
THE 0/1-BORSUK CONJECTURE IS GENERICALLY

TRUE FOR EACH FIXED DIAMETER

JONATHAN P. MCCAMMOND AND GÜNTER ZIEGLER

Abstract. In 1933 Karol Borsuk asked whether every compact subset of R
d

can be decomposed into d + 1 subsets of strictly smaller diameter. The 0/1-
Borsuk conjecture asks a similar question using subsets of the vertices of a d-
dimensional cube. Although counterexamples to both conjectures are known,
we show in this article that the 0/1-Borsuk conjecture is true when d is much
larger than the diameter of the subset of vertices. In particular, for every k,
there is a constant n which depends only on k such that for all configurations
of dimension d > n and diameter 2k, the set can be partitioned into d− 2k +2
subsets of strictly smaller diameter. Finally, Lásló Lovász’s theorem about the
chromatic number of Kneser’s graphs shows that this bound is in fact sharp.
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1. Introduction

In 1933 Karol Borsuk asked whether every compact subset of Rd can be decom-
posed into d + 1 subsets of strictly smaller diameter. The 0/1-Borsuk conjecture
asks a similar question using subsets of the vertices of a d-dimensional cube. More
specifically, given a subset S ⊂ {0, 1}d of diameter k, can S be partitioned into
d + 1 subsets of strictly smaller diameter? Both of these conjectures are known to
be true in lower dimensions and false in higher dimensions. The original conjecture
is known to be true in dimension d ≤ 3 ([]) and false in dimension d = 560 ([2]).
The 0/1-Borsuk conjecture is true in dimension d ≤ 9 ([]) and false in dimension
d = 561 ([4]). See [1] for a detailed discussion of these counterexamples.

Despite the existence of these counterexamples, in this article we show that the
0/1-Borsuk conjecture is true whenever d is much larger than the diameter of the
subset S. In particular, we prove the following:
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Theorem 7.2. For every k > 0 there is a constant n depending only on k such

that the 0/1-Borsuk conjecture is true for every configuration of dimension d > n
and diameter 2k. Moreover, every configuration of dimension d > n and diameter

2k can be partitioned into d − 2k + 2 configurations of strictly smaller diameter,

and this bound is sharp.

The sharpness of the lower bound uses Lásló Lovász’s theorem about the chro-
matic number of Kneser’s graphs.

2. Configurations

We begin with some basic results about configurations.

Definition 2.1 (Configurations). A subset S ⊂ {0, 1}d will be called a configura-

tion. Since the elements of {0, 1}d can be viewed as the vertices of the unit d-cube
in d-dimensional space, every configuration comes equipped with a natural distance
function, although to avoid square roots, we will use the Hamming distance func-
tion instead of the usual Euclidean one. The Hamming distance between two points
u, v ∈ S is simply the square of the Euclidean distance, which is also the number of
coordinates in which u and v differ. Since the 0/1-Borsuk conjecture will be true
using the Hamming distance function if and only if it is true using the Euclidean
distance function, the difference between the two is insignificant. The diameter of
a configuration is the maximum (Hamming) distance between two of its elements.
Two configurations will be called isomorphic if they are isometric as metric spaces.

Definition 2.2 (Set systems). Let [d] denote the set {1, 2, . . . , d}. A set system

is a collection of subsets of a fixed set such as [d]. Notice that every configuration
corresponds to a set system in an obvious way, namely, send each element v ∈ S
to the set of coordinates which are equal to 1. For example, (1, 0, 1, 1) corresponds
to the set {1, 3, 4} ⊂ [4]. The distance between two elements of a configuration
corresponds to the cardinality of the symmetric difference of the corresponding
sets in the set system. We will use a lowercase letter to indicate an element of
a configuration and an uppercase letter for the corresponding set. Thus, if v =
(1, 0, 1, 1), then V = {1, 3, 4}. The radius of a configuration S is the size of the
largest set in its set system.

Definition 2.3 (Rotating a configuration). For each V ⊂ [d] there is an automor-
phism of the unit d-cube obtained by switching the values in the coordinates in V .
This automorphism is clearly distance preserving and sends a configuration to an
isomorphic configuration. The operation of replacing a configuration by its image
under such an automorphism will be called rotating a configuration. Notice that
the diameter of a configuration does not change if the configuration is rotated, but
the radius of a configuration might change.

Lemma 2.4. Every configuration S of diameter k can be rotated so that it has

radius at most k.

Proof. Given any v ∈ S, rotate S by changing all of the values of the coordinates in
V . This sends v to the origin, and since S has diameter k, all of the other elements
in S are sent to elements within k of the origin.

Lemma 2.5. If S is a configuration of radius r and a rotation is applied which

switches the values of exactly s coordinates, then the new configuration will have

radius at most r + s.
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Proof. This is obvious when phrased in terms of sets. Initially the largest set has
size r and the rotation changes the size of each set by at most s.

3. Borsuk graphs

In this section we show that the 0/1-Borsuk conjecture is true for a particular
configuration if and only if its Borsuk graph has a (d + 1)-coloring.

Definition 3.1 (Graphs). We will use the following terminology from graph the-
ory. The clique number of a graph Γ is the size of the largest complete subgraph.
It is usually denoted ω(Γ). A subset V of vertices in a graph is an independent set

if for all u, v ∈ V , u and v are not connected by an edge. A k-coloring of a graph
is a way of partitioning the vertex set into k (possibly empty) independent subsets.
The valence of a vertex is the number of other vertices it is connected to by an
edge.

Definition 3.2 (Borsuk graphs). Let S ⊂ {0, 1}d be a configuration of diameter
k. The Borsuk graph of S is defined as follows. Its vertex set is indexed by the
elements of S, and two vertices are connected by an edge if and only if the distance
between them is k. More generally, Bi(S) has S as its vertex set and two vertices
are connected by an edge if and only if the distance between them is i. Thus the
Borsuk graph of S is Bk(S) where k is the diameter of S. A configuration S is a
connected configuration if and only if its Borsuk graph is connected.

The following lemma and its corollary are essentially immediate.

Lemma 3.3. A configuration of diameter k can be partitioned into l configurations

of strictly smaller diameter if and only if its Borsuk graph is l-colorable. In partic-

ular, the 0/1-Borsuk conjecture is true for a particular configuration S ⊂ {0, 1}d if

and only if its Borsuk graph is (d + 1)-colorable.

We can also quickly reduce to the case where the diameter is even.

Lemma 3.4. The 0/1-Borsuk conjecture is true for configurations of odd diameter.

Proof. If the diameter of the configuration is odd, then the Borsuk graph is bipartite
with all of the v ∈ S with |V | even forming one set of vertices and the v ∈ S with
|V | odd forming the other set.

We can also dispense with the case where the largest valence of a vertex in the
Borsuk graph is small.

Lemma 3.5. If each vertex has valence less than r, then the graph is r-colorable.

Proof. The proof is by induction. If r = 1, then the result is trivial, so suppose that
r > 1 and let V be a maximal independent set of vertices. All of these vertices can
be assigned the same color. When they are removed (along with all of the edges
incident to them) all of the remaining vertices have valence at most r − 1 since V
was maximal. We are now done by induction.

Corollary 3.6. If S is a configuration of diameter 2k whose Borsuk graph has no

vertex of valence at least k + 2, then S is (k + 2)-colorable.
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4. Shells

This section contains two basic definitions and a lemma about distances in con-
figurations.

Definition 4.1 (Shells). If S is a configuration, the i-shell of S is the set of el-
ements which have exactly i coordinates equal to 1. Equivalently, these are the
elements v ∈ S with |V | = i. Notice that the i-shell of a configuration might
change if the configuration is rotated.

Definition 4.2 (Centers). A configuration S of diameter 2k is said to have a center

if there is a rotation of S such that S ′ lies completely in the k-shell of {0, 1}d. If
no such rotation exists, then S is a centerless configuration.

Lemma 4.3. Let S be a configuration of diameter 2k, and let u and v be elements

of S with |U | = m and |V | = n.

1. If m + n < 2k then u and v are not connected in B2k(S).
2. If m + n ≥ 2k, then 2|U ∩ V | ≥ m + n − 2k
3. If m + n ≥ 2k, then u and v are connected in B2k(S) if and only if

2|U ∩ V | = m + n − 2k.

4. If S is connected, then m and n have the same parity.

Proof. Parts (1), (2), and (3) are nearly immediate. In part (4), the connect-
edness of S implies that u can be connected to v by a sequence of elements
u = v0, v1, . . . , vr = v ∈ S where Vi−1 and Vi have a symmetric difference of
size 2k for all i ∈ [r]. This implies that |Vi−1| and |Vi| have the same parity and
thus that |U | = m and |V | = n have the same parity.

5. Kneser graphs

In this section we examine configurations with a center.

Definition 5.1 (Kneser graphs). For d ≥ 2k, let S be the k-shell of the full config-
uration {0, 1}d. That is, let S be the collection of all v ∈ {0, 1}d with |V | = k. Since
d ≥ 2k, S has diameter 2k. In particular, there exist u, v ∈ S with |U | = |V | = k
and |U ∩ V | = 0. The Kneser graph, denoted KG(d, k), is the Borsuk graph of
this S. Alternatively, KG(d, k) is the graph whose vertices are indexed by the
subsets of [d] of size k and two vertices are connected by an edge if and only if the
corresponding subsets are disjoint. Finally, notice that if T is a configuration of
diameter 2k with a center, then after a rotation T ⊂ S ⊂ {0, 1}d and thus B2k(T )
is a subgraph of KG(d, k).

Theorem 5.2 (Lovász). The chromatic number of KG(d, k) is exactly d− 2k +2.

Proof. We will prove that at most d−2k+2 colors are needed. That this coloring is
optimal is a major theorem by Lásló Lovász [3]. Let [d−2k−2] be our set of colors.
For each V ⊂ [d] of size k assign it the color i if i ≤ d−2k+2 is the smallest number
occuring in V , or the color d − 2k + 2 otherwise. This is a valid coloring since two
sets assigned the same color i < d − 2k + 2 will have the element i in common
and thus they will not be connected by an edge in KG(d, k). Similarly, two sets
assigned the color d−2k+2 will have an element in common since they each contain
k elements from the 2k − 2 elements in the list d − 2k + 2, d − 2k + 3, . . . , d.

As a consequence, the conjecture is true for configurations with a center.
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Corollary 5.3. If S is a configuration of diameter 2k with a center, then B2k(S)
is isomorphic to a subgraph of KG(d, k) and thus it is (d − 2k + 2)-colorable. In

particular, the 0/1-Borsuk conjecture is true for every configuration with a center.

Proof. Since rotating a configuration does not change the isomorphism type of its
Borsuk graph, this is immediate from Theorem 5.2.

For later purposes, we record the following improvement of Corollary 5.3.

Lemma 5.4. Let S be a configuration of diameter 2k. If S has a center. and the

clique number of its Borsuk graph is r, then B2k(S) is rk-colorable.

Proof. By rotating, we may assume that the center of S is the origin and that S
lies completely in the k-shell of {0, 1}d. If v1, v2, . . . , vr ∈ S are the vertices of an
r-clique in B2k(S), then V1, V2, . . . , Vr are pairwise disjoint sets in [d]. Let V be
their union and note that |V | = rk. The set V will be our set of colors. Since
B2k(S) has clique number r, there does not exist an element vr+1 ∈ S such that
Vr+1 is disjoint from V . Thus for each element u ∈ S, U ∩V is nonempty and there
is some smallest element in the intersection. This will be the color of u. As in the
proof of Theorem 5.2, if two elements u1 and u2 are assigned the same color then
U1 and U2 have an element in common and thus u1 and u2 are not joined by an
edge in B2k(S). This proves that this coloring is valid.

Lemma 5.5. If S is a connected configuration of radius r and diameter 2k and

T ⊂ S is its k-shell, then either ω(B2k(T )) ≤ r, or S = T .

Proof. Assume the clique number of B2k(T ) is at least r + 1, and choose elements
v1, v2, . . . , vr+1 ∈ T such that V1, V2, . . . , Vr+1 are pairwise disjoint. If S 6= T , then
since S is connected, there is an element u ∈ S which is not in T , but which is
distance 2k from an element of T . Assume u is in the l-shell of S, l 6= k. Note that
l < k is impossible since the maximum distance between two such points is at most
k + l < 2k. Thus l > k. Since the diameter of S is 2k and k + l > 2k, U and Vi

have a nonempty intersection for each i ∈ [r +1]. But since the sets Vi are disjoint,
this would imply that U has size at least r + 1, contradicting the assumption on
the radius of S. Thus S lies completely in the k-shell and S = T .

Corollary 5.6. If S is a connected, centerless configuration of radius r and diam-

eter 2k, then the k-shell of S is rk-colorable.

6. Central sets

If a configuration is centerless and has a vertex with valence at least k + 2, then
it will have a central set. Central sets are then used to provide an explicit method
(Theorem 6.4) of coloring an arbitrary connected centerless configuration.

Definition 6.1 (Central sets). Let S be a configuration of diameter 2k and let
v ∈ S be a vertex of valence at least k + 2 in the Borsuk graph of S. After
a possible rotation, we may assume that v is at the origin and that the 2k-shell
contains at least k+2 elements. A central set for S will be the union of the pairwise
intersections of the k + 2 subsets of [d] corresponding to these elements. Call this
set C and let c denote |C|. In particular, if v1, v2, . . . , vk+2 are k + 2 elements of
the 2k-shell of S, then there is a central set

C =
⋃

i6=j∈[k+2]

(Vi ∩ Vj)
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The elements vi, i ∈ [k+2] are said to generate C. Alternatively, notice that listing
all of the elements of each Vi would be a list of 2k(k + 2) elements and C would be
exactly the elements that occur at least twice in the list. Incidentally, this shows
that c ≤ k(k + 2).

Lemma 6.2. Every configuration S of diameter 2k which is not (k + 2)-colorable
can be rotated so that it has a central set of size at most k(k + 2).

Proof. This follows from Corollary 3.6 and Definition 6.1.

Lemma 6.3. Let S be a connected configuration of diameter 2k and let u be an

element of S with |U | = 2i, i ≤ k. If C is a central set for S, then |U ∩ C| ≥ i.

Proof. Let v1, v2, . . . , vk+2 be the elements of S which generate C. Since |Vj | = 2k
and |U | = 2i, by part 2 of Lemma 4.3, |U ∩Vj | ≥ i for all j ∈ [k +2]. If U ∩Vj ⊂ C
for any j ∈ [k+2], then we are done. If not, then let l be the size of the largest such
intersection and notice that U contains at least i− l ≥ 1 elements in Vj − (Vj ∩C)
for each j ∈ [k + 2]. Since these complements are disjoint by the definition of C, U
contains at least (k + 2)(i − l) + l elements. But since

(k + 2)(i − l) + l = (k + 1)(i − l) + i ≥ k + 1 + i ≥ 2i + 1

this contradicts our assumption that |U | = 2i.

Theorem 6.4. Let S be a connected centerless configuration of radius 2k and di-

ameter 2k. If S has a central set C of size c, then there exists a constant n which

depends on k and c, but independent of d, such that the Borsuk graph of S can be

n-colored.

Proof. The strategy will be to split B2k(S) into 5 subgraphs each of which is colored
with its own distinct set of colors. In particular, we define the following subsets
which by Lemma 6.3 partition S:

1. S1 = {v ∈ S | |V | < k}
2. S2 = {v ∈ S | |V | = k}
3. S3 = {v ∈ S | k < |V | < 2k}
4. S4 = {v ∈ S | |V | = 2k and |V ∩ C| > k}
5. S5 = {v ∈ S | |V | = 2k and |V ∩ C| = k}

Once we show that B2k(Si) requires a bounded number of colors in terms of k and
c for each i ∈ [5], the proof will be complete.

Step 1: By part 1 of Lemma 4.3, the elements in S1 form an independent set in
B2k(S) and thus they can be assigned a single color.

Step 2: Since S does not have a center, and since S2 is the k-shell of S, by
Lemma 5.5, ω(B2k(S2)) ≤ 2k and by Corollary 5.6, B2k(S2) is 2k2-colorable.

Step 3: Let U be a subset of C of size i, where k < 2i < 2k, and let SU be
the set of all v ∈ S3 such that |V | = 2i and U ⊂ V . Notice that by part 3 of
Lemma 4.3, the elements in SU form an independent set since for each v1, v2 ∈ SU ,
|V1 ∩V2| ≥ |U | = i, but i is greater than the i + (i− k) required for v1 and v2 to be
connected by an edge in B2k(S). By Lemma 6.3 every element of S3 is contained
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in SU for some subset U ⊂ C with k < |U | < 2k. Thus S3 can be partitioned into

k−1
∑

i>k/2

(

c

i

)

≤
k

∑

i=0

(

c

i

)

= 2c

independent sets and as a consequence B2k(S3) can be 2c-colored.

Step 4: Let U be a subset of C of size k+1 and let SU be the set of all v ∈ S4 such
that U ⊂ V . By part 3 of Lemma 4.3, the elements in SU form an independent
set since for each v1, v2 ∈ SU , |V1 ∩ V2| ≥ |U | = k + 1 which is greater than the k
required for v1 and v2 to be connected by an edge in B2k(S). By Lemma 6.3 every
element of S4 is contained in SU for some subset U ⊂ C with |U | = k + 1. Thus S4

can be partitioned into
(

c
k+1

)

independent sets and as a consequence B2k(S3) can

be
(

c
k+1

)

-colored.

Step 5: For the configuration S5 we will distinguish two possibilities. Suppose
there exists a set U ⊂ C with |U | = k such that for all v ∈ S5, U ⊂ V . In this
case, there is a rotation which sends the elements of S5 into the k-shell, namely,
the rotation which switches all of the values of the k coordinates in U . For all
v ∈ S5, |V | = 2k and since U ⊂ V , the rotation V ′ of V will have |V ′| = k.
Let S′

5 denote the rotated configuration. If this rotation were applied to all of
S, then by Lemma 2.5 the result would be a configuration S ′ of radius r where
r ≤ 3k. Since the original configuration did not have a center, and since S ′

5 is at
least contained in the k-shell of S ′, by Lemma 5.5, ω(B2k(S′

5)) ≤ r ≤ 3k. Thus by
Corollary 5.6, B2k(S′

5) is rk-colorable. Since B2k(S′
5) is isomorphic to B2k(S5) and

r ≤ 3k, B2k(S5) is 3k2-colorable.
If, on the other hand, such a set U ⊂ C does not exist, then there exist v1, v2 ∈ S5

with V1∩C 6= V2∩C. Let U be a subset of C of size k and suppose that U 6= V1∩C.
As above, let SU be the set of all v ∈ S5 such that U ⊂ V . For each v ∈ SU , the
set V ∩ Vi has size k even though V ∩ Vi ∩ C has size at most k − 1. In particular,
for every element v ∈ SU , V contains an element of Vi − C. Let a be an element
of Vi − C and let S(U,a) be the set of all v ∈ SU with a ∈ V . Since the elements of
S(U,a) have sets with at least k + 1 elements in common, they form an independent
set (by part 3 of Lemma 4.3) and by the above argument, the union of the sets
S(U,a) as a varies over Vi − C is all of SU . Since |Vi ∩ C| = k, the size of Vi − C
is also k, and thus B2k(SU ) is k-colorable. Finally, by Lemma 6.3, every element
v ∈ S5 is contained in SU for some U ⊂ C of size k. The above argument shows
that if U 6= V1 ∩ C, then B2k(SU ) is k-colorable. If U = V1 ∩ C, then since
V1 ∩ C 6= V2 ∩ C, we have instead U 6= V2 ∩ C, and a similar argument shows that
B2k(SU ) is k-colorable in this instance as well. Since there are only

(

c
k

)

such sets

U , B2k(S5) is k
(

c
k

)

-colorable. This completes the proof.

Remark 6.5 (Upper bounds). Examining the various bounds given in the proof
of Theorem 6.4 gives an upper bound for the constant n mentioned in the theorem.
Depending on which part of step 5 is applied, the bound on the number of colors
needed is either

1 + 2k2 +





k−1
∑

i>k/2

(

c

i

)



 +

(

c

k + 1

)

+ 3k2 ≤ 5k2 + 2c
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or

1 + 2k2 +





k−1
∑

i>k/2

(

c

i

)



 +

(

c

k + 1

)

+ k

(

c

k

)

≤ 2k2 + (k + 1)2c

Finally, we recall that by Lemma 6.2, c itself is at most k(k + 2), and thus all of
these estimates depend on k alone.

7. Main Theorems

In this final section we collect together our main results.

Theorem 7.1. Let S ⊂ {0, 1}d be a connected configuration of diameter 2k. If S
has a center, then its Borsuk graph can be d− 2k + 2 colored. If it does not have a

center then its Borsuk graph can be n-colored, where n is a constant which depends

only on k and not on d.

Proof. If S has a center this follows from Corollary 5.3. If S does not have a center,
then by Lemma 6.2 either B2k(S) is (k +2)-colorable or S has a rotation which has
a central set and the result follows from Theorem 6.4.

Theorem 7.2. For every k > 0 there is a constant n depending only on k such

that the 0/1-Borsuk conjecture is true for every configuration of dimension d > n
and diameter 2k. Moreover, every configuration of dimension d > n and diameter

2k can be partitioned into d − 2k + 2 configurations of strictly smaller diameter,

and this bound is sharp.

Proof. Apply Theorem 7.1 to each connected component of B2k(S). The sharpness
of the bound is shown by Kneser’s graphs and Theorem 5.2.

Theorem 7.3. If S ⊂ {0, 1}d is a configuration of diameter 2k and

d > (k + 1)2k(k+2) + 5k2 + 2k − 2

then B2k(S) is (d − 2k + 2)-colorable and the 0/1-Borsuk conjecture is true for S.

Proof. This is immediate from Theorem 7.2 and Remark 6.5.

One final remark. No attempt has been made to make the number in Theorem 7.3
as small as possible since the most interesting fact is that such a bound even exists.
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