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1. introduction

Let Ln be a collection of n unknotted, unlinked circles in 3-space, and let PΣn be
the group of motions of Ln where each circle ends up back at its original position.
This group was introduced in the PhD thesis of David Dahm, a student of Ralph
Fox, and was later studied by various authors, notably Deborah Goldsmith. Alan
Brownstein and Ronnie Lee succeeded in computing H2(PΣn, Z) in [6], and at the
end of their paper conjecture a presentation for the algebra H∗(PΣn, Z). Further
evidence for this conjecture came when the cohomological dimension was computed
(cd(PΣn) = n−1) by Collins in [8], and when the Euler characteristic was computed
(χ(PΣn) = (1−n)n−1) in [13] (see also [11]). Here we establish the Brownstein-Lee
Conjecture. As our argument is a mixture of spectral sequences and combinatorial
identities, it seems that Birman was quite prescient in her Mathematical Review of
the Brownstein-Lee paper: “The combinatorics of the cohomology ring appears to
be rich, and the attendant geometric interpretations are very pleasing.”

Because π1(S3 \ Ln) ∼= Fn, it is not surprising that there is a map

PΣn → Aut[π1(S3 \ Ln)] ∼= Aut(Fn) .

Less immediate is that this map is injective, hence the group PΣn can be represented
as a group of free group automorphisms. Its image in Out(Fn) is denoted OPΣn.
(This and other background information is given in §2.) The bulk of our work
focuses on the quotient OPΣn. We compute its integral cohomology groups using
the equivariant spectral sequence for the action of OPΣn on a contractible complex
introduced by McCullough and Miller in [15]. As is often the case, the first page
of this spectral sequence is charming yet opaque. Combinatorial arguments are
used to show that the E2 page of the spectral sequence is concentrated in a single
column, hence one can read off the cohomology groups from this page. From this
we get our Main Theorem and then derive the Brownstein-Lee conjecture.

Main Theorem. The Poincaré series for H∗(OPΣn, Z)—a formal power series
where the coefficient of zk is the rank of Hk(OPΣn, Z)—is p(z) = (1 + nz)n−2.

Corollary (The Brownstein-Lee Conjecture). The cohomology of H∗(PΣn, Z) is
generated by one-dimensional classes α∗ij where i 6= j, subject to the relations

1. α∗ij ∧ α∗ij = 0
2. α∗ij ∧ α∗ji = 0
3. α∗kj ∧ α∗ji = (α∗kj − α∗ij) ∧ α∗ki

and the Poincaré series is p(z) = (1 + nz)n−1.
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Remark 1. In the late 1990s, Bogley and Krstić constructed a K(PΣn, 1) whose
universal cover embeds in Culler and Vogtmann’s Outer Space. Using this space
they were able to establish the Brownstein-Lee conjecture, but regrettably this work
has not appeared.

Remark 2. There are prior results on the (asymptotic) cohomology of PΣn. In
[4] the cohomology of OPΣn and PΣn with group ring coefficients are determined,
and as a corollary, it is shown that OPΣn and PΣn are duality groups. The `2-
cohomology is computed in [13], where it is shown that the `2-cohomology of OPΣn

and PΣn is non-trivial and concentrated in top dimension. Alexandra Pettet has
recently posted an article explaining the complexity of the kernel of the natural
“forgetful” map PΣn � PΣn−1 [16].

Acknowledgments. We thank Ethan Berkove, Benson Farb, Allen Hatcher and
Alexandra Pettet for their interest and insights into this work. We particularly
thank Fred Cohen for sharing some of his work with Jon Pakianathan on an inter-
esting subgroup of PΣn, and for pointing out a number of connections between this
work and results in the literature. (See the end of §6.)

2. PΣn, OPΣn and the complex MMn

This section moves at a brisk pace. The reader completely unfamiliar with the
groups PΣn and the McCullough-Miller complexes MMn should perhaps read the
first six sections of [13] where the material summarized in this section is developed
in greater detail.

On the intuitive level, PΣn is the group of motions of n unknotted, unlinked
circles in the 3-sphere. In order to be more precise and efficient, we present PΣn

as a subgroup of the automorphism group of a free group Fn (for background on
this isomorphism, see [9]). The group of pure symmetric automorphisms of Fn

consists of all automorphisms that, for a fixed basis {x1, . . . , xn}, send each xi to a
conjugate of itself. This group is generated by the automorphisms αij induced by

αij =
{

xi → xjxix
−1
j

xk → xk k 6= i
.

McCool proved that the relations [αij , αkl] i, j, k and l all distinct
[αij , αkj ] i, j and k distinct
[αij , αikαjk] i, j and k distinct


are sufficient to present PΣn [14]. Given j ∈ [n] and I ⊂ [n] \ {j} we let αIj denote
the product of generators

αIj =
∏
i∈I

αij .

Using McCool’s relations one sees that this product is independent of the order in
which one lists the αij . Note that when I = [n] \ {j}, the element αIj is simply
conjugation by xj .

For the remainder of this paper we view PΣn as a subgroup of Aut(Fn). Since
the inner automorphisms, Inn(Fn), form a subgroup of PΣn, we may form the
quotient PΣn/Inn(Fn), which we denote OPΣn. Interestingly, PΣn is a subgroup
of the famous IAn = Ker[Aut(Fn) � GLn(Z)]. In fact, the set {αij} is a subset
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of the standard generating set of IAn discovered by Magnus. The image of PΣn

contains the image of the pure braid group, Pn, under Artin’s embedding, hence
there are proper inclusions

Pn < PΣn < IAn < Aut(Fn).

Viewed as a group of free group automorphisms, there is an action of PΣn on a
contractible complex constructed by McCullough and Miller [15]. Our perspective
on this complex is that of [13] where it is described in terms of marked, [n]-labelled
hypertrees. We quickly recall the definition of the [n]-labelled hypertree poset.

Definition 2.1. A hypergraph Γ consists of a set of vertices V and a set of hy-
peredges E, each element of E containing at least two vertices. We refer to edges
in a hypergraph which contain more than two vertices as fat edges. A walk in a
hypergraph Γ is a sequence v0, e1, v1, . . . , vn−1, en, vn where for all i, vi ∈ V , ei ∈ E
and for each ei, {vi−1, vi} ⊂ ei. A hypergraph is connected if every pair of vertices
is joined by a walk. A simple cycle is a walk that contains at least two edges, all of
the ei are distinct and all of the vi are distinct except v0 = vn. A hypergraph with
no simple cycles is a hyperforest and a connected hyperforest is a hypertree. Note
that the no simple cycle condition implies that distinct edges in Γ have at most one
vertex in common

An [n]-labelled hypertree is a hypertree whose vertices have been labelled (bi-
jectively) by [n] = {1, . . . , n}. Examples of [n]-labelled hypertrees can be found in
most figures in this paper. The rank of a hypertree τ is #E(τ)− 1.

For any fixed value of n, one can define a partial order on the set of all [n]-
labelled hypertrees: τ ≤ τ ′ if every edge of τ ′ is contained in an edge of τ . The
poset consisting of [n]-labelled hypertrees with this partial ordering is denoted HTn

and is called the hypertree poset. In Figure 1 we show a maximal chain in HT6.
Notice that maximal elements in HTn correspond to ordinary, that is simplicial,
trees on [n].

1

2

34

5

6 1

2

3

4

5

6

12 3

4

5

6

2 1 3 5

4

6

2 1 3 5

4

6

< <

< <

Figure 1. A maximal chain in HT6.

The combinatorics of HTn are interesting (see [4], [11] and [13]), but by and
large we will need few previously established combinatorial facts about this poset.
One fact that we will use is:
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Lemma 2.2. Given a collection of hypertrees {τ1, . . . , τk} in HTn there is a unique,
maximal hypertree τ such that τ ≤ τi for each i. In other words, HTn is a meet
semi-lattice.

The McCullough-Miller complex MMn was introduced in [15] for the study of
certain automorphism groups of free products. The main results we need in this
paper are summarized in the following Theorem.

Theorem 2.3 ([15]). The space MMn is a contractible simplicial complex admitting
a simplicial OPΣn action such that:

1. The fundamental domain is a strong fundamental domain and the quotient
OPΣn\MMn is isomorphic to the geometric realization of the poset HTn.

2. If σ is a simplex of |HTn| corresponding to a chain τ0 < τ1 < · · · < τk, then

Stab(σ) = Stab(τ0) ∼= Zrk(τ0)

3. Let j ∈ [n] and let I be a subset of [n] corresponding to all the labels of
a connected component of τ minus the vertex labelled j. Then the outer-
automorphism given by the automorphism αIj is contained in Stab(τ) and
the collection of all such outer-automorphisms is a generating set for Stab(τ).

The generating set given above is not a minimal generating set. Consider for
example the maximal hypertree shown in Figure 1. If we let ᾱ denote the image of
α ∈ PΣn in OPΣn, then we have ᾱ45, ᾱ65 and ᾱ{1,2,3},5 are all in Stab(τ). But

ᾱ45 · ᾱ65 =
[
ᾱ{1,2,3},5

]−1 in OPΣ6

as α45 · α65 · α{1,2,3},5 is an inner automorphism.

Using the equivariant spectral sequence, applied to the action OPΣn y MMn, we
compute the cohomology groups Hi(OPΣn, Z). Recall that the equivariant spectral
sequence for a group G acting simplicially on a contractible complex is given by

Epq
1 =

∏
σ∈Ep

Hq(Gσ,M)⇒ Hp+q(G, M)

where Ep denotes a set of representatives of the G-orbits of p-cells. The differen-
tials on the E1 page are the standard ones of the equivariant cohomology spectral
sequence, namely a combination of restriction maps to a subgroup and cobound-
ary maps. (See §VII.7 of [5].) Since the simplex stabilizers for the action of
OPΣn y MMn are free abelian, and our set of representatives of OPΣn-orbits
can be taken to be p-simplices in the geometric realization |HTn|, we can exhibit
the first page of the equivariant spectral sequence in a fairly concrete manner.

For example, in Figure 2 we show the non-zero portion of the E1 page for the
action of OPΣ4, where we have suppressed the Z-coefficients. The geometric real-
ization of HT4 was worked out as an example in [15]. We redraw their figure in
Figure 3. The actual geometric realization has dimension 2, but the vertex corre-
sponding to the hypertree with exactly one edge forms a cone point in |HT4| and
so it is not shown in the figure. The left edge of the E1 page is explained by the fol-
lowing observations: The OPΣ4 orbits of vertices under the action OPΣ4 y MM4

correspond to the elements of HT4, and by direct observation one sees:
• there is one hypertree in HT4 whose stabilizer is trivial. It is the hypertree

with a single hyperedge, not shown in Figure 3.
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H0(1)×H0(Z)12 ×H0(Z× Z)16

H1(Z)12 ×H1(Z× Z)16

H2(Z× Z)16

H0(1)28 ×H0(Z)36

H1(Z)36

0

H0(1)36
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Figure 2. The E1 page of the equivariant spectral sequence for
the action OPΣ4 y MM4.

• There are twelve hypertrees whose stabilizers are ∼= Z. These all have the
same combinatorial type, shown in the top right of Figure 3.

• The remaining sixteen hypertrees have stabilizers ∼= Z× Z.
The interested reader may use Figure 3 to double-check our entries in Figure 2.

Figure 3. The geometric realization of HT4, excluding the vertex
corresponding to a hypertree with a single edge. The graph is to
be thought of as embedded in a projective plane, so edges leaving
the dotted circle re-enter at the opposite point. The color coding
is by combinatorial type.

While we do give a concrete description of the E1 page of this spectral sequence,
the reader should not be lulled into thinking that in general this page is always
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directly accessible. For example, Cayley’s formula states that the number of (sim-
plicial) trees on [n] is nn−2. This implies that the (0, n − 2)-entry on the E1 page
for the action OPΣn y MMn is Hn−2(Zn−2)nn−2

and this is most certainly not
the largest entry on the page.

3. Choosing a Basis

We are able to understand the contents of the E1 page of the equivariant spectral
sequence by finding a concrete, minimal set of generators for each stabilizer of each
simplex in |HTn|. Recall that the stabilizer of a simplex is the stabilizer of its
minimal vertex, hence it suffices to pick generators for the stabilizers of individual
hypertrees in the poset. Further, the stabilizer of a hypertree τ under the action of
OPΣn is free abelian of rank rk(τ). As an example, the stabilizer under the action
of OPΣ6 of the hypertree with two edges in Figure 1 is infinite cyclic. It is generated
by the image of α{1,2},3 in OPΣ6, or equivalently by the image of α{4,5,6},3.

For a fixed hypertree τ the chosen set of generators is essentially described by
the following conditions: You pick generators as listed in Theorem 2.3 except,

1. You never conjugate x1, and
2. You never conjugate x2 by x1.

We now make this precise.

Definition 3.1. For each j ∈ [n] let ĵ be the index that is to be avoided when con-
jugating by xj . That is, ĵ = 1 for j 6= 1 and 1̂ = 2. Define a one-two automorphism
to be any automorphism of the form αIj =

∏
i∈I αij , where I ⊂ {[n] \ {j, ĵ}}. The

image of αIj in OPΣn is denoted ᾱIj and is called a one-two outer-automorphism.
For a given hypertree τ the collection of all one-two outer-automorphisms in

Stab(τ) is the one-two basis for Stab(τ). We denote this by B(τ). If σ is a simplex
in |HTn| corresponding to a chain τ0 < τ1 < · · · < τk then the stabilizer of σ is
the stabilizer of τ0 and so we define B(σ) = B(τ0). A simplex σ in |HTn| is in the
support of a one-two outer-automorphism ᾱIj if ᾱIj ∈ B(σ).

If one roots a hypertree τ at the vertex labelled 1, then the one-two basis for τ
can be viewed as being (partly) induced by “gravity”. The prescription to avoid
conjugating x1 by an xj corresponds to having xj conjugate the elements corre-
sponding to vertices below the vertex labelled j. The exception is if the vertex
labelled 1 has valence greater than one, in which case it conjugates the elements
below it, but not those in the branch containing the vertex labelled by 2. Thus,
the one-two basis for the stabilizer of the hypertree shown in Figure 4 is

B(τ) = {ᾱ{4,5,8,9,10,11},1, ᾱ{6,7},2, ᾱ{8,9},4, ᾱ{10,11},5}
The size of a one-two basis depends only on the rank of the underlying hypertree,

but the actual elements in the one-two basis very much depend on the labelling.
Two rank-two, labelled hypertrees are shown in Figure 5. The underlying hypertrees
are the same, but the labels of the vertices are different. Both have stabilizers
isomorphic to Z × Z. The one-two generating set for the stabilizer of the labelled
hypertree on the left is {ᾱ{5,6},1, ᾱ{2,3},4}, while the generating set for the stabilizer
of the hypertree on the right is {ᾱ{2,4,5},3, ᾱ{2,4},5}.

Finally, one last example: The stabilizer of the highest rank hypertree in Figure 1
is ∼= Z4 and the one-two generating set for Stab(τ) is

B(τ) = {ᾱ{3,4,5,6},1, ᾱ{4,5,6},3, ᾱ4,5, ᾱ6,5} .
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Figure 4. Rooting a hypertree at the vertex labelled 1.
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Figure 5. Two rank two labelled hypertrees in HT6.

Proposition 5.1 of [15] gives a concrete description of the stabilizers of vertices,
from which one can derive:

Lemma 3.2. The set B(τ) is a minimal rank generating set for Stab(τ).

(Hence our use of the term “basis”.)
A one-two outer-automorphism ᾱIj may be in the stabilizer of a simplex without

being part of the one-two basis for the simplex. Consider for example the hypertrees
shown in Figure 6. The stabilizer of the rank one hypertree on the left is generated
by B(τ) = {ᾱ{5,6,7},4}. However, if τ ′ is the hypertree on the right, then B(τ ′) =
{ᾱ54, ᾱ{6,7},4, ᾱ76}. Thus ᾱ{5,6,7},4 ∈ Stab(τ ′) but ᾱ{5,6,7},4 6∈ B(τ ′).
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Figure 6. The outer-automorphism ᾱ{5,6,7},4 is contained in the
stabilizer of both hypertrees. It is in the one-two basis of the
hypertree on the left, but it is not in the basis of the hypertree on
the right. (It is in the basis of the 1-simplex corresponding to the
chain τ < τ ′.)

The distinction between being in the stabilizer and being in the one-two basis
can be characterized combinatorially by removing vertices. Given any hypertree τ
and a vertex j, we can construct a new hypergraph on [n]\{j} by simply removing
j from each hyperedge set and then removing any singleton sets that result. Let ᾱIj

be a one-two outer automorphism, let τ be a hypertree and let τ ′ be the hyperforest
obtained by removing j from the vertex set. The stabilizer of τ contains ᾱIj if and
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only if I is a union of vertices of connected components of τ ′ and the one-two basis
of τ contains ᾱIj if and only if I is the vertex set of single connected component of
τ ′.

Here’s the lovely fact. Every simplex in |HTn| that supports a one-two outer-
automorphism ᾱIj is compatible with the hypertree consisting of two edges—I∪{j}
and [n]\ I—joined along the vertex labelled j. Moreover, the one-two basis for this
two edge hypertree is {ᾱIj}. (See Figure 7.) These facts extend to all subsets of
one-two bases (Lemma 3.6).

j Ij I[n]−{ , }

Figure 7. The cone point for a one-two basis element.

Definition 3.3. A collection A of one-two outer-automorphisms is called compat-
ible if it is a subset of a one-two basis for some hypertree τ (A ⊂ B(τ)). (The
notion of a compatible collection of one-two outer-automorphisms is essentially the
same as McCullough and Miller’s notion of pairwise disjoint based partitions of [n]
in [15].)

Definition 3.4. Let A be a compatible collection of one-two outer-automorphisms.
The collection of hypertrees that support A is the A-core. Call an element of the
hypertree poset that contains the set A in its stabilizer—but does not support it
in terms of being part of the one-two basis for the hypertree—an A-peripheral
hypertree. Further, call the subcomplex induced by the A-core hypertrees the
A-core complex, and the subcomplex induced by A-peripheral hypertrees the A-
peripheral complex.

The fact that the hypertree poset has meets (Lemma 2.2) implies the following:

Lemma 3.5. If A is a compatible collection of one-two outer-automorphisms then
there is a hypertree τ(A), called the cone point of A such that if A ⊂ Stab(τ ′) then
τ(A) ≤ τ ′.

In fact, even more is true. An easy induction on the number of edges in τ (or
the size of the compatible collection A, respectively) can be used to generalize the
lovely facts listed above.

Lemma 3.6. For all hypertrees τ , the cone point of the one-two basis of τ is τ itself
(τ(B(τ)) = τ) and for all compatible collections A, the one-two basis of the cone
point of A is A itself (B(τ(A)) = A). As a consequence, the cone point hypertree
τ(A) lies in the A-core.

The combinatorics of the spectral sequence break into two cases.

Definition 3.7. A compatible collection of one-two outer-automorphisms A is
essential if τ(A) satisfies
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1. There is at most one fat edge (an edge of order > 2);
2. If there is a fat edge then the vertex labelled 1 is in the fat edge;
3. If there is a fat edge then the unique reduced path from the vertex labelled

1 to the vertex labelled 2 contains the fat edge.
Notice that A is essential when τ(A) is an ordinary tree. Compatible collections of
one-two outer-automorphisms that are not essential are inessential.

For example, A = {ᾱ54, ᾱ{6,7},4, ᾱ76} is an essential basis as it is the one-two
basis for the stabilizer of the rank three hypertree shown in Fig. 6.

To build some intuition for what can occur with inessential one-two bases,
consider the one-two outer-automorphism ᾱ{3,4,5},2 ∈ OPΣ5. The cone point
τ({ᾱ{3,4,5},2}) is shown in Figure 8. While there is a single fat edge, the fat edge

1 2

3

4

5

Figure 8. The hypertree τ({ᾱ{3,4,5},2}).

does not contain the vertex labelled by 1, nor is it in the minimal path from the
vertex labelled 1 to the vertex labelled 2. The associated {ᾱ{3,4,5},2}-peripheral
subcomplex of |HT5| is shown in Figure 9. The outer-automorphism ᾱ{3,4,5},2 is
in the stabilizer of every hypertree in this subcomplex, but it is not in the one-two
basis for any of these hypertrees.

Lemma 3.8. Let A be a compatible collection of one-two automorphisms and let
τ(A) be the cone point of A. Then A is essential if and only if the A-peripheral
complex is empty.

Proof. Let A be essential and let αIj ∈ A. The sub-hypertree induced by I ∪ {j}
is an ordinary tree, with the vertex corresponding to j being a leaf. Since every
hypertree τ with τ(A) < τ is formed by dividing the single fat edge of τ(A) into
a higher rank hypertree, the sub-hypertree of τ induced by I ∪ {j} is the same
ordinary tree. Hence αIj ∈ B(τ), so A ⊂ B(τ). Thus by definition the A-peripheral
complex is empty.

If A is inessential, there must be a one-two automorphism αIj where the sub-
hypertree induced by I ∪{j} contains a fat edge, e. Let k label the vertex of e that
is closest to j. Then splitting e into two hyperedges that are joined along k creates
a hypertree τ that is above τ(A) in HTn but αIj 6∈ B(τ). Thus τ is peripheral, and
the A-peripheral complex is not empty. �

4. Computing the E2 page

In this section we establish:

Proposition 4.1. The non-zero entries on the E2 page for the spectral sequence
corresponding to the action OPΣn y MMn are concentrated in the (0, q)-column.
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Figure 9. The peripheral subcomplex of |HT5| associated to the
one-two outer-automorphism ᾱ{3,4,5},2.

To start the process of proving this, we note that the one-two bases for the
stabilizers of hypertrees allow us to give a concrete description of the entries on the
first page of the spectral sequence. The (p, q) entry on the E1 page is the product∏

σ ∈ |HTn|,
dim(σ) = p

Hq(Stab(σ), Z) .

Since the stabilizer of σ is the stabilizer of its minimal element, we may consider
what happens in the case of a hypertree τ . Each stabilizer is free abelian, so the first
homology H1(Stab(τ), Z) is free abelian with generating set {[ᾱIj ] | ᾱIj ∈ B(τ)}.
The cohomology group H1(Stab(τ), Z) is then generated by the dual basis {ᾱ∗Ij}
where

ᾱ∗Ij([ᾱKl]) =
{

1 I = K and j = l
0 otherwise .

Because the H∗(Zn) is an exterior algebra generated by one-dimensional classes,
the set {ᾱ∗Ij | ᾱIj ∈ B(τ)} is a generating set for the cohomology of the stabilizer.
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It follows that the set of all products of q distinct ᾱIjs is a generating set for
Hq(Stab(τ), Z). Thus we may identify the generating set for Hq(Stab(σ), Z) with
the collection of all subsets of one-two outer-automorphisms A ⊂ B(τ) with |A| = q.

As the differentials are a combination of restrictions to direct summands and
coboundary maps, the E1 page of the equivariant spectral sequence can be expressed
as a union of sub-cochain complexes. Let A be a compatible collection of one-two
automorphisms, with |A| = q. Then in row q one sees the terms where A describes
a generator, corresponding to simplices σ with B(σ) ⊃ A.

Lemma 4.2. If A is essential, then the collection of all entries in row q of the
first page that are given by having A ⊂ B(τ) forms a sub-cochain complex whose
cohomology consists of a single Z in dimension zero.

Proof. Since A is essential, its support is a subcomplex of the hypertree poset.
That is, if σ ∈ |HTn| is in the support of A, then every face of σ is in the support
of A. Further, the vertex associated to τ(A) is a cone point for the support of
A, hence the support of A is contractible. The fact that the support is actually a
subcomplex shows that the sub-cochain complex in the E1 page that corresponds
to A is just the cochain complex for the support of A. Because the support is
contractible, the cohomology of this cochain complex is trivial except for a single
Z in dimension zero. �

We now turn to the case where A is inessential. Call a fat edge in τ(A) worrisome
if it does not contain the vertex labelled 1 or if it does contain the vertex labelled
1, but the reduced path joining 1 to 2 does not contain this edge. Let {e1, . . . , ek}
be the worrisome fat edges of τ(A). Let ci be the label of the vertex in ei that is
closest to the vertex labelled 1 and let Li be the remaining labels of vertices in ei.
Thus, viewing τ(A) as a hypertree rooted at 1, the vertices labelled by numbers in
Li are one level down from the vertex ci.

If Pi is a partition of Li define τ(A)Pi
to be the hypertree where the hyperedge ei

has been split into hyperedges defined by this partition. That is, if Pi = {`1, . . . , `m}
then the edge ei will be replaced with the edges {`j ∪{ci} | 1 ≤ j ≤ m}. Moreover,
if p ∈ Π1 × · · · × Πk is a collection of partitions of the Li, define τ(A)p to be the
hypertree formed by splitting each worrisome edge ei by the associated partition of
Li.

Example 4.3. Consider the hypertree τ shown in Figure 4. The worrisome edges
are all of the edges of τ , excepting e = {1, 2, 3}. Set L1 = {4, 5}, L2 = {6, 7}, L3 =
{8, 9} and L4 = {10, 11} in order to fix the indexing. Let

p = ({{4}, {5}}, {{6, 7}}, {{8, 9}}, {{10}, {11}})

be the result of taking non-trivial partitions of L1 and L4. Then the tree τp formed
by splitting τ according to this product of partitions is shown in Figure 10.

Lemma 4.4. Let A be an inessential collection of one-two automorphisms. Then
the A-peripheral complex is contractible.

Proof. Let p be a non-trivial element of Π1 × · · · × Πk. That is, assume at least
one of the partitions is non-trivial. Let HT≥p be the subposet of HTn consisting of
elements greater than or equal to τ(A)p. The associated order complexes |HT≥p|
cover the peripheral complex.
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1

2 3 4 5

6 7 8 9 10 11

Figure 10. The hypertree resulting from splitting some of the
worrisome fat edges in the hypertree shown in Figure 4.

Each |HT≥p| is contractible as the vertex associated to τ(A)p forms a cone point.
Further, if p1, . . . , ps is any collection of non-trivial elements in Π1 × · · · ×Πk then
their meet p = p1 ∧ · · · ∧ ps is a non-trivial element of Π1 × · · · ×Πk and

|HT≥p| = |HT≥p1 | ∩ · · · ∩ |HT≥ps
| .

Thus we have covered the peripheral complex by contractible subcomplexes whose
intersections are also contractible. By the Quillen Fiber Lemma, the peripheral
complex is homotopy equivalent to the nerve of this covering.

Let p̂ be the product of partitions given by totally partitioning each Li. Then
|HT≥p̂| is a single vertex that is a cone point in the nerve of the covering. Thus
the nerve of the covering is contractible, hence so is the A-peripheral complex. �

The argument above may become less opaque if one consults the example of a
peripheral complex given in Figure 9. The original τ(A) is shown in Figure 8, and
the single worrisome edge is e = {2, 3, 4, 5}. The reader will find that this peripheral
complex has been covered by four contractible subcomplexes corresponding to the
four non-trivial partitions of {3, 4, 5}.

Lemma 4.5. If A is inessential, then the collection of all entries in row q of the
first page that are given by having A ⊂ B(σ) forms a sub-cochain complex whose
cohomology is trivial in all dimensions.

Proof. Let A ⊂ B(σ). Then σ corresponds to a chain of hypertrees τ0 < · · · < τp

and A ⊂ B(τ0). Since τ(A) ≤ τ0 we can pair p-simplices where τ0 6= τ(A) with
(p + 1)-simplices formed by adding τ(A) to the chain:

τ0 < · · · < τp︸ ︷︷ ︸
∼σ

↔ τ(A) < τ0 < · · · < τp︸ ︷︷ ︸
∼σ′

.

We can remove the terms corresponding to paired simplices in the original cochain
complex to form a cochain complex with equivalent cohomology; in other words we
may restrict ourselves to cochains with support on chains with initial element τ(A).
Thus the terms in this new cochain complex correspond to chains of hypertrees of
the form τ(A) < τ1 < · · · < τk where each τi (for i ≥ 1) is in the A-peripheral
subcomplex of |HTn|. In dimension zero there is a single Z corresponding to τ(A).
In general, in dimension k there is a Zp(k) if p(k) is the number of (k− 1)-simplices
in the A-peripheral subcomplex. Thus the new cochain complex is simply the
augmented cochain complex for the A-peripheral complex (with indices shifted
by one). Since the A-peripheral complex is contractible (Lemma 4.4) its reduced
cohomology is trivial hence this cochain complex is acyclic. �
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5. Computing ranks via planted forests

We now know that the E2 page consists of a single column and the entries are
Zi where i counts the number of essential sets of one-two basis elements. By its
definition, every essential set of compatible one-two basis elements forms the basis of
a hypertree with at most one edge of order > 2. These hypertrees can be described
using planted forests.

Given a planted forest on [n], f , let τf be the hypertree whose edges consist of
the edges of f and one additional (hyper)edge consisting of the roots of f . That is,
one forms the hypertree τf by gathering the roots of f . (See Figure 11.)

b ca

f

d

e

Figure 11. Gathering a planted forest with four components on
[6] into a hypertree

Lemma 5.1. A rank q hypertree τ is essential if and only if:
1. τ is formed by gathering the roots of a planted forest f on [n] with (n-q)

components; and
2. The vertex labelled 1 is a root of f and it is not the root of the tree containing

the vertex labelled 2.

There is a bijection between essential sets of one-two generators with q elements
and rank q essential hypertrees. Thus it suffices to count the rank q essential
hypertrees. The number of (n− q) component planted forests on [n] is

pn−q(n) =
(

n− 1
q

)
nq

(See Proposition 5.3.2 of [19].)
Because of our second condition in Lemma 5.1—on the location of the vertex

labelled by 1—not all hypertrees formed by gathering forests are essential. If any
of the non-root vertices are labelled 1 we would be unhappy. Similarly, referring to
Figure 11, if a = 1 then we would not want e = 2. That is, 2 should not label a
vertex in the tree rooted by 1.

So given an unlabelled planted forest with k components and n vertices, what
fraction of the labellings lead to essential hypertrees? First, place 2. There are then
(n− 1) places you could put 1. Of these only the (n− q− 1)-roots that are not the
roots of the tree containing 2 will lead to essential hypertrees. Thus the number
of essential hypertrees can be gotten by taking all hypertrees and multiplying by
n−q−1

n−1 .

Lemma 5.2. The number of essential hypertrees in HTn of rank q is(
n− 2

q

)
nq .

Therefore rk [Hq(OPΣn, Z)] =
(
n−2

q

)
nq.
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When q is maximal (i.e. q = n − 2) the hypertrees under consideration aer
ordinary trees, all of them are essential, and Lemma 5.2 reproves the standard
count of nn−2 for the number of trees with vertex set [n].

Lemma 5.2 establishes our Main Theorem. In order to prove the Brownstein-Lee
Conjecture we need a bit more information. It follows from McCool’s presentation
that H1(PΣn, Z) is free abelian with one generator [αij ] for each generator of PΣn.
The cohomology group H1(PΣn, Z) is then generated by the dual basis {α∗ij} where

α∗ij([αkl]) =
{

1 (k, l) = (i, j)
0 otherwise .

Similarly OPΣn is generated by {ᾱij | i 6= j, i 6= 1, and i 6= 2 if j = 1}, its first
homology is generated by the associated [ᾱij ] and H1(OPΣn, Z) is generated by
the dual basis α∗ij . The argument in Section 4, establishing that the E2 page is
concentrated in a single column (Proposition 4.1), gives an explicit description of
the groups E0,q

2 . Namely, they are free abelian where the elements in our chosen
generating set correspond to products of the elements α∗I,j =

∑
i∈I

α∗ij . These co-

homology classes α∗I,j come from a generating set for the stablizer of an essential
hypertree, hence it must be the case that for any i ∈ I, i 6= 1 and i 6= 2 if j = 1.
Thus we get:

Proposition 5.3. The algebra H∗(OPΣn, Z) is generated by the one-dimensional
classes ᾱ∗ij where i 6= j, i 6= 1 and i 6= 2 if j = 1.

6. Computing H∗(PΣn, Z)

Starting with the short exact sequence

1→ Fn → PΣn → OPΣn → 1

one can apply the Lyndon-Hochschild-Serre spectral sequence to compute the co-
homology groups Hi(PΣn,M). Since cd(Fn) = 1 this spectral sequence is concen-
trated in the bottom two rows of the first quadrant (see Figure 12). In our case, it
is easiest to understand the structure of this spectral sequence by thinking in terms
of a fibration, and appealing to the Leray-Hirsch Theorem. There is a fiber bundle
p : BPΣn → BOPΣn with fiber BFn which gives a fibration (see Theorem 1.6.11
and Theorem 2.4.12 of [2].) The action of PΣn on Fn always sends a generator
to a conjugate of itself and so the induced action on H1(Fn, Z) = Zn is trivial;
therefore E∗,1

2 = H∗(OPΣn,H1(Fn, Z)) = H∗(OPΣn, Zn) with the action of OPΣn

on Zn being trivial. Hence the system of local coefficients in the spectral sequence
is simple.

We remind the reader of the Leray-Hirsch Theorem, as presented in [10]:

Theorem 6.1 (Leray-Hirsch Theorem). Let F
ι→ E

ρ→ B be a fiber bundle such
that

1. Hn(F, Z) is a finitely generated free Z-module for each n, and
2. There exist classes cj ∈ Hkj (E, Z) whose restrictions ι∗(cj) form a basis for

H∗(F, Z) in each fiber F .
Then the map Φ : H∗(B, Z)⊗H∗(F, Z)→ H∗(E, Z) given by∑

i,j

bi ⊗ ι∗(cj) 7→
∑
i,j

ρ∗(bi) ∪ cj



THE INTEGRAL COHOMOLOGY OF THE GROUP OF LOOPS 15

-

6

H0(OPΣn, Z)

H0(OPΣn, Zn)

H1(OPΣn, Z)

H1(OPΣn, Zn)

H2(OPΣn, Z)

H2(OPΣn, Zn)

· · ·

· · ·

Figure 12. The E2 page of the Lyndon-Hochschild-Serre spectral
sequence for 1→ Fn → PΣn → OPΣn → 1.

is an isomorphism.

The first condition of the Leray-Hirsch Theorem is immediately satisfied since
the kernel we are interested in is a free group. We turn then to establishing that
the fiber BFn is totally non-homologous to zero in BPΣn (with respect to Z).

Lemma 6.2. The space BFn is totally non-homologous to zero in BPΣn with
respect to Z. In fact, let c0,0 be a generator for H0(BPΣn, Z) and let c1,1, . . . , c1,n

denote the duals in H1(BPΣn, Z) = Hom((BPΣn)ab, Z) of maps corresponding to
conjugating by the generators of Fn. Then the collection {ι∗(cr,s)} forms an additive
basis for H∗(BFn, Z), where ι : BFn → BPΣn is inclusion.

Proof. The inner automorphism of Fn given by conjugating by a basis element xj

is sent to the symmetric automorphism

α[n]\{j},j = α1j · α2j · · · α̂jj · · ·αnj

under the injection Fn ↪→ PΣn. As the αij form a generating set for PΣn that
projects to a minimal generating set for H1(PΣn, Z), the map

(Fn)ab → (PΣn)ab

is injective. Hence the map

H1(PΣn, Z) = Hom((PΣn)ab, Z)→ H1(Fn, Z) = Hom((Fn)ab, Z)

is onto. Since the cohomology of Fn is only located in degrees 0 and 1, this means
that the map H∗(PΣn, Z)→ H∗(Fn, Z) is onto. �

Having satisfied the hypotheses we may apply the Leray-Hirsch Theorem to
obtain

Lemma 6.3. The map

H∗(OPΣn, Z)⊗H∗(Fn, Z)→ H∗(PΣn, Z)

defined by ∑
j,s

bj ⊗ i∗(cr,s) 7→
∑
j,s

p∗(bj) ∪ cr,s

is an isomorphism. Furthermore, the above spectral sequence has trivial differential
d2, and therefore the rank of Hi(PΣn, Z) is

(
n−1

i

)
· ni
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Proof. That the map is an isomorphism follows from the Leray-Hirsch Theorem.
To compute the ranks of the cohomology groups, we note that Hi(PΣn, Z) =
Hi−1(OPΣn, Zn)×Hi(OPΣn, Z) which by the Main Theorem means

Hi(PΣn, Z) = Z(n−2
i−1)·ni−1·n × Z(n−2

i )·ni

= Z[(n−2
i−1)+(n−2

i )]·ni

= Z(n−1
i )·ni

.

�

Thus at the level of abelian groups, we have the formula claimed in Theorem 6.7
below. At this point the only cause for caution is that the Leray-Hirsch Theorem
does not immediately imply a ring isomorphism. This we establish via the next
two results.

Corollary 6.4. The integral cohomology of PΣn is generated by one-dimensional
classes.

Proof. Consider an x = p∗(b) ∪ c1,s ∈ H∗(PΣn, Z). From 5.3, H∗(OPΣn, Z) is
generated by one-dimensional classes and so there are d1, . . . , dt ∈ H1(OPΣn, Z)
such that b = d1 ∪ · · · ∪ dt. Hence p∗(b) = p∗(d1 ∪ · · · ∪ dt) = p∗(d1) ∪ · · · ∪ p∗(dn)
(cf. property (3.7) in Chapter V of [5]) is also a product of one-dimensional classes.
So x is a product of one-dimensional classes. �

In their work on H∗(PΣn, Z), Brownstein and Lee established

Theorem 6.5 (Theorems 2.10 and 2.11 in [6]). The relations
1. α∗ij ∧ α∗ij = 0
2. α∗ij ∧ α∗ji = 0
3. α∗kj ∧ α∗ji = (α∗kj − α∗ij) ∧ α∗ki

hold among the one-dimensional classes α∗ij in H∗(PΣn, Z), and—in the case where
n = 3—they present the algebra H∗(PΣ3, Z).

These relations give an upper bound on the rank of Hi(PΣn, Z).

Lemma 6.6. The Brownstein-Lee relations imply that the rank of Hi(PΣn, Z) is
at most

(
n−1

i

)
ni.

Proof. The first relations combined with the fact that one-dimensional classes gen-
erate H∗(PΣn, Z) imply that we may form a basis for Hi(PΣn, Z) using i-fold
products of the α∗ij with no repetitions. We may rewrite the third set of relations
as

α∗kjα
∗
ki = α∗kjα

∗
ji + α∗ijα

∗
ki

implying that we never need to repeat the first index. An induction argument using
the original expression for the third relation shows that any telescoping sequence
α∗ijα

∗
jkα∗kl · · ·α∗st is equivalent to a linear combination of terms, each of which in-

cludes α∗it. But then applying the second relation we see that any cyclic product is
trivial:

α∗ijα
∗
jkα∗kl · · ·α∗stα

∗
ti =

(∑
±[various (i− 1)-fold products]α∗it

)
α∗ti = 0.

Thus Hi(PΣn, Z) is generated as an abelian group by the i-fold products of the
one-dimensional generators that do not repeat any α∗ij , do not repeat a first index,
and which do not contain any cyclic products.

We may encode such products as directed graphs on [n] where including α∗jk in
the product adds an edge “j ← k”. The fact that no cyclic products are allowed
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implies the graph has no cycles, so it is a forest. The fact that no first index is
repeated implies that each vertex is the target of at most one edge, hence there is
a natural planting of the forest, with the roots corresponding to vertices that are
not targets of any directed edge. Since there are i edges, and n vertices, the forest
must have (n− i) connected components. But the number of k-component forests
on [n] is

(
n−1
k−1

)
nn−k hence the number of (n − i)-component forests on [n]—which

gives the upper bound on the rank of Hi(PΣn, Z)—is(
n− 1

(n− i)− 1

)
nn−(n−i) =

(
n− 1

i

)
ni.

�

We know that H∗(PΣn, Z) is a quotient of the algebra presented by Brownstein
and Lee’s relations, but we also know by Lemma 6.3 that the rank of Hi(PΣn, Z) is(
n−1

i

)
ni. Thus we have established the Brownstein-Lee Conjecture (the Corollary

to our Main Theorem).

Theorem 6.7. The cohomology of H∗(PΣn, Z) is generated by one-dimensional
classes α∗ij where i 6= j, subject to the relations

1. α∗ij ∧ α∗ij = 0
2. α∗ij ∧ α∗ji = 0
3. α∗kj ∧ α∗ji = (α∗kj − α∗ij) ∧ α∗ki

In particular, the Poincaré series is p(z) = (1 + nz)n−1.

Example 6.8. The cohomology groups of PΣ4 are

Hi(PΣ4, Z) =


Z64 i = 3
Z48 i = 2
Z12 i = 1
Z i = 0

.

As was remarked in §2, viewed as a subgroup of Aut(Fn), PΣn is contained in
the subgroup IAn. Magnus proved that IAn is generated by the αij , which generate
PΣn, along with the automorphisms induced by

θijk =
{

xi → xi[xj , xk]
xl → xl l 6= i

.

Aside from this generating set, little is known about IAn. Fred Cohen and Jon
Pakianathan, and independently Benson Farb, showed that H1(IAn) is free abelian
of rank n2(n − 1)/2, and is generated by the classes [αij ] and [θijk]. Krstić and
McCool proved that IA3 is not finitely presentable [12]. The Krstić-McCool result
has recently been extended by Bestvina, Bux and Margalit to IAn for n ≥ 3; they
also succeed in computing the cohomological dimension of IAn and in showing that
its top dimensional cohomology is not finitely generated [3]. Fred Cohen has pointed
out to us that Theorem 6.7 gives some information about H∗(IAn, Z):

Corollary 6.9. The injection PΣn ↪→ IAn induces a split epimorphism

H∗(IAn, Z) � H∗(PΣn, Z) .

Moreover, the suspension of BPΣn is homotopy equivalent to a bouquet of spheres,
and it is a retract of the suspension of BIAn.
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Remark 3. The suspension of BPn, where Pn is the pure braid group, is also
homotopy equivalent to a wedge of spheres. (This is Corollary 3 of [18]; see also
[1], where this property and its implications for K-theory are explored.) Like the
inclusion PΣn ↪→ IAn, the inclusion Pn ↪→ PΣn induces a surjection on cohomology:
H∗(PΣn, Z) � H∗(Pn, Z), but this surjection does not split over Z, but it does split
over Z[ 12 ] (Proposition 4.3 of [6]).

Proof of Corollary 6.9, due to Fred Cohen. Consider the map PΣn ↪→ IAn com-
posed with the abelianization

IAn →
⊕
n(n

2)
Z = H1(IAn, Z) .

The induced map from the first homology of PΣn to the first homology group
of Zn(n

2) is a split monomorphism. Thus the induced map on the level of integral
cohomology is a split epimorphism, at least in degree 1. Since H1(PΣn, Z) generates
H∗(PΣn, Z) as an algebra, it follows that

H∗(
⊕
n(n

2)
Z, Z)→ H∗(PΣn, Z)

is an epimorphism.
However, the cohomology of Zn(n

2) is an exterior algebra on one-dimensional
classes, some of which correspond to the generators for the cohomology of PΣn.
Furthermore, the single suspension of B[Zn(n

2)] is a bouquet of spheres, with some
subset of these corresponding exactly to the image of homology of PΣn (suitably
reindexed). Denote this subset by SPΣn

. We can then project from the suspension
of B[Zn(n

2)],

Σ(B[Zn(n
2)])→ SPΣn

.

The composition

Σ(BPΣn)→ Σ(B[Zn(n
2)])→ SPΣn

induces a homology isomorphism (of simply connected spaces) and thus is a homo-
topy equivalence. It follows that Σ(BPΣn) is a retract of Σ(BIAn). �

Remark 4. Do the connections above give new information about the cohomology
of IAn? Using the Johnson homomorphism Alexandra Pettet has found a large
number of cohomology classes in H2(IAn, Z) [17], all of which are in the image of
the map ∧2H1(IAn, Z) → H2(IAn, Z). Pettet points out that as a consequence of
Corollary 6.9 one gets a commutative diagram

∧2H1(IAn, Z) −−−−→ ∧2H1(PΣn, Z)y y
H2(IAn, Z) −−−−→ H2(PΣn, Z)

where all the maps, excluding the left edge, are surjections. Thus the classes arising
from Corollary 6.9 are included in the classes Pettet has found.

Another curious point is that Corollary 6.9 gives a non-trivial map

H∗(BIAn)→ T [H̄∗(BPΣn)]
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where T[V] denotes the tensor algebra generated by V . This process also gives a
map out of BIAn to a highly non-trivial space, which might give more information
about BIAn. The map is

BIAn → ΩΣ(BPΣn)

factoring the Freudenthal suspension BPΣn → ΩΣ(BPΣn). By arguments similar
to those above, the composite

BPΣn → BIAn → ΩΣ(BPΣn)

induces a split epimorphism in cohomology. For information on such arguments, in
particular how they apply to the subgroup of PΣn generated by {αij | i > j}, see
[7].
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