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THE LOCAL MAGNETIC RAY TRANSFORM OF TENSOR FIELDS∗
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Abstract. In this paper we study the local magnetic ray transform of symmetric tensor fields up
to rank two on a Riemannian manifold of dimension ≥ 3 with boundary. In particular, we consider
the magnetic ray transform of the combinations of tensors of different orders due to the nature of
magnetic flows. We show that such magnetic ray transforms can be stably inverted, up to natural
obstructions, near a strictly convex (with respect to magnetic geodesics) boundary point. Moreover,
a global invertibility result follows on a compact Riemannian manifold with strictly convex boundary
assuming that some global foliation condition is satisfied.
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1. Introduction. Given a Riemannian manifold (M, g) and a magnetic field Ω,
which is a closed 2-form, we consider the law of motion described by

(1) ∇γ̇ γ̇ = E(γ̇),

where ∇ is the Levi–Civita connection of g with the Christoffel symbols {Γijk} and
E : TM → TM is the Lorentz force, which is the bundle map uniquely determined by

Ωz(v, w) = 〈Ez(v), w〉

for all z ∈M and v, w ∈ TzM . A curve γ : R→M , satisfying (1) is called a magnetic
geodesic. The flow on TM defined by φt : t → (γ(t), γ̇(t)) is called a magnetic flow.
One can check that the generator Gµ of the magnetic flow is

Gµ(z, v) = G(z, v) + Eji (z)v
i ∂

∂vj
,

where G(z, v) = vi ∂
∂xi − Γijkv

jvk ∂
∂vi is the generator of the geodesic flow. Note that

time is not reversible on the magnetic geodesics, unless Ω = 0. When Ω = 0 we obtain
the ordinary geodesic flow. We call the triple (M, g,Ω) a magnetic system.

From a dynamical system point of view, the magnetic flow is the Hamiltonian
flow of H(v) = 1

2 |v|
2
g, v ∈ TM w.r.t. the symplectic form β = β0 + π∗Ω, where β0 is

the canonical symplectic form on TM and π : TM → M is the canonical projection.
Thus the magnetic flow preserves the level sets of the Hamiltonian function H, i.e.,
every magnetic geodesic has constant speed. Unlike the usual geodesics, the behavior
of magnetic geodesics depends on the choice of the energy level. Throughout the
paper we fix the energy level H−1( 1

2 ), so we only consider the unit speed magnetic
geodesics. However, this is not a constraint at all; it is easy to check from (1) that
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1754 HANMING ZHOU

one can obtain the behavior (up to time scale) of magnetic geodesics at any energy
level by rescaling the magnetic field Ω.

Given a magnetic geodesic γ and a smooth function f on SM , the unit sphere
bundle of M , the magnetic ray transform of f along γ is defined by

If(γ) =

∫
f(γ(t), γ̇(t)) dt.

It is easy to check that the kernel of I contains elements of the following form:

{f(z, v) = Gµψ(z, v) : ψ ∈ C∞(SM), ψ|∂SM = 0}.

In applications one often considers ray transforms of f which correspond to symmet-
ric tensor fields, i.e., f(z, v) = fi1···im(z)vi1 · · · vim , denoted by Imf for nonnegative
integers m. A basic inverse problem regarding the magnetic ray transform on a
compact Riemannian manifold with boundary is to recover the tensor field f , up to
natural obstructions, from If(γ) along all magnetic geodesics γ joining boundary
points.

If Ω = 0, this reduces to the usual geodesic ray transform of tensor fields, known
as the tensor tomography problem. In this case, the natural elements in the kernel of
Im are of the form dsψ, where ds is the symmetric differentiation and ψ is a symmetric
(m − 1)-tensor vanishing on the boundary. These natural elements of the kernel are
called potential tensor fields. So the question is whether the whole kernel consists
of purely potential tensors, and when this is the case we say that Im is s-injective
(when m = 0, this just means injective). The problem is wide open on compact non-
trapping manifolds with strictly convex boundary. Note that a compact manifold with
boundary is nontrapping if every geodesic exits the manifold within a finite time.

More progress has been made on manifolds under the stronger assumption of being
simple. A compact manifold with boundary is simple if it is simply connected and free
of conjugate points and ∂M is strictly convex. It is known that I0 [18, 19] and I1 [2]
are s-injective on simple manifolds with sharp stability estimates [36]. For Im, m ≥ 2,
the tensor tomography problem on simple manifolds is still open in general, except the
two-dimensional (2D) case. Im is s-injective on simple surfaces for any m ≥ 2 [34, 21].
In higher dimensions, Im is s-injective for generic simple metrics including the analytic
ones [37] and a sharp stability estimate holds [35]. The equivalence between the s-
injectivity of Im and the surjectivity of its adjoint is known on simple manifolds [25].
See also the recent survey [22] and the references therein. For nonsimple manifolds,
there are studies under various assumptions [26, 31, 32, 33, 4] and possibly with
conjugate points [39, 40, 17, 12] or trapped geodesics [8]. Reconstruction formulas
and numerical implementations of the geodesic ray transform on surfaces can be found,
e.g., in [27, 16, 9].

For the magnetic ray transform, potential tensors might not stay in the kernel of
I (except I0 and I1). Generally the natural elements in the kernel of the magnetic ray
transform are combinations of tensors of different orders. For example, the magnetic
ray transform of dsβ−E(β)+dϕ = Gµ(β+ϕ) always vanishes, where β is a 1-form and
ϕ is a function on M , both vanishing on the boundary. In the current paper, we focus
on the magnetic ray transform of tensor fields of orders up to 2. In particular, we are
interested in the magnetic ray transform of tensor fields which are sums of 1-forms and
symmetric 2-tensors. Note that for the geodesic ray transform, it is unnecessary to
consider the combination of 1-forms and 2-tensors, since one can decouple the integral
by the fact that geodesic flows are symmetric (or time reversible).
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The tensor tomography problem is closely related to another well-known geometric
inverse problem, namely, the boundary rigidity problem, which is concerned with the
recovery of a Riemannian metric on a compact smooth manifold with boundary from
the length data of distance minimizing geodesics connecting boundary points. In par-
ticular, the linearization of the boundary rigidity problem is the geodesic ray transform
of symmetric 2-tensors. It has been proved that simple surfaces are boundary rigid
[28]; in higher dimensions generic simple manifolds are boundary rigid [37] including
the analytic ones. See also recent surveys [3, 38, 44] and the references therein. There
is also a boundary rigidity problem on magnetic systems [5], whose linearization is
exactly the magnetic ray transform of h + β, where h is a symmetric 2-tensor and
β is a 1-form. This provides another motivation for considering such magnetic ray
transforms.

A new approach to the tensor tomography problem on compact manifolds of
dimension ≥ 3 with strictly convex boundary has been developed recently in [43,
42] under a global foliation assumption, based on corresponding local invertibility
results. It was also applied to the boundary rigidity problem [41] through a pseudo-
linearization argument. As a generalization, we study the local invertibility of the
magnetic ray transform of tensor fields in the current paper. We ask the following
question: can one recover f , up to natural obstructions, near a boundary point p from
its integrals If along magnetic geodesics near p? By saying magnetic geodesics near
p we mean that all magnetic geodesic segments that are completely contained in some
small neighborhood O of p with end points on ∂M close to p, which we call O-local
magnetic geodesics, denoted by MO. Of course, such a set might be empty if there
is no additional geometric assumption of the boundary.

In order to state our main theorems in concrete terms, we describe briefly the
setting for our problem. Let M be a compact Riemannian manifold with boundary.
Letting z ∈ ∂M , we say M is strictly magnetic convex (concave) at z if

Λ(z, v)− 〈Ez(v), ν(z)〉g > 0 (< 0)

for all v ∈ Sz(∂M), where Λ is the second fundamental form of ∂M , and ν(z) is the
inward unit vector normal to ∂M at z. We can extend M to a complete manifold
M̃ and denote the extended metric and magnetic field still by g and Ω. Obviously,
magnetic geodesics γ on M can be uniquely extended to a magnetic geodesic on M̃ ,
and we still denote it by γ. Then intuitively the strict magnetic convexity at z ∈ ∂M
means that any magnetic geodesic γ which is tangent to the boundary ∂M at z will
stay away from M except at z locally.

Now let ρ ∈ C∞(M̃) be a boundary defining function of ∂M , so that ρ ≥ 0 on M .
Suppose ∂M is strictly magnetic convex at p ∈ ∂M ; then given a magnetic geodesic
γ on M̃ with γ(0) = p, γ̇(0) ∈ Sp(∂M), one has

(2)
d2ρ

dt2
(γ(t))|t=0 = −Λ(p, γ̇(0)) + 〈Ep(γ̇(0)), ν(p)〉g < 0.

Similar to [43] we consider the function x̃(z) = −ρ(z) − ε|z − p|2, where | · | can be
taken as the Euclidean norm locally, for some small enough ε > 0, so that the level
set {x̃ = −c} (as a local hypersurface) is strictly magnetic concave from Uc = {x̃ >
−c} ⊂ M̃ for some sufficiently small c > 0. For the sake of simplicity, we drop the
subscript c, i.e., Uc = U , and O = U ∩M with compact closure.

From now on, we assume that M is of dimension ≥3. We first consider a simpler
case, namely, f = β + ϕ, where β is a 1-form and ϕ is a function. In fact such a
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1756 HANMING ZHOU

magnetic ray transform is the linearization of the magnetic boundary rigidity problem
in a fixed conformal class. Integrals of such tensors also appear in attenuated ray
transforms [11, 30, 20, 24]. For magnetic systems, a similar weighted magnetic ray
transform was considered in [46] for studying the magnetic lens rigidity problem in
a fixed conformal class. Here we consider purely the integral of f , without extra
weights. The global case was considered in [5] for simple systems. When f is just a
function on M , i.e., β = 0, the local invertibility of I was studied by the author for
even a general family of smooth curves; see the appendix of [43].

Theorem 1.1. Let n = dimM ≥ 3. Assume that ∂M is strictly magnetic convex
at p ∈ ∂M . Given f ∈ L2(T ∗O)×L2(O), there is q ∈ H1

loc(O) with q|O∩∂M = 0 such
that f − dq ∈ L2

loc(T
∗O) × L2

loc(O) can be determined from If restricted to O-local
magnetic geodesics. Moreover, the stability estimate for s ≥ 0

‖f − dq‖Hs−1(K) ≤ C‖If‖Hs(MO)

holds on any compact subset K of O, assuming f is in Hs instead of L2.

Next we consider the local magnetic ray transform of f = h + β with h a sym-
metric 2-tensor and β a 1-form. As mentioned above, such ray transforms might
find their application in the boundary rigidity problem for magnetic systems. The
global case was considered in [5] for simple magnetic systems satisfying some curva-
ture assumption or real analytic magnetic systems, and later on simple 2D magnetic
systems [1].

Theorem 1.2. Let n = dimM ≥ 3. Assume that ∂M is strictly magnetic convex
at p ∈ ∂M . Given f ∈ L2(Sym2T ∗O) × L2(T ∗O), there exist u ∈ H1

loc(T
∗O) and

q ∈ H1
loc(O) with u|O∩∂M = 0, q|O∩∂M = 0 such that f − (dsu − E(u) + dq) ∈

L2
loc(Sym

2T ∗O)×L2
loc(T

∗O) can be determined from If restricted to O-local magnetic
geodesics. Moreover, the stability estimate for s ≥ 0

‖f − (dsu− E(u) + dq)‖Hs−1(K) ≤ C‖If‖Hs(MO)

holds on any compact subset K of O, assuming f is in Hs instead of L2.

Theorems 1.1 and 1.2 generalize the Helgason’s type of support theorems for the
tensor tomography problem of the geodesic flow in the real-analytic category [13, 14]
and the smooth category [43, 42] to the magnetic case. Reconstruction formulas can
also be derived in the spirit of [42, Theorem 4.15].

As an immediate consequence and application of our local invertibility theorems,
we consider the global s-injectivity of the magnetic ray transform on tensors. Given
a compact Riemannian manifold (M, g) with smooth boundary and a magnetic field
Ω, we say that M can be foliated by strictly magnetic convex hypersurfaces w.r.t. the
magnetic system (M, g,Ω) if there exist a smooth function τ : M → R and a < b,
such that M ⊂ {τ ≤ b}, the level set τ−1(t) is strictly magnetic convex from {τ ≤ t}
for any t ∈ (a, b], dτ is nonzero on these level sets, and {τ ≤ a} has empty interior.
Note that ∂M is not necessarily a level set of τ .

Theorem 1.3. Let M be compact with smooth boundary and dimM ≥ 3, ∂M is
strictly magnetic convex. Assume that M can be foliated by strictly magnetic convex
hypersurfaces and the set {τ ≤ a} is nontrapping.

(a) Given f ∈ C∞(T ∗M) × C∞(M), if If ≡ 0, there exists q ∈ C∞(M) with
q|∂M = 0 such that f = dq.

(b) Given f ∈ C∞(Sym2T ∗M)×C∞(T ∗M), if If ≡ 0, there exist u ∈ C∞(T ∗M)
and q ∈ C∞(M) with u|∂M = 0, q|∂M = 0, such that f = dsu− E(u) + dq.
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The proof of the global result is based on a layer stripping argument similar to
that in [43, 42, 24], combined with a regularity result of the solutions of some trans-
port equation w.r.t. the magnetic flow on the unit sphere bundle. A global stability
estimate can be derived in a similar way.

In the case of absence of magnetic fields, the foliation condition is an analogue
of the Herglotz [10] and Wiechert and Zoeppritz [45] condition ∂

∂r
r
c(r) > 0 for radial

symmetric metrics; c(r)e on a disk with e the Euclidean metric; see also [41, section 6].
Examples of manifolds satisfying the foliation conditions are compact submanifolds of
complete manifolds with positive curvature [7], compact manifolds with nonnegative
sectional curvature [6], and compact manifolds with no focal points [29]. Our foliation
condition defined above is the corresponding version for magnetic systems. It implies
the absence of trapped magnetic geodesics in {τ > a} but allows the existence of con-
jugate points (w.r.t. the magnetic geodesics). Given a compact Riemannian manifold
(M, g) with strictly convex boundary, satisfying the foliation condition (w.r.t. the
usual geodesics), a simple way of constructing examples of magnetic systems admit-
ting the magnetic foliation condition is by adding a magnetic field Ω supported away
from {τ ≤ a} (here τ and a are w.r.t. the geodesic case) with sufficiently small norm,
e.g., |Ωz(u, v)| is small enough for any z ∈ M and u, v ∈ SzM . Then it is easy to
check by definition that the magnetic system (M, g,Ω) satisfies the magnetic foliation
condition, and the boundary is also strictly magnetic convex.

As mentioned above, the main difference of the magnetic tensor tomography
problem compared with the geodesic case is the coupling of tensors of different orders.
Similar to [43, 42], we introduce some localized version of I∗I near p ∈ ∂M to fit into
Melrose’s scattering calculus [15]. However, in addition to the exponential conjugacy
that appeared in the geodesic papers, we add an extra pair of conjugacy to address the
issue arising from the coupling of tensors of different orders; see sections 2 and 3 for
details. Another technical difficulty comes up during the decoupling of the effects from
tensors of different orders when studying the ellipticity of the localized operator near
the artificial boundary x̃ = −c. In particular, the nature of the magnetic flow appears
in the symmetric 2-tensor case (section 3.2), our algebraic argument for the ellipticity
of the localized operator is different from [42], and it has potential applications to the
boundary rigidity problem for magnetic systems and the invertibility of ray transforms
along more general curves.

The paper is organized as follows. In section 2, we give a brief introduction of the
scattering calculus and define the localized operators and the proper gauges for our
problem. Section 3 is devoted to the proof of the ellipticity of the localized operator,
up to the gauges, which addresses the key technical issue of the paper. The proofs of
Theorems 1.1 and 1.2 are given in section 4. Finally, we give the proof of Theorem
1.3 in section 5.

2. The localized operators. For fixed small c > 0, let x = x̃+c; thus U = {x >
0} with the artificial boundary x = 0. One can complete x to a coordinate system
(x, y) on a neighborhood of p, with y the coordinates on ∂U . For each point (x, y) we
can parameterize magnetic geodesics through this point which are “almost tangent”
to level sets of x (these are the curves that we are interested in) by λ∂x +ω∂y ∈ TM̃ ,
ω ∈ Sn−2 and λ is relatively small. Given a magnetic geodesic γx,y,λ,ω(t) = (x(t), y(t))
with γx,y,λ,ω(0) = (x, y), generally λ∂x + ω∂y is not of unit length, but we still
assume that t is the unit speed parameter for γ, so γ̇x,y,λ,ω(0) is a positive multiple of

λ∂x+ω∂y. We define α(x, y, λ, ω, t) = 1
2
d2

dt2x(t), in particular, α(x, y, 0, ω, 0) > 0 for x
small by the concavity of x. Furthermore, it was shown in [43] that there exist δ0 > 0
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1758 HANMING ZHOU

small and C > 0 such that for |λ| ≤ C
√
x (and |λ| < δ0), x(t) ≥ 0 for t ∈ (−δ0, δ0),

the magnetic geodesics remain in {x ≥ 0} at least for |t| < δ0, i.e., they are O-local
magnetic geodesics for sufficiently small c. Note that [43] considers ordinary geodesics,
but the settings work for general curves; see the appendix of [43].

Our inverse problem is now that assuming

(If)(x, y, λ, ω) =

∫
R
f(γx,y,λ,ω(t), γ̇x,y,λ,ω(t)) dt

(f = β + ϕ or h+ β) is known for all γx,y,λ,ω ∈MO, the set of O-local geodesics, we
would like to recover f from If up to some gauge. Originally f was defined on M ; we
can extend f by zero to M̃ so that the integral is actually defined on a finite interval.

We will construct some localized version of the normal operator I∗I and study
the microlocal properties of it. The main microlocal analysis will be carried out near
∂U = {x = 0} in U = {x ≥ 0}, which is a manifold with boundary. Since the standard
pseudodifferential calculus is not suitable for working near the boundary of a manifold,
we will apply the scattering pseudodifferential calculus (scattering calculus, for short)
introduced by Melrose [15]. Below we give a brief introduction of the scattering
calculus and related terminologies; a more thorough discussion can be find in [43,
section 2]. As one can see from the discussion below, the scattering calculus is really
a natural generalization of the standard pseudodifferential calculus. We start with the
scattering pseudodifferential algebra in the Euclidean case; as the scattering calculus
is typically used to study the behavior “at infinity,” it is convenient to compactify the
Euclidean space Rn by gluing a sphere at the infinity, so topologically the compactified
space Rn is a ball. More precisely, we can use the following identification (inverse polar
coordinates) near the boundary (i.e., the infinity) of Rn:

(3) (x, θ) ∈ [0, ε)× Sn−1 → z = x−1θ ∈ Rn.

The scattering pseudodifferential algebra Ψm,l
sc (Rn) is the generalization of the stan-

dard pseudodifferential algebra by quantizing symbols a ∈ Sm,l, m, l ∈ Z, which are
elements in C∞(Rnz × Rnζ ) satisfying

|Dα
zD

β
ζ a(z, ζ)| ≤ Cαβ〈z〉l−|α|〈ζ〉m−|β|

for any multiindices α, β, where Dz = −i∂z, 〈z〉 =
√

1 + |z|2, similarly for Dζ and
〈ζ〉, respectively, and Cαβ is some positive constant only depending on α, β. We also
require that a can be extended smoothly to Rnz × Rnζ through the identification (3).

Now the scattering pseudodifferential algebra Ψm,l
sc (N) on a manifold with boundary

N is defined by locally identifying with Ψm,l
sc (Rn).

Our scattering pseudodifferential operators will be applied to tensors, which are
sections of vector bundles; it is necessary to introduce the (co)tangent bundle that is
suitable for the scattering calculus. If we denote r = x−1 the standard radial variable,
under the polar coordinates there is a natural change of basis for TRn,

∂z1 , . . . , ∂zn → ∂r, r
−1∂θ1 , . . . , r

−1∂θn−1
,

where θ1, . . . , θn−1 are local coordinates on the sphere. We consider the sphere as the
level sets of x, and to be consistent with the notation of the paper we use y1, . . . , yn−1

as the local coordinates of the level sets; then it is straightforward to check that
∂r = −x2∂x and r−1∂θj = x∂yj . In particular these vector fields can be smoothly
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extended to Rn and form a local basis for TscRn near x = 0. Consequently, the
dual bundle, T ∗scRn, has a local basis x−2dx, x−1dy1, . . . , x

−1dyn−1, which are exactly
the local bases −dr, rdθ1, . . . , rdθn−1 under the standard polar coordinates. For a
manifold with boundary N , the same local bases work for TscN and T ∗scN , at least
near the boundary, with a boundary defining function x. Similarly, one can define
Sym2T ∗scN , the bundle of symmetric scattering 2-tensors. This gives rise to the
scattering metrics gsc, as positive definite sections of Sym2T ∗scN , which has the form
in local coordinates gsc = x−4dx2 + x−2h with h a metric on the level sets of x.

The principal symbol of a scattering pseudodifferential operator in Ψm,l
sc (Rn) is

the equivalent class of symbols a ∈ Sm,l, defined above, modulo Sm−1,l−1. The
ellipticity in the scattering calculus, also called full ellipticity, is in the sense that the
principal symbol ã ∈ Sm,l/Sm−1,l−1 satisfies a lower bound, |ã(z, ζ)| ≥ C〈z〉l〈ζ〉m,
for |z| + |ζ| sufficiently large, in contrast to the standard pseudodifferential algebra,
where only |ζ| is required to be large. In terms of the boundary defining function x by
the identification (3), this means that we need to verify two cases: (i) |ζ| is sufficiently
large, which is similar to the standard ellipticity for pseudodifferential operators; (ii)
x is sufficiently close to 0, while |ζ| is relatively small comparing with x−1. Full
ellipticity is needed for showing Fredholm properties of scattering pseudodifferential
operators between appropriate Sobolev spaces. The principal symbol of an element
in Ψm,l

sc (N), which is living on T ∗scN , is defined again by locally identifying it with ã
above for the case of Rn.

In this paper we are working with tensor fields, which are sections of correspond-
ing vector bundles. Under local trivializations (i.e., given local coordinates and bases),
scattering pseudodifferential operators acting on sections of bundles are given by ma-
trices of scalar scattering pseudodifferential operators. The principal symbols are also
matrix valued in this case.

Now following the approach of [43, 42], let χ be a smooth nonnegative even
function on R with compact support, which will be specified later. Given a function
v defined on MO, or more specifically {(x, y, λ, ω) : λ/x ∈ suppχ}, we define

J0v(x, y) = x−2

∫
v(x, y, λ, ω)χ(λ/x) dλdω;

J1v(x, y) =

∫
v(x, y, λ, ω)gsc(λ∂x + ω∂y)χ(λ/x) dλdω;

J2v(x, y) = x2

∫
v(x, y, λ, ω)gsc(λ∂x + ω∂y)⊗ gsc(λ∂x + ω∂y)χ(λ/x) dλdω,

where gsc is a scattering metric; as discussed above locally it can be written as gsc =
x−4dx2 + x−2h with h the metric on the level sets of x. As a symmetric 2-tensor,
gsc sends vectors to 1-forms. Note that the images of Ji, i = 0, 1, 2, are functions,
1-forms and symmetric 2-tensors on U, respectively.

We denote W := ( 1 0
0 x−1 ); for F > 0 we define

AF [β, ϕ] = W−1e−F/x
(
J1

J0

)
IeF/xW

(
β
ϕ

)
;(4)

BF [h, β] = W−1e−F/x
(
J2

J1

)
IeF/xW

(
h
β

)
.(5)

Comparing with the operators in [43, 42], we introduce an additional conjugacy W−1 ·
W in (4) and (5). The extra conjugacy helps to unify the microlocal properties of
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1760 HANMING ZHOU

the components of AF and BF (as matrix operators), respectively; see section 3.
This idea also appeared in [24, 46] for weighted X-ray transforms. Obviously when
away from the boundary x = 0, AF is a map between sections of T ∗U × U , and BF
is a map between sections of Sym2T ∗U × T ∗U , where U is the trivial bundle. We
will see in the next section that under proper coordinates the definition of AF and
BF can be extended to include the boundary, i.e., one can replace T ∗U by T ∗scU .
More importantly, we will show that AF , BF are elliptic scattering pseudodifferential
operators if one enforces some proper gauge conditions.

For the rest of this section, we study the gauge condition that suits the local
magnetic ray transform. Let δ be the divergence on 1-forms, which is the adjoint of
d relative to the scattering metric gsc. Given a function ϕ and a 1-form β, define
dϕ = ( d0 )ϕ = ( dϕ

0
) and δ[β, ϕ] = ( δ 0 )( βϕ ) = δβ; we introduce the conjugated

operators
dF = e−F/xdeF/x

and δF = eF/xδe−F/x its adjoint with respect to the scattering metric gsc. Note
that by definition dF = ( e

−F/xdeF/x

0
), where the first component maps a function to

a (scattering) 1-form; thus under the scattering basis dx
x2 ,

dy
x , we can further write

dF as

(6)

e−F/xx2∂xe
F/x

e−F/xx∂ye
F/x

0

 .

On the other hand, under the basis dx
x2 ,

dy
x , any ζ ∈ T ∗scU can be written as ζ =

ξ dxx2 + η dyx , or simply as ζ = (ξ, η).

Lemma 2.1. The principal symbol of dF ∈ Diff1,0
sc (U, T ∗scU × {0}) is (ξ + iF η ⊗

0)T , while the principal symbol of δF ∈ Diff1,0
sc (T ∗scU × U, U) is ξ−iF 〈η,·〉 0 , where

the inner product 〈·, ·〉 is induced by the dual metric g−1
sc , i.e., given any 1-form β,

〈η, β〉 = g−1
sc (η, β) = gijscηiβj.

Proof. It is not difficult to check (see also [42, Lemma 3.2]) that the principal
symbol of e−F/xdeF/x, under the basis dx

x2 , dy
x for T ∗scU , is(

ξ + iF
η⊗

)
.

Thus in view of (6) the principal symbol of dF isξ + iF
η⊗
0

 .

Since δF is the adjoint of dF , its symbol is given by the adjoint of that of the latter
with respect to gsc, i.e., (

ξ − iF 〈η, ·〉 0
)
.

Now let ds be the symmetric differentiation acting on 1-forms, with the ad-
joint δs acting on symmetric 2-tensors with respect to gsc. Define ds = ( ds 0

−E d )

and δs = ( δ
s −E∗
0 δ

), where E is the Lorentz force. We introduce the operators

dsF = e−F/xW−1dsWeF/x and δsF = eF/xWδsW−1e−F/x; then similar to Lemma
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2.1 we compute their principal symbols. Let the basis for the space of scattering
2-tensors be

dx

x2
⊗ dx

x2
,
dx

x2
⊗ dy

x
,
dy

x
⊗ dx

x2
,
dy

x
⊗ dy

x
;

then the space of scattering symmetric 2-tensors, Sym2T ∗scU , as a subspace, satisfies
that the second and third components are the same under the above basis.

Lemma 2.2. The principal symbol of dsF ∈ Diff1,0
sc (T ∗scU × U, Sym2T ∗scU × T ∗scU)

is 
ξ + iF 0 0

1
2η⊗

1
2 (ξ + iF ) 0

1
2η⊗

1
2 (ξ + iF ) 0

a η⊗s 0
0 0 ξ + iF
b 0 η⊗

 ,

while the principal symbol of δsF ∈ Diff1,0
sc (Sym2T ∗scU × T ∗scU, T ∗scU × U) isξ − iF 1

2 〈η, ·〉
1
2 〈η, ·〉 〈a, ·〉 0 〈b, ·〉

0 1
2 (ξ − iF ) 1

2 (ξ − iF ) 〈η, ·〉s 0 0
0 0 0 0 ξ − iF 〈η, ·〉

 .

Here a is a symmetric 2-tensor and b is a 1-form, both independent of F . The inner
product 〈a, ·〉 is again with respect to the dual metric g−1

sc such that for any symmetric
2-tensor f , 〈a, f〉 = gijscg

kl
scaikfjl. The symmetrization of 〈η, ·〉 acting on symmetric 2-

tensors f , 〈η, f〉s, is a 1-form whose kth component is given by 〈η, f〉sk = 1
2g
ij
scηi(fjk+

fkj) = gijscηifjk.

Proof. By definition

dsF =

(
e−F/xdseF/x 0
−xE xe−F/xdeF/xx−1

)
,

where e−F/xdseF/x maps 1-forms to symmetric 2-tensors. Similar to (6), we may
write e−F/xdseF/x in the matrix form; by [42, Lemma 3.2] its symbol is

ξ + iF 0
1
2η⊗

1
2 (ξ + iF )

1
2η⊗

1
2 (ξ + iF )

a η⊗s

 ,

where the second and third rows are the same due to the symmetrization. Here a is
a suitable symmetric 2-tensor, which comes from the nontrivial contribution of the
zeroth order term of the operator via the entry corresponding to dy

x ⊗
dy
x ⊗ x

2∂x =
dy ⊗ dy ⊗ ∂x; see [42, section 2] for more details. On the other hand, the principal
symbol of xe−F/xdeF/xx−1 (xe−F/xx2Dxe

F/xx−1 = x2Dx + i(F + x); however, the
term ix is of lower order) is (

ξ + iF
η⊗

)
.

Notice that in the scattering setting, the operator −xE has the form(
−xExx −x2Eyx
−Exy −xEyy

)D
ow

nl
oa

de
d 

08
/3

1/
18

 to
 1

28
.1

11
.8

8.
24

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1762 HANMING ZHOU

(note that E is a (1, 1)-tensor, locally E = Exxdx ⊗ ∂x + Eyxdx ⊗ ∂y + Exydy ⊗ ∂x +

Eyydy ⊗ ∂y = Exx
dx
x2 ⊗ x2∂x + xEyx

dx
x2 ⊗ x∂y + x−1Exy

dy
x ⊗ x

2∂x + Eyy
dy
x ⊗ x∂y), and

thus there is a nontrivial contribution from the term −Exy at the boundary x = 0,
denoted by b. Then we combine above arguments to give the principal symbol of dsF .
Moreover, the principal symbol of δsF is the adjoint of the principal symbol of dsF
w.r.t. gsc.

Now we introduce the Witten-type solenoidal gauge condition we will use in the
paper in the spirit of [42]. The gauge for the operator AF is

δF e
−F/xW−1[β, ϕ] = δF [β, ϕ]F = 0,

while the gauge for the operator BF is

δsF e
−F/xW−1[h, β] = δsF [h, β]F = 0.

3. Ellipticity up to the gauge.

3.1. Blow-up coordinates. Before the proofs of main ellipticity statements, we
introduce local coordinates that are suitable to the analysis of the microlocal proper-
ties of the operators AF , BF up to the artificial boundary x = 0. The introduction
follows closely the corresponding discussion from [43, 42].

It is well known (see, e.g., [5]) that the maps (notice that M̃ is complete)

Γ+ : SM̃ × [0,∞)→ [M̃ × M̃ ; diag], Γ+(z, v, t) = (z, γz,v(t))

and
Γ− : SM̃ × (−∞, 0]→ [M̃ × M̃ ; diag], Γ−(z, v, t) = (z, γz,v(t))

are two diffeomorphisms near SM̃×{0}. Here, by denoting z′ := γz,v(t), [M̃×M̃ ; diag]

is the blow-up of M̃ at the diagonal z = z′, which essentially means the introduction
of polar coordinates around the diagonal, so that Γ±(z, v, 0) 6= Γ±(z, v′, 0) if v 6= v′.
In particular, for t ≥ 0 sufficiently small, the local (polar) coordinates(

z, |z′ − z|, z
′ − z
|z′ − z|

)
are valid on the image of Γ±, where | · | is the Euclidean norm.

Recalling the local coordinates (x, y) near the strictly convex boundary point p,
we write z = (x, y) and z′ = (x′, y′); then similar to [43], it’s convenient to use

(7)

(
x, y, |y′ − y|, x

′ − x
|y′ − y|

,
y′ − y
|y′ − y|

)
as the local coordinates on the images of Γ± for t ≥ 0 small, when |y′ − y| is large
relative to |x′ − x|, i.e., in our region of interest.

On the other hand, the analysis is carried out on the region x ≥ 0, which has
the boundary x = 0. Notice that the integrand f of the ray transform If is initially
defined on M , and the support of f and the boundary x = 0 are not necessarily
disjoint; thus the standard pseudodifferential calculus does not work. This is where
the scattering calculus comes in, and we recall the scattering coordinates introduced
in [43],

X =
x′ − x
x2

, Y =
y′ − y
x

,
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under which (7) becomes

(8)

(
x, y, x|Y |, xX

|Y |
, Ŷ

)
with Ŷ = Y

|Y | .

We denote (γ(t), γ̇(t)) = (x(t), y(t), k(t)λ(t), k(t)ω(t)) in short by (x′, y′, kλ′, kω′);
the multiple k, which is a function on t, is added to make ‖k(λ′∂x + ω′∂y)‖g = 1.
For the main proof of this section, it is convenient to make a change of parameters of
the curve so that if s is the new parameter, γ̇(s) = λ′∂x + ω′∂y. As a result, smooth
positive weights are introduced to the ray transform as follows:

If(x, y, λ, ω) =

∫
f(γ(t), γ̇(t)) dt =

∫
f(γ(s), k(s)γ̇(s))

1

k(s)
ds.

However, as one can see from the analysis of the ellipticity (up to gauge) of AF and
BF below, the introduction of a smooth positive weight will not affect the argument;
see also [41, 24]. Moreover, since the key part of the microlocal analysis is at x = 0,
where by the cut-off function χ, only curves γ0,y,λ,ω with λ = 0 will contribute to the
operators AF and BF . Then under the trivialization of the metric at one point (as
the symbol calculation of pseudodifferential operators is pointwise), the vector w∂y
has unit length, i.e., k = 1 at that point. For the sake of simplicity, we totally drop
the multiple k from now on and work as if the curve is parameterized by the nonunit
speed one, but still denoted by t.

By the diffeomorphisms Γ± near t = 0,

t ◦ Γ−1
± = ±|y′ − y|+O(|y′ − y|2),

λ ◦ Γ−1
± = ± x′ − x

|y′ − y|
+O(|y′ − y|), ω ◦ Γ−1

± = ± y′ − y
|y′ − y|

+O(|y′ − y|).
(9)

The coefficients in the remainder terms are all smooth under the coordinates (8).
Then applying the scattering coordinates,

(Γ−1
± )∗dt dλ dω = x2|Y |1−nJ±(x, y,X, Y ) dXdY

with the smooth positive density function J , J±|x=0 = 1.
Now given a curve γ = γx,y,λ,ω, we have near t = 0

x′ = x+ λt+ αt2 +O(t3), y′ = y + ωt+O(t2),

λ′ = λ+ 2αt+O(t2), ω′ = ω +O(t).
(10)

Recall that α = α(x, y, λ, ω, 0) defined at the beginning of section 2 is proportional
to the second derivative of x′ with respect to t. Notice that unlike the geodesic case,
α is no longer a quadratic form. From now on we work in the coordinates (8) and

denote α(x, y, 0,±xX|Y | ,±Ŷ ) by α± and X−α±|Y |2
|Y | by S±, so X+α±|Y |2

|Y | = S±+2α±|Y |.
Then using (10) one can show that (see also [43, 42]) under the scattering tangent
and cotangent bases

gsc

(
(λ ◦ Γ−1

± )∂x + (ω ◦ Γ−1
± )∂y

)
= x−1

((
± S± + xΛ̃±

) dx
x2

+
(
± Ŷ + x|Y |Ω̃±

) h(∂y)

x

)(11)D
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and

(λ′ ◦ Γ−1
± )∂x + (ω′ ◦ Γ−1

± )∂y

=x−1

((
± (S± + 2α±|Y |) + x|Y |2Λ̃′±

)
x2∂x +

(
± Ŷ + x|Y |Ω̃′±

)
x∂y

)
.

(12)

Here Λ̃±, Λ̃′±, Ω̃±, and Ω̃′± are smooth in terms of coordinates (8).

3.2. Proofs of the ellipticity of AF and BF up to gauge. To show that AF ,
BF are fully elliptic up to some gauge, we analyze the behavior of its principal symbol
defined on (z, ζ) = (x, y, ξ, η) ∈ T ∗scU . This analysis is pointwise; we can assume that
at one point z = (x, y) the metric gsc has the trivial form gsc = x−4dx2 + x−2dy2,
while the fiber T ∗sc,zU is equivalent to Rn. As mentioned in the introduction of the
scattering calculus in section 2, the analysis includes two cases: (i) the first case is
when |ζ| → ∞, i.e., near the fiber infinity of T ∗sc,zU (see Lemmas 3.1 and 3.4); (ii)

the second case is at finite points of the fiber T ∗sc,zU , in particular near ζ = 0 (see
Lemmas 3.2 and 3.5). Roughly speaking, to analyze the principal symbol, we compute
the Fourier transform of the Schwartz kernel with respect to the (X,Y )-variables. We
will show that the exponential weights and properly chosen cut-off function χ can help
us eliminate possible issues of the principal symbol near the zero section of T ∗scU . As
we will see that the Schwartz kernels of AF , BF are smooth in (x, y) down to x = 0, it
suffices to investigate the principal symbol at x = 0. Once we show the full ellipticity
at x = 0, by smoothness on x, the same result holds in a neighborhood of O = U ∩M
assuming that c > 0 is small enough.

3.2.1. Ellipticity of AF . According to the definition (4) and the expressions
(11), (12), near x = 0 the Schwartz kernel of AF can be written as

KA(x, y,X, Y ) = e−
FX

1+xX |Y |1−n
(
K0
A

(
y, |Y |, X

|Y |
, Ŷ

)
+ xK̃

(
x, y, |Y |, X

|Y |
, Ŷ

))(13)

with smooth K0
A and K̃ (on their variables). Concretely, from (11) it is not difficult

to see that λ◦Γ−1
± /x = ±S±+xΛ̃± = ±X−α±|Y |

2

|Y | +xΛ̃±, so by letting x = 0 we have

K0
A(y, |Y |, X

|Y |
, Ŷ ) = χ(S+)

(
A+

11 A+
10

A+
01 A+

00

)
+ χ(−S−)

(
A−11 −A−10

−A−01 A−00

)
,

where

A±11 =
(
S±

dx

x2
+ Ŷ

dy

x

)(
(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)

)
;

A±10 = S±
dx

x2
+ Ŷ

dy

x
;

A±01 = (S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y);

A±00 = 1.

When x = 0, α± is simply α(0, y, 0, 0,±Ŷ ). Since χ is an even function, it is easy
to see that K0

A is even in (X,Y ). Now it is easy to see that KA is smooth in (x, y)
down to x = 0, with values in functions Schwartz in (X,Y ) (due to the exponential
weight in (13)) for (X,Y ) 6= 0, and is conormal to the diagonal (X,Y ) = 0. This
shows that AF is a scattering pseudodifferential operator on U of order (−1, 0), i.e.,
AF ∈ Ψ−1,0

sc (U); see also [42, Proposition 3.1].
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Lemma 3.1. For any F > 0, AF is elliptic near the fiber infinity of T ∗scU when
restricted on the kernel of the standard principal symbol of δF .

Proof. The analysis of the principal symbol of AF near the fiber infinity is quite
similar to the standard microlocal analysis of a pseudodifferential operator, i.e., the
analysis of the conormal singularity of the principal symbol of AF at the diagonal,
X = Y = 0; see, e.g., [42, Lemma 3.4].

The restriction of the Schwartz kernel KA at x = 0 is

KA(0, y,X, Y ) = e−FX |Y |1−nK0
A.

It is more convenient to write the matrices in K0
A as cross products of vectors (for the

sake of simplicity, we drop the +,− signs); we treat A11 as a 2 × 2 matrix and A10

and A01 as vectors, and then

(
A11 A10

A01 A00

)
=

S dxx2

Ŷ dy
x

1

((S + 2α|Y |)(x2∂x) Ŷ (x∂y) 1
)
.

We may drop the bases and simplify it further asSŶ
1

(S + 2α|Y | Ŷ 1
)

=

S(S + 2α|Y |) SŶ S

Ŷ (S + 2α|Y |) Ŷ × Ŷ Ŷ

S + 2α|Y | Ŷ 1

 .

Under our settings, we need to evaluate the integration of KA at x = 0 along
the orthogonal equatorial sphere corresponding to ζ = (ξ, η), i.e., those (S̃, Ŷ ) with
ξS̃ + η · Ŷ = 0. Here S̃ denotes X/|Y |. Notice that for this case the extra vanishing
factor |Y | = 0 in χ and Aij , and the exponential conjugacy (as X = 0) can be dropped.
So by the evenness of K0

A the standard principal symbol of AF is essentially of the
following form, for some positive constant C:

σp(AF )(0, y, ξ, η) = C|ζ|−1

∫
ζ⊥∩(R×Sn−2)

χ(S̃)

S̃Ŷ
1

(S̃ Ŷ 1
)
dS̃dŶ .

Given any nonzero pair [β, ϕ], β = (β0, β′), in the kernel of the standard principal
symbol of δF , i.e., ξβ0 + η · β′ = 0,

(σp(AF )[β, ϕ], [β, ϕ]) = C|ζ|−1

∫
ζ⊥∩(R×Sn−2)

χ(S̃)
∣∣∣S̃β0 + Ŷ · β′ + ϕ

∣∣∣2 dS̃dŶ .
Now to prove the ellipticity of AF , it suffices to show that there is (S̃, Ŷ ) ∈ ζ⊥ ∩ (R×
Sn−2) such that χ(S̃) > 0 and S̃β0 + Ŷ · β′ + ϕ 6= 0. We prove by contradiction.
Assume that for any (S̃, Ŷ ) ∈ ζ⊥ ∩ (R× Sn−2) with χ(S̃) > 0, S̃β0 + Ŷ · β′ + ϕ = 0.
Notice that if χ(S̃) > 0, then χ(−S̃) > 0, thus −S̃β0 − Ŷ · β′ + ϕ = 0, which implies
that S̃β0 + Ŷ · β′ = 0 and ϕ = 0.

On the other hand, we can find generic n − 1 elements from the set {(S̃, Ŷ ) :
ξS̃ + η · Ŷ = 0, χ(S̃) > 0} (notice that here we need the dimension n be at least 3,
since if n = 2 the set might be empty) with S̃β0 + Ŷ · β′ = 0; by linear algebra, this
implies that β = 0 (since ξβ0 + η · β′ = 0), which is a contradiction. This completes
the proof.
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1766 HANMING ZHOU

Lemma 3.2. For any F > 0, there exists χ = χF ∈ C∞c (R) such that AF is elliptic
at finite points of T ∗scU when restricted on the kernel of the scattering principal symbol
of δF .

Proof. In order to find a suitable χ to make AF elliptic acting on the kernel
of σsc(δF ), we follow the strategy of [43], namely, we first do the calculation for a

Gaussian function χ(s) = e−s
2/(2F−1α) with F > 0, where α is again related to the

second derivative of x with respect to t. Here χ does not have compact support,
thus an approximation argument will be necessary at the end. The calculation of the
Fourier transform of KA is similar to [43, Lemma 4.1] and [42, Lemma 3.5]. For the
sake of completeness, in the following we give the main steps.

Denoting F−1α± by µ±, the X-Fourier transform of KA, FXKA(0, y, ξ, Y ), with
χ chosen as above, is a nonzero multiple of

|Y |2−n
√µ+e

iα+(ξ+iF )|Y |2

Dν(Dν − 2α+|Y |) −Dν Ŷ −Dν

Ŷ (−Dν + 2α+|Y |) Ŷ × Ŷ Ŷ

−Dν + 2α+|Y | Ŷ 1

 e−µ+(ξ+iF )2|Y |2/2

+
√
µ−e

iα−(ξ+iF )|Y |2

Dν(Dν − 2α−|Y |) −Dν Ŷ Dν

Ŷ (−Dν + 2α−|Y |) Ŷ × Ŷ −Ŷ
Dν − 2α−|Y | −Ŷ 1

 e−µ−(ξ+iF )2|Y |2/2

 ,

where Dν is the differentiation with respect to the variable of χ̂, i.e., −(ξ + iF )|Y |.
Taking the derivatives, by polar coordinates the Y -Fourier transform takes the form∫

Sn−2

∫ ∞
0

ei|Y |Ŷ ·η

×
{
√
µ+

iµ+(ξ + iF )iµ+(ξ − iF )|Y |2 + µ+ iµ+(ξ + iF )|Y |Ŷ iµ+(ξ + iF )|Y |
iµ+(ξ − iF )Ŷ |Y | Ŷ × Ŷ Ŷ

iµ+(ξ − iF )|Y | Ŷ 1


× e−µ+(ξ2+F 2)|Y |2/2

+
√
µ−

iµ−(ξ + iF )iµ−(ξ − iF )|Y |2 + µ− iµ−(ξ + iF )|Y |Ŷ −iµ−(ξ + iF )|Y |
iµ−(ξ − iF )Ŷ |Y | Ŷ × Ŷ −Ŷ
−iµ−(ξ − iF )|Y | −Ŷ 1


× e−µ−(ξ2+F 2)|Y |2/2

}
dŶ d|Y |.

Since the integrand is invariant under the changes from |Y | to −|Y |, Ŷ to −Ŷ (thanks
to the evenness from KA), we have that the integral above equals∫

Sn−2

∫
R
ei(Ŷ ·η)t√µ+iµ+(ξ + iF )iµ+(ξ − iF )t2 + µ+ iµ+(ξ + iF )tŶ iµ+(ξ + iF )t

iµ+(ξ − iF )Ŷ t Ŷ × Ŷ Ŷ

iµ+(ξ − iF )t Ŷ 1


× e−µ+(ξ2+F 2)t2/2 dŶ dt,
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which gives a constant multiple of∫
Sn−2

1√
ξ2 + F 2iµ+(ξ + iF )iµ+(ξ − iF )D2

Ŷ ·η + µ+ iµ+(ξ + iF )Ŷ DŶ ·η iµ+(ξ + iF )DŶ ·η

iµ+(ξ − iF )Ŷ DŶ ·η Ŷ × Ŷ Ŷ

iµ+(ξ − iF )DŶ ·η Ŷ 1


× e−|Ŷ ·η|

2/2µ+(ξ2+F 2) dŶ .

Finally, we apply the derivative DŶ ·η to the exponential term to get

∫
Sn−2

1√
ξ2 + F 2

Axx Axy Ax0

Ayx Ayy Ay0

A0x A0y A00

 e−|Ŷ ·η|
2/2µ(ξ2+F 2) dŶ ,

where

Axx = (ξ + iF )(ξ − iF )
|Ŷ · η|2

(ξ2 + F 2)2
,

Axy = −(ξ + iF )
Ŷ · η

(ξ2 + F 2)
Ŷ ,

Ax0 = −(ξ + iF )
Ŷ · η

(ξ2 + F 2)
,

Ayx = −Ŷ (ξ − iF )
Ŷ · η

(ξ2 + F 2)
,

Ayy = Ŷ × Ŷ ,
Ay0 = Ŷ ,

A0x = −(ξ − iF )
Ŷ · η

(ξ2 + F 2)
,

A0y = Ŷ ,

A00 = 1.

Therefore, the scattering principal symbol of AF is

σsc(AF )(0, y, ξ, η)

= C

∫
Sn−2

1√
ξ2 + F 2

− (ξ+iF )Ŷ ·η
ξ2+F 2

Ŷ
1

(− (ξ−iF )Ŷ ·η
ξ2+F 2 Ŷ 1

)
e−|Ŷ ·η|

2/2µ(ξ2+F 2) dŶ

for some positive constant C.
Given any nonzero pair [β, ϕ], β = (β0, β′), in the kernel of the scattering principal

symbol of δF , i.e., (ξ − iF )β0 + η · β′ = 0 by Lemma 2.1,

(σsc(AF )[β, ϕ], [β, ϕ])

=
C√

ξ2 + F 2

∫
Sn−2

∣∣∣∣∣− (ξ − iF )Ŷ · η
ξ2 + F 2

β0 + Ŷ · β′ + ϕ

∣∣∣∣∣
2

e−|Ŷ ·η|
2/2µ(ξ2+F 2) dŶ .
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1768 HANMING ZHOU

To prove the ellipticity, it suffices to show that there is Ŷ such that − (ξ−iF )Ŷ ·η
ξ2+F 2 β0 +

Ŷ · β′ + ϕ 6= 0. Again, we prove by contradiction. Assume that for any Ŷ ∈ Sn−2,

− (ξ−iF )Ŷ ·η
ξ2+F 2 β0 + Ŷ · β′ + ϕ always vanishes. Then (ξ−iF )Ŷ ·η

ξ2+F 2 β0 − Ŷ · β′ + ϕ = 0 too,

which implies that ϕ = 0 and − (ξ−iF )Ŷ ·η
ξ2+F 2 β0 + Ŷ · β′ = 0 for all Ŷ .

On the other hand, since (ξ − iF )β0 + η · β′ = 0,

− (ξ − iF )Ŷ · η
ξ2 + F 2

β0 + Ŷ · β′ =
1

ξ2 + F 2
(η · β′)(Ŷ · η) + Ŷ · β′ = 0

for all Ŷ . It is not difficult to see that this implies that β′ = 0, so β0 = −(ξ −
iF )−1η · β′ = 0 too. Thus we reach a contradiction as [β, ϕ] is a nonzero pair, and
this establishes the ellipticity of AF for Gaussian type χ.

Finally we pick a sequence χn ∈ C∞c (R) which converges to the Gaussian in
Schwartz functions; then the Fourier transforms χ̂n converge to χ̂. One concludes that
for some large enough n, if we use χn to define the operator AF , then its principal
symbol is still elliptic as desired.

Combining Lemmas 3.1 and 3.2 we get the following ellipticity result

Proposition 3.3. For any F > 0, given Ω a neighborhood of O in U , there exist
χ ∈ C∞c (R) and N ∈ Ψ−3,0

sc (U ;U,U) such that AF + dFNδF ∈ Ψ−1,0
sc (U ;T ∗scU ×

U, T ∗scU × U) is elliptic in Ω.

3.2.2. Ellipticity of BF . The analysis of BF is similar to the case of AF but
is more complicated. By an argument similar to the one for AF , it is not difficult to
check that BF is a scattering pseudodifferential operator of order (−1, 0) too. Next
we show that BF is elliptic up to the gauge δsF .

According to the definition (5) and the expressions (11), (12), the Schwartz kernel
of BF at x = 0 is

KB(0, y,X, Y ) = e−FX |Y |1−n
{
χ(S+)

(
B+

22 B+
21

B+
12 B+

11

)
+ χ(−S−)

(
B−22 −B−21

−B−12 B−11

)}
,

where

B±22 =
((
S±

dx

x2
+ Ŷ

dy

x

)
⊗
(
S±

dx

x2
+ Ŷ

dy

x

))
((

(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)
)
⊗
(

(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)
))

;

B±21 =
((
S±

dx

x2
+ Ŷ

dy

x

)
⊗
(
S±

dx

x2
+ Ŷ

dy

x

))(
(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)

)
;

B±12 =
(
S±

dx

x2
+ Ŷ

dy

x

)
((

(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)
)
⊗
(

(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)
))

;

B±11 =
(
S±

dx

x2
+ Ŷ

dy

x

)(
(S± + 2α±|Y |)(x2∂x) + Ŷ (x∂y)

)
= A±11.

Again we write the matrices in the Schwartz kernel as cross products of vectors,
dropping the +,− signs, to get
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S2

SŶ1

SŶ2

Ŷ1 ⊗ Ŷ2

S

Ŷ


(
(S + 2α|Y |)2 (S + 2α|Y |)Ŷ1 (S + 2α|Y |)Ŷ2 Ŷ1 ⊗ Ŷ2 S + 2α|Y | Ŷ

)
.

Here subscripts 1 and 2 of Ŷ indicate the position of the factors of a 2-tensor it is
acting on.

Lemma 3.4. For any F > 0, BF is elliptic near the fiber infinity of T ∗scU when
restricted on the kernel of the standard principal symbol of δsF .

Proof. Similar to the argument in Lemma 3.1, the standard principal symbol of
BF at ζ = (ξ, η) is essentially the following:

|ζ|−1

∫
ζ⊥∩(R×Sn−2)

χ(S̃)



S̃2

S̃Ŷ1

S̃Ŷ2

Ŷ1 ⊗ Ŷ2

S̃

Ŷ


(
S̃2 S̃Ŷ1 S̃Ŷ2 Ŷ1 ⊗ Ŷ2 S̃ Ŷ

)
dS̃dŶ .

Given a nonzero pair [h, β], h = (hxx, hxy, hyx, hyy) with hxy = hTyx and β =
(βx, βy), assuming σp(δ

s
F )[h, β] = 0, i.e.,

(14) ξhxx + η · hxy = 0, ξhxy +
1

2
(η1 + η2) · hyy = 0, and ξβx + η · βy = 0,

then

(σp(BF )[h, β], [h, β])

= C|ζ|−1 ×
∫
ζ⊥∩(R×Sn−2)

χ(S̃)|S̃2hxx + S̃(hxy · Ŷ1 + Ŷ2 · hxy) + (Ŷ1 ⊗ Ŷ2) · hyy + S̃βx

+ Ŷ · βy|2 dS̃dŶ .

Now if the integral equals zero, we get that

S̃2hxx + S̃(hxy · Ŷ1 + Ŷ2 · hxy) + (Ŷ1 ⊗ Ŷ2) · hyy + S̃βx + Ŷ · βy = 0

for all (S̃, Ŷ ) satisfying ξS̃ + η · Ŷ = 0, χ(S̃) > 0. Notice that χ is even; this implies
that

(15) S̃2hxx + S̃(hxy · Ŷ1 + Ŷ2 · hxy) + (Ŷ1 ⊗ Ŷ2) · hyy = 0 and S̃βx + Ŷ · βy = 0

for such (S̃, Ŷ ). Since ξβx + η · βy = 0, it is shown in the proof of Lemma 3.1 that
(βx, βy) = 0.

On the other hand, assume S̃ = 0; then by the first equality of (15), Ŷ · η = 0
implies that (Ŷ1 ⊗ Ŷ2) · hyy = 0 for all Ŷ ∈ η⊥ ∩ Sn−2 (notice that hyy is a symmetric
(n − 1) × (n − 1) matrix). Then to show that hyy = 0, it suffices to verify that

(η⊗ η) ·hyy = 0. If η = 0, then it’s done, so we assume that η 6= 0. Since |S̃| needs to

be small to guarantee that χ(S̃) > 0, we denote η · Ŷ = −S̃ξ by ε with |ε| � 1; then
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1770 HANMING ZHOU

Ŷ can be decomposed as Ŷ = ε
|η|

η
|η| + Ŷ ⊥, where Ŷ ⊥ is the projection of Ŷ in η⊥. If

ξ = 0, by (14) (η1 + η2) · hyy = 0, so is (η ⊗ η) · hyy. If ξ 6= 0, by (14) again, we have

hxy = − 1

2ξ
(η1 + η2) · hyy, hxx = −(η · hxy)/ξ =

1

ξ2
(η ⊗ η) · hyy.

Plug the above equalities into the first part of (15); then(
S̃2

ξ2
(η ⊗ η)− S̃

ξ
(η ⊗ Ŷ + Ŷ ⊗ η) + (Ŷ ⊗ Ŷ )

)
· hyy = 0,

or equivalently((
ε

ξ2
η + Ŷ

)
⊗
(
ε

ξ2
η + Ŷ

))
· hyy

=

((
ε

(
1

ξ2
+

1

|η|2

)
η + Ŷ ⊥

)
⊗
(
ε

(
1

ξ2
+

1

|η|2

)
η + Ŷ ⊥

))
· hyy = 0.

Since (Ŷ ⊥ ⊗ Ŷ ⊥) · hyy = 0, we have

(16) ε2

(
1

ξ2
+

1

|η|2

)2

(η ⊗ η) · hyy = −ε
(

1

ξ2
+

1

|η|2

)(
η ⊗ Ŷ ⊥ + Ŷ ⊥ ⊗ η

)
· hyy.

Notice that for fixed Ŷ ⊥ and ε 6= 0, Ŷ = − εη
|η|2 + Ŷ ⊥ will also work for the above

equation. Thus both sides of (16) vanish, in particular (η⊗ η) · hyy = 0 and (η⊗ Y +

Y ⊗ η) · hyy for any Y ∈ η⊥. The above argument means that (Ŷ ⊗ Ŷ ) · hyy = 0 for

all Ŷ ∈ Sn−2. Taking into account the symmetricity of hyy, it has to be zero.
Since hyy = 0, by (14) if ξ 6= 0, we have hxy = 0 and hxx = 0. If ξ = 0, then

S̃2hxx + S̃(hxy · Ŷ1 + Ŷ2 · hxy) = 0, and thus S̃hxx + hxy · Ŷ + Ŷ · hxy = 0 when

S̃ 6= 0 small, for any Ŷ ∈ η⊥ ∩ Sn−2. Take S̃i 6= 0 with χ(S̃i) > 0, i = 1, 2; then
(S̃1 − S̃2)hxx = 0, which implies that hxx = 0 and hxy · Ŷ = 0 for all Ŷ ∈ η⊥ ∩ Sn−2.
However, since η · hxy = 0, we get hxy = 0. Thus h = (hxx, hxy, hyy) = 0, i.e.,
[h, β] = 0, which is a contradiction. This proves the lemma.

Lemma 3.5. There exists F0 > 0; for any F > F0, there is χ = χF ∈ C∞c (R)
such that BF is elliptic at finite points of T ∗scU when restricted on the kernel of the
scattering principal symbol of δsF .

Proof. If χ is a Gaussian function, i.e., χ(s) = e−s
2/2F−1α, by a computation

similar to that of Lemma 3.2 we get that the scattering principal symbol of BF is a
nonzero multiple of

∫
Sn−2

1√
ξ2 + F 2



θ̄2

Ŷ1θ̄1

Ŷ2θ̄1

Ŷ1 ⊗ Ŷ2

θ̄1

Ŷ


(
θ2 θ1Ŷ1 θ1Ŷ2 Ŷ1 ⊗ Ŷ2 θ1 Ŷ

)
e−|Ŷ ·η|

2/2F−1α(ξ2+F 2) dŶ ,

where θ1 = − ξ−iF
ξ2+F 2 (Ŷ · η) and θ2 = (ξ−iF )2

(ξ2+F 2)2 (Ŷ · η)2 + 2iα ξ−iF
ξ2+F 2 = θ2

1 + 2iα ξ−iF
ξ2+F 2 .
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Given a nonzero pair [h, β] in the kernel of the scattering principal symbol of δsF ,
by Lemma 2.2,

(17) (ξ − iF )hxx + η · hxy + a · hyy + b · βy = 0, (ξ − iF )hxy +
1

2
(η1 + η2) · hyy = 0

and

(18) (ξ − iF )βx + η · βy = 0.

Then

(σsc(BF )[h, β], [h, β]) =
C√

ξ2 + F 2
×
∫
Sn−2

|θ2hxx + 2θ1Ŷ · hxy + (Ŷ ⊗ Ŷ ) · hyy

+ θ1βx + Ŷ · βy|2e−|Ŷ ·η|
2/2F−1α(ξ2+F 2) dŶ .

If the lemma is not true, then for any N > 0, there is F > N such that the above
integral vanishes for some nonzero [h, β] in the kernel of σsc(δ

s
F ), and we get that

θ2hxx + 2θ1Ŷ · hxy + (Ŷ ⊗ Ŷ ) · hyy + θ1βx + Ŷ · βy = 0 for all Ŷ ∈ Sn−2. Note

that θ1(−Ŷ ) = −θ1(Ŷ ). On the other hand, by (2) it is not difficult to see that for
magnetic geodesics α(Ŷ ) = d2x/dt2|t=0 = α+(Ŷ )+α−(Ŷ ) with α+ a positive definite
quadratic form (similar to the geodesic case) and α− a 1-form (related to E). Thus
θ2(−Ŷ ) = θ2

1(Ŷ ) + 2i(α+(Ŷ )− α−(Ŷ )) ξ−iF
ξ2+F 2 , and

(
θ2

1(Ŷ ) + 2iα+(Ŷ )
ξ − iF
ξ2 + F 2

)
hxx + 2θ1(Ŷ )Ŷ · hxy + (Ŷ ⊗ Ŷ ) · hyy = 0,

2iα− · Ŷ ξ − iF
ξ2 + F 2

hxx + θ1(Ŷ )βx + Ŷ · βy = 0

(19)

for all Ŷ . In other words, there exist {Fk}∞k=1, Fk → +∞ as k →∞, and {[hk, βk]}∞k=1,
[hk, βk] in the kernel of σsc(δ

s
Fk

) and nonzero, such that (19) holds for each pair

(Fk, [h
k, βk]).

First we claim that for large enough k, hkyy 6= 0. If not, then there exists a
subsequence {Fnk , [hnk , βnk ]} such that hnkyy = 0 for all nk. Then by (17) hnkxy = 0 and
hnkxx = −b · βnky /(ξ − iFnk). So by (18) and the second equation of (19),(

−2i
b · βnky
ξ2 + F 2

nk

α− +
η · βnky
ξ2 + F 2

nk

η + βnky

)
· Ŷ = 0

for all Ŷ ∈ Sn−2, i.e.,

(20) − 2i
b · βnky
ξ2 + F 2

nk

α− +
η · βnky
ξ2 + F 2

nk

η + βnky = 0.

If βnky = 0, then by (18) βnkx = 0 and hnkxx = 0, i.e., [hnk , βnk ] = 0, which is a
contradiction. Thus we can assume that βnky has unit norm for all nk (notice that at
a fixed point the geometry is trivial). Let Fnk → +∞, then by (20) βnky → 0, which
is again a contradiction.
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Now we can assume that hkyy 6= 0 for all k. By (17) and (18), for any k

hkxy = − η1 + η2

2(ξ − iFk)
· hkyy,

hkxx = −
η · hkxy + a · hkyy + b · βky

ξ − iFk
=
η ⊗ η − (ξ − iFk)a

(ξ − iFk)2
· hkyy −

b

ξ − iFk
· βky ,

βkx = −
η · βky
ξ − iFk

.

Plugging the above equalities into (19) we get(
(Ŷ · η)2 + 2iα+(ξ + iFk)

(ξ2 + F 2
k )2

(η ⊗ η − (ξ − iFk)a)

+
Ŷ · η

ξ2 + F 2
k

(η ⊗ Ŷ + Ŷ ⊗ η) + Ŷ ⊗ Ŷ

)
· hkyy(21)

− ξ − iFk
(ξ2 + F 2

k )2

(
(Ŷ · η)2 + 2iα+(ξ + iFk)

)
b · βky = 0

and

(22) 2i(α− · Ŷ )
η ⊗ η − (ξ − iFk)a

(ξ2 + F 2
k )(ξ − iFk)

· hkyy +

(
Ŷ +

Ŷ · η
ξ2 + F 2

k

η − 2i(α− · Ŷ )

ξ2 + F 2
k

b

)
· βky = 0.

If there is a subsequence of {βnky }nk→∞ such that βnky = 0 for all nk, since

hkyy 6= 0, we may assume that hnkyy has unit norm for all nk. Thus there exists further

a subsequence {hn
′
k
yy}n′k→∞ of {hnkyy} and h∞yy satisfying h

n′k
yy → h∞yy, Fn′k → +∞ as

n′k →∞. As (ξ, η) is a finite point, we take the limit of (21) as n′k →∞ to get that

(Ŷ ⊗ Ŷ ) · h∞yy = 0 ∀ Ŷ ∈ Sn−2.

Since h∞yy is a symmetric tensor, the above equality forces it to be zero. However,
since hnkyy has unit norm, the limit h∞yy cannot be zero, and we reach a contradiction.

So we can assume that hkyy 6= 0 and βky 6= 0 for any k. Let ck = max{‖hkyy‖, ‖βky‖} >
0, and consider the sequence {[hk/ck, βk/ck]}; we still denote the new sequence by
{[hk, βk]}, thus ‖hkyy‖ ≤ 1 and ‖βky‖ ≤ 1. Then there exists a subsequence
{(hnk , βnk)}nk→∞ such that hnkyy → h∞yy, βnky → β∞y , Fnk → +∞ as nk → ∞. Now
we take the limits of (21) and (22) with respect to the subsequence as nk →∞ to get
that

(Ŷ ⊗ Ŷ ) · h∞yy = 0, Ŷ · β∞y = 0 ∀Ŷ ∈ Sn−2.

Again this implies that h∞yy = 0 and β∞y = 0. However, for each nk, either ‖hnkyy‖ = 1
or ‖βnky ‖ = 1, so h∞yy and β∞y cannot both vanish. This is a contradiction too; thus
our assumption for the contradiction argument is not true, i.e., there is some F0 > 0
such that the lemma holds for a Gaussian like χ. Then we apply an approximation
argument to complete the proof.

Remark. The algebraic argument of the proof of Lemma 3.5 is different from
the one of [42]. The magnetic case is more complicated than the geodesic case due
to the coupling of tensors of different orders. In particular, α is no longer an even
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function of Ŷ as in the geodesic case, which is the reason why we consider hyy and βy
together in the main argument. On the other hand, our idea might work for the tensor
tomography problem along general smooth curves, since generally one can decompose
α into the even and odd parts with α = α+ +α−, where α+(Ŷ ) = (α(Ŷ ) +α(−Ŷ ))/2
and α−(Ŷ ) = (α(Ŷ )− α(−Ŷ ))/2.

Similar to Proposition 3.3, we have the following result for BF .

Proposition 3.6. There exists F0 > 0 such that for any F > F0, given Ω a
neighborhood of O in U , there exist χ ∈ C∞c (R) and N ∈ Ψ−3,0

sc (U ;T ∗scU×U, T ∗scU×U)
such that BF + dsFNδ

s
F ∈ Ψ−1,0

sc (U ;Sym2T ∗scU × T ∗scU, Sym2T ∗scU × T ∗scU) is elliptic
in Ω.

4. Proofs of the main local results. Now we rephrase the invertibility results
of section 3 in a gauge-free way. This part is similar to [42, section 4]; the key
ingredient is the local invertibility of some Witten-type Dirichlet Laplacian.

4.1. Proof of Theorem 1.1. Note that if the “solenoidal Witten Laplacian”
∆F = δFdF is invertible with the Dirichlet boundary condition, we can decompose
fF := [β, ϕ]F = e−F/xW−1[β, ϕ] into

fF = SF fF + PF fF ,

where PF = dF∆−1
F δF . Thus we denote PF fF by dF pF = W−1e−F/xdp with

p|∂O∩∂M = 0; then given f = [β, ϕ]

If = I(f − dp) = I(eF/xW (fF − dF pF )) = I(eF/xWSF fF ).

Notice that δF (SF fF ) = 0, and by Proposition 3.3 in O, SF fF or equivalently
eF/xWSF fF = f − dp can be stably determined by If = I(eF/xWSF fF ); see [42,
Theorem 4.15] and see [43, section 3.7] for the function case. Generally the stability
estimate by ellipticity has an error term; however, for the local problem the error
term is relatively small and can be absorbed to produce the full invertibility; see [43,
section 2]. This proves Theorem 1.1. So one just needs to show that ∆F is invertible
with the Dirichlet boundary condition; however, this is immediate from the argument
of [42, section 4]. Note that by the definition, ∆F is the same as the Witten Laplacian
of functions in [42].

4.2. Proof of Theorem 1.2. Similar to the argument of section 4.1, if the
Witten Laplacian ∆s

F = δsFd
s
F is invertible with the Dirichlet boundary condition,

let f = [h, β]; then by Proposition 3.6 there are some 1-form u and function p with
u|∂O∩∂M = 0, p|∂O∩∂M = 0 such that f − ds[u, p] can be stably determined by If .
Notice that by Lemma 2.2, the principal symbol of ∆s

F is 〈ξ〉2 + 1
2 |η|

2 1
2 (ξ + iF )ιη 0

1
2 (ξ − iF )η⊗ 1

2 〈ξ〉
2 + |η|2 0

0 0 〈ξ〉2 + |η|2

+

〈a, ·〉a+ 〈b, ·〉b 〈a, ·〉η⊗s 〈b, ·〉η⊗
ιsηa 0 0
ιηb 0 0

 ,

where 〈ξ〉 =
√
ξ2 + F 2. It is easy to check that the first part of the symbol has a lower

bound O(ξ2 + F 2 + |η|2); by taking F large enough, it can absorb the second part
of the symbol which is independent of F . Thus ∆s

F is elliptic for large F . Moreover,
letting ∇F = e−F/x∇eF/x with ∇ being the gradient with respect to the scattering
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metric gsc, we define ∇sF [β, ϕ] := [∇Fβ,
√

2∇Fϕ], which has the following principal
symbol: 

ξ + iF 0 0
η⊗ 0 0
0 ξ + iF 0
0 η⊗ 0

0 0
√

2(ξ + iF )

0 0
√

2η⊗

 .

So the principal symbol of (∇sF )∗, the adjoint under the scattering metric gsc, isξ − iF ιη 0 0 0 0
0 0 ξ − iF ιsη 0 0

0 0 0 0
√

2(ξ − iF )
√

2ιη


and the principal symbol of (∇sF )∗∇sF is〈ξ〉2 + |η|2 0 0

0 〈ξ〉2 + |η|2 0
0 0 2(〈ξ〉2 + |η|2)

 .

On the other hand, applying Lemma 2.1 again, we get the principal symbol of dF δF 〈ξ〉2 (ξ + iF )ιη 0
(ξ − iF )η⊗ |η|2 0

0 0 0

 .

Therefore, ∆s
F = 1

2 (∇sF )∗∇sF + 1
2dF δF +R+ R̃ with R ∈ Diff1

sc(T
∗
scU ×U, T ∗scU ×U)

given by the second part of the principal symbol of ∆s
F and R̃ ∈ xDiff1

sc(T
∗
scU ×

U, T ∗scU × U) containing all the lower order terms. We have proved [42, Lemma 4.1]
under our settings; now Theorem 1.2 follows by an argument similar to that of [42,
section 4].

5. Proof of the global result. We prove part (a) of Theorem 1.3 based on the
local result Theorem 1.1 in this section; part (b) follows in a similar way by applying
Theorem 1.2. A similar argument for the geodesic ray transform can be found in
[24]. We first prove the following weaker version of Theorem 1.3 up to a set of empty
interior. We define Σt := τ−1(t), Mt := M \ {τ ≤ t} and Ωt := ∂M \ {τ ≤ t}.

Lemma 5.1. Under the assumptions of Theorem 1.3, part (a), there exists v ∈
C∞(Ma) with v|Ωa = 0 such that f = dv in Ma.

Recall that the constant a in the lemma and the constant b below are the ones
appearing in the definition of the global foliation condition before Theorem 1.3.

Proof. Let

σ := inf{t ≤ b : ∃ v ∈ C∞(Mt), such that v|Ωt = 0, and f = dv inMt}.

We claim that σ ≤ a and we will argue by contradiction.
First we show that σ < b. It is not difficult to see that Σb is a compact subset

of ∂M (in fact, if Σb contains interior points, {τ ≤ b} cannot cover M). Since ∂M is
strictly magnetic convex, by Theorem 1.1, for each p ∈ Σb, there is a neighborhood
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Op ⊂ M of p and vp ∈ C∞(Op) with vp|Op∩∂M = 0 such that f = dvp in Op. If
Op ∩Oq 6= ∅ for some p, q ∈ Σb, we have

d(vp − vq)|Op∩Oq = 0, vp − vq|Op∩Oq∩∂M = 0.

This implies that vp = vq in Op ∩Oq. Since τ−1(b) is compact, there exist t0 < b and
v smooth in Mt0 such that f = dv in Mt0 ; in particular v = vp in Mt0 ∩ Op. Thus
σ ≤ t0 < b.

The infimum in the definition of σ is a minimum. Let {tj}∞j=1 ⊂ (σ, b] be a strictly
decreasing sequence with tj → σ as j →∞. For each j, there is vj satisfying f = dvj
in Mtj and vj |Ωtj = 0. Since Σt ∩M int is strictly magnetic convex for any t > a,

one can easily show that given arbitrary k > 0, vk = v` on Mtk for any ` > k. This
implies that the set {vj} defines a smooth function vσ in Mσ with vσ|Mtj

\Mtj−1
= vj ,

f = dvσ in Mσ, and vσ|Ωσ = 0, i.e., σ is a minimum.
Assume that σ > a and consider the level set Σσ. There exists vσ ∈ C∞(Mσ)

with vσ|Ωσ = 0 such that f = dvσ in Mσ. We first extend vσ a little bit near the
boundary. Notice that ∂M is strictly magnetic convex and Σσ ∩ ∂M is compact;
by Theorem 1.1 and an argument similar to the one showing σ < b, one can find a
neighborhood O of Σσ ∩ ∂M and vO ∈ C∞(O) such that f = dvO and vO|∂M∩O = 0.
Moreover, on the overlap O ∩Mσ, one can similarly show that vσ = vO by choosing
O appropriately. This implies that we can actually define a smooth function u on
U := Mσ ∪O. Thus now f = du in U , u|∂U∩∂M = 0. This will allow us to avoid the
set Σσ ∩ ∂M for the rest of the proof.

With U chosen as above, we see that K := ∂U ∩M int ∩ Σσ is a compact subset
of Σσ ∩M int. Applying Theorem 1.1 again, there exist c > 0 small (σ − c > a) and
an open neighborhood V of K in {τ ≤ σ} ∩M int such that the local invertibility of
I holds on V and ({σ− c ≤ τ ≤ σ} \O) ⊂ V (notice that O is an open neighborhood
of Σσ ∩ ∂M). In particular, the constant c (which is related to the definition of
the neighborhood for the local theorem) is uniform for p ∈ Σt close to K when t is
sufficiently close to σ, e.g., |σ − t| � c. Thus we pick σ′ > σ with σ′ − σ � c; then
there exists an open neighborhood V ′ of Σσ′ \ O (compact) in {τ ≤ σ′} ∩M int such
that the local invertibility holds in V ′ and ({σ′ − c ≤ τ ≤ σ′} \ O) ⊂ V ′. Obviously
σ′ − c < σ.

Now let φ be a smooth cut-off function on M , which satisfies φ ≡ 1 near Mσ′ ,
suppφ ⊂ Mσ, so φu is well-defined on M . We denote f̃ = f − d(φu), which is
supported in {τ < σ′}, by assumption If̃ = 0. So we apply Theorem 1.1 again to
conclude that there is a smooth function ṽ defined in V ′, such that f̃ = dṽ in V ′

and ṽ|V ′∩Σσ′ = 0. Moreover, on the overlap V ′ ∩Mσ, since (1 − φ)u = ṽ = 0 on
V ′ ∩Σσ′ , one easily obtains that (1−φ)u = ṽ on the overlap too. Therefore, we get a
smooth function w on U ∪V ′ with f = dw there and w|∂M∩U = 0. In particular, this
implies that σ ≤ σ′ − c < σ, which is a contradiction. Thus σ ≤ a and the lemma is
proved.

Proof of Theorem 1.3(a). Note that the foliation condition implies that Ma is
nontrapping. On the other hand, since {τ ≤ a} is nontrapping too, M = Ma∪{τ ≤ a}
is nontrapping. As ∂M is strictly magnetic convex, by an argument similar to [20,
Proposition 5.2], which is for the geodesic case, there exists u ∈ C∞(SM) satisfying
the following transport equation:

(23) Gµu = −f, u|∂SM = 0.
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Thus by Lemma 5.1

(24) Gµ(u+ v) = 0 in Ma, u+ v|∂SMΩa = 0,

where
∂SMΩa := {(z, ξ) ∈ ∂SM : z ∈ Ωa}.

Since Σt∩M int is strictly magnetic convex for t ∈ (a, b], given arbitrary (z, ξ) ∈ SMa,
we can find a magnetic geodesic segment γ : [0, T ]→M connecting z with Ωa, which
is completely contained in Ma, such that (z, ξ) is either (γ(0), γ̇(0)) or (γ(T ), γ̇(T )).
Together with (24), this implies that u + v = 0 in SMa, i.e., u = −v is a smooth
function on Ma. However, as u ∈ C∞(SM) and the set {τ ≤ a} has empty interior,
we conclude that u ∈ C∞(M). To show this, we take use of the spherical harmonics

expansion of u through the vertical Laplacian
v

∆ on SM as

u =

∞∑
k=0

uk,

where each uk ∈ C∞(SM) satisfies
v

∆uk = k(k + n − 2)uk (n = dimM). Note that
this is an orthogonal decomposition of u under the L2 inner product; see, e.g., [23] for
more details. In particular, if u ∈ C∞(M), then uk ≡ 0 for all k > 0. Since u = −v
on Ma, we get that uk = 0 on SMa for any k > 0. Now given any (z, v) ∈ S(M \Ma),
since M\Ma has empty interior, we can find a sequence {(zj , vj)}∞j=1 ⊂ SMa such that
(zj , vj)→ (z, v) as j →∞. Since uk(zj , vj) = 0 for any j and k > 0, uk(z, v) = 0 too
for any k > 0. Thus u = u0 on SM , i.e., u ∈ C∞(M). By (23), f = Gµ(−u) = d(−u)
on M with u|∂M = 0, which completes the proof.

Remark. It is possible to allow the existence of some type of trapped geodesics
in the set {τ ≤ a} under additional assumptions, which will still produce a smooth
global solution to the transport equation (23); see, e.g., [8, Proposition 5.5].
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