ € C°° (M) which is
orthogonal to the image {§ 4d 4u : u|spr = 0}. Then we have that for any u € C2°(M°) (so
dau € C2°(M°) too)

0= (p,64dau) = (dag,dau) = (Sadap,u).

Thus § 4d 4¢ is orthogonal to any u € C2°(M?°), which implies that § 4d 4¢ = 0. Now given
arbitrary ¥ € C*°(dM), one can easily find some u € C*°(M) with u|yp = Oand du(v)|om =
Y. Therefore by Green’s formula

0= (adap, Wm = (dap,dau)m
= (¢, 8adauw)p + (@, (d + A u))om = (@, du(v)am;

since ¢ is in the cokernel. Then (¢, ¥)ap = 0 for any ¢ € C*°(dM) which implies that the
trace of ¢ on the boundary is zero. Together with the fact §4d 4¢ = 0, we conclude thatp = 0
and the theorem is proved. O
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