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Dual braids and orthoschemes

It has long been conjectured that the braid groups are
non-positively curved in the sense that they have a geometric
action on some complete CAT(0) space. In fact, a promising
candidate has been known for some time.

In 2001 Tom Brady constructed a contractible n-dimensional
simplicial complex with a free, cocompact, vertex-transitive
n-strand braid group action and in 2010 Tom and I added a
specific piecewise-euclidean metric to this complex.

I call this the dual braid n-complex with the orthoscheme metric.
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Braid groups and CAT(0)

Tom and I conjectured that the dual braid n-complex with the
orthoscheme metric is a CAT(0) space for every positive
integer n and this conjecture has been established when n is
very small. In these talks I outline a recent proof of the full
conjecture (joint work with M. Dougherty and S. Witzel).

Theorem (Braid groups are CAT(0))
For every integer n > 0, the dual braid n-complex with the
orthoscheme metric is a CAT(0) space and, as a
consequence, the n-strand braid group is a CAT(0) group.

The lectures will introduce the complexes, metrics and groups
under consideration, and outline the proof.
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I like this theorem and its proof because:
it gives a uniform explanation for many properties of braids,
the structures we introduce lead to many new questions,
the proof itself is very pretty (in my opinion),
it is a new class of examples of CAT(0) spaces, and
I’ve been trying to prove this (on and off) for 15 years.
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The Revised Plan

The revised plan for these lectures is as follows.
Talk 1: The Basics
Talk 2: The Pieces
Talk 3: The Proof

More precisely,
Talk 1: curvature conditions and the braid groups
Talk 2: dual braid complex and orthoschemes
Talk 3: assemble the pieces and sketch the proof
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Curvature conditions

Definition (Triangles)

A geodesic triangle ∆ is a triple of points x ,y ,z ∈ X and a triple
of geodesics [x ,y], [y ,z] and [z,x] called vertices and sides.
A comparison triangle ∆′ in E is a triple of points x ′, y ′ and z′

so that the corresponding side lengths are equal.

Definition (CAT(0) spaces)

For every point p in a side of ∆ in X there is a corresponding p′

in a side of ∆′ in E that is the same distance from its vertices.
The triangle ∆ satisfies the CAT(0) inequality if for all p and q
in sides of ∆, dX (p,q) ≤ dE(p′,q′). A space X is CAT(0) if all
geodesic triangles in X satisfy the CAT(0) inequality.
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Convex and Complete

Example (Rn)

n-dimensional Euclidean space is a CAT(0) space.

It is an easy consequence of the CAT(0) inequality that
geodesics in CAT(0) spaces are unique.

Definition (Convex and Complete)
A subspace U ⊂ X is convex if for all x ,y ∈ U, the unique
geodesic from x to y is in U. A CAT(0) space is complete if it is
complete as a metric space.

There are several ways to construct new CAT(0) spaces from
existing CAT(0) spaces.
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Easy Constructions

Lemma (Convex subspaces)

If X is a CAT(0) space and U ⊂ X is a convex subspace then U
is a CAT(0) space.

Lemma (Fixed sets)

If f ∶X → X is an isometry of a CAT(0) space X, then the set of
points fixed by f is a convex CAT(0) subspace.

Lemma (Products)
If X = U ×V is a direct product of metric spaces, then X is a
CAT(0) space if and only if both U and V are CAT(0) spaces.
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Gluing

Lemma (Gluing)

Let X = U ∪V be a metric space. If U, V and U ∩V are
non-empty complete CAT(0) spaces, then X is a complete
CAT(0) space.

The gluing lemma is really the gluing theorem since its proof is
slightly delicate. Once established, a simple induction extends
this from 2 subspaces to n subspaces.

Lemma (Gluing n subspaces)

Let X = X1 ∪⋯ ∪Xn be a metric space. If for each ∅ ≠ B ⊂ [n],
the corresponding intersection XB = ∩i∈BXi is a non-empty
complete CAT(0) space, then X is a complete CAT(0) space.

The notation [n] means {1,2, . . . ,n}.
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Non-positive curvature

Non-positively curved means locally CAT(0).

Definition (Non-positively curved)
Let X be a geodeisc metric space. If every point in X has a
neighborhood that is a CAT(0) space, then X is said to be
non-positively curved.

The Cartan-Hadamard Theorem shows that the difference
between the local and the global version is purely topological.

Theorem (Cartan-Hadamard)
Let X be a complete connected metric space. If X is
non-positively curved then its universal cover is CAT(0).
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Euclidean cell complexes

Definition (Euclidean cell complexes)
Roughly speaking, a euclidean cell complex X is a space
constructed by gluing together a collection of convex euclidean
polytopes along isometric subpolytopes. The shapes in X are
the equivalence classes of these polytopes up to isometry.

We say that X has finitely many shapes when it has only finitely
many isometry types of cells. Bridson proved that the local
polytope metrics combine to define a well-behaved global
metric when the complex has finitely many shapes.

Theorem (Shapes)
If X is connected euclidean cell complex with finitely many
shapes, then X is a complete geodesic metric space.
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Gromov’s criterion

When testing whether a euclidean cell complex is
non-positively curved it is sufficient to check whether it is
CAT(0) in the neighborhood of each vertex.

Theorem (Gromov’s criterion)
If X is a eucldiean cell complex with finitely many shapes, then
X is non-positively curved if and only if every vertex has a
neighborhood that is CAT(0).

Gromov’s criterion follows from the observation that if v is a
vertex of the polytopal cell containing x ∈ X , then each
neighborhood of v contains an isometric copy of a sufficiently
small neighborhood of x . In particular, if this neighborhood of v
is CAT(0) then so is the small neighborhood of x .
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Group actions

Gromov’s criterion can be simplified using group actions.

Definition (Isometric actions)
The action of a group G on a metric space X is by isometries
when the action of G preserves the metric on X :
for all g ∈ G and x ,y ∈ X , dX (g.x ,g.y) = dX (x ,y).

Combining the group action, Gromov’s criterion and the
Cartan-Hadamard theorem produces a local CAT(0) test.

Theorem (Local criterion)
Let G be a group acting vertex-transitively by isometries on a
connected and simply-connected euclidean cell complex X with
finitely many shapes. If X contains a CAT(0) subcomplex that
contains a neighborhood of a vertex, then X is a CAT(0) space.
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Proof of the Local criterion

Proof.
Let Y be the subcomplex and let v be the vertex. Since Y is
CAT(0), it is non-positively curved. By hypothesis and by
Gromov’s criterion we can find a neighborhood N(v) of a vertex
v in X such that N(v) ⊂ Y is CAT(0). Because the action of G
is vertex-transitive, for every vertex v ′ ∈ X there is a g ∈ G such
that g.v = v ′ and since the action is by isometries g.N(v) is a
CAT(0) neighborhood of v ′. Thus every vertex in X has a
CAT(0) neighborhood. By Gromov’s criterion X is
non-positively curved, by Bridson’s theorem X is complete and
by hypothesis X connected and simply-connected. Thus by the
Cartan-Hadamard Theorem X is a CAT(0) space.
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Geometric actions

We now shift our attention from spaces to groups. Let G be a
group acting on a metric space X .

Definition (Group actions)
The action is free if the identity in G is the only element that
fixes a point in X . The action is proper if for every point x ∈ X ,
there is a neighborhood N(x) of x such that the set
{g ∈ G ∣ g.N(x) ∩N(x) ≠ ∅} is finite. And the action is
cocompact if there is a compact subset K ⊂ X whose orbit
under the G-action is all of X : G.K = X .

Definition (Geometric actions)
When the action of G on X is proper, cocompact and by
isometries, it is called a geometric action.
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CAT(0) groups and NPC groups

Definition (CAT(0) groups and NPC groups)

A group is CAT(0) if it admits a geometric action on some
complete CAT(0) space and it is non-positively curved if it is
the fundamental group of a compact non-positively curved
space.

These concepts are equivalent when the group is torsion-free.

Proposition (Torsion and curvature)

If G is a group with a geometric action on a CAT(0) space X,
then the action of G on X is free if and only if G is torsion-free.
As a consequence a group is non-positively curved if and only if
it is CAT(0) and torsion-free.

And note that the braid groups are torsion-free.
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Labeled configuration spaces

The braid groups have many different equivalent definitions.
One of the main ones is as the fundamental group of a
configuration space of n unlabeled points in the plane. Let X be
a topological space and let X n be the space of all n-tuples
x⃗ = (x1,x2, . . . ,xn) of elements xi ∈ X .

Definition (Labeled configuration spaces)

The configuration space of n labeled points in X is the
subspace CONFn(X) of X n of n-tuples with distinct entries. The
thick diagonal of X n is the subspace

∆ = {(x1, . . . ,xn) ∣ xi = xj for some i ≠ j}

where this condition fails. Thus CONFn(X) = X n −∆.
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Unlabeled configuration spaces

Definition (Unlabeled configuration spaces)

The symmetric group acts on X n by permuting coordinates and
this action restricts to a free action on CONFn(X). The
configuration space of n unlabeled points in X is the quotient
space UCONFn(X) = (X n −∆)/SYMn.

Remark (The map SET)

Since the quotient map sends the n-tuple (x1, . . . ,xn) to
n-element set {x1, . . . ,xn}, we write

SET∶CONFn(X)→ UCONFn(X)

for this natural quotient map.
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First Examples

Example (Configuration spaces)

When X is the unit circle and n = 2, the space X 2 is a torus, ∆
is a (1,1)-curve on the torus, its complement CONF2(X) is
homeomorphic to the interior of an annulus and the quotient
UCONF2(X) is homeomorphic to the interior of a Möbius band.

Example (Braid arrangement)
Let C be the complex numbers with its usual topology and let
z⃗ = (z1,z2, . . . ,zn) denote a point in Cn. The thick diagonal of
Cn is a union of hyperplanes called the braid arrangement and
the hyperplanes in the arrangement are defined by the
equations zi − zj = 0 for all i ≠ j ∈ [n].
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Braids in C

Definition (Braids in C)

The configuration space CONFn(C) is the complement of the
braid arrangement and its fundamental group is called the
n-strand pure braid group. The n-strand braid group is the
fundamental group of the quotient configuration space
UCONFn(C) = CONFn(C)/SYMn of n unlabeled points.

In symbols we have

PBRAIDn = π1(CONFn(C), z⃗)

BRAIDn = π1(UCONFn(C),Z)

where z⃗ is some specified basepoint in CONFn(C) and
Z = SET(z⃗) is the corresponding basepoint in UCONFn(C).
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The Braid Arrangement
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Short exact sequence

Remark (Short exact sequence)
The quotient map SET is a covering map, so the induced map

SET∗∶PBRAIDn → BRAIDn

on fundamental groups is injective. Since CONFn(C) is a
regular cover of UCONFn(C), the image of PBRAIDn in BRAIDn
is a normal subgroup and the quotient is the group SYMn of
covering transformations. We have a short exact sequence.

PBRAIDn
SET∗↪ BRAIDn

PERM↠ SYMn.

The second map is called PERM because each braid is sent to
the induced permutation of the basepoint, an n-element set.
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Very few strands

Example (n = 1)

The spaces UCONF1(C), CONF1(C) and C are equal and
contractible, and all three groups in the short exact sequence
are trivial.

Example (n = 2)

The space CONF2(C) is C2 −C1, which retracts to C1 −C0 and
then to the unit circle S1 ⊂ C. The quotient space UCONF2(C)
also deformation retracts to S1 and the map from CONF2(C) to
UCONF2(C) corresponds to the map from S1 to itself sending z
to z2. In particular PBRAID2 ≅ BRAID2 ≅ Z, the map SET∗
multiplies by 2 and the quotient is Z/2Z ≅ SYM2.

We assume n > 2 from now on.
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Braids in D

Let D ⊂ C be the closed unit disk centered at the origin.
Restricting to configurations of points that remain in D does not
change the fundamental group of the configuration space.

Proposition (Braids in D)

The configuration space UCONFn(C) deformation retracts to
the subspace UCONFn(D), so for any choice of basepoint Z in
the subspace,

π1(UCONFn(D),Z) = π1(UCONFn(C),Z) = BRAIDn.

Since the topology of a configuration space only depends on
the topology of the original space, we can replace D with any
space P homeomorphic to D.
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Braids in P

Corollary (Braids in P)
A homeomorphism D→ P induces a homeomorphism
h∶UCONFn(D)→ UCONFn(P). In particular, for any choice of
basepoint Z in UCONFn(D), there is an induced isomorphism

π1(UCONFn(D),Z) ≅ π1(UCONFn(P),h(Z)) = BRAIDn.

Remark (Points in ∂P)
When BRAIDn is viewed as the mapping class group of a
punctured disk, the punctures cannot move into the boundary
since this would alter the topological type of the space. When
BRAIDn is viewed as the fundamental group of a configuration
space of unlabeled points, they can move into the boundary.

The extra flexibility is surprisingly useful.
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Standard Basepoints and Disks

Definition (Roots of unity)

Let ζ = e2πi/n ∈ C be a primitive n-th root of unity and let vi be
the point ζ i for all i ∈ Z. Since ζn = 1, the subscript i should be
interpreted as an integer representing i + nZ ∈ Z/nZ.

Definition (Standard basepoints and disks)

The standard basepoint for PBRAIDn is v⃗ = (v1,v2, . . . ,vn) and
the standard basepoint for BRAIDn is V = {v1,v2, . . . ,vn}. Let P
be the convex hull of the points in V = SET(v⃗). Our standing
assumption of n > 2 means that P is homeomorphic to the disk
D. We call P the standard disk for BRAIDn.

For us the notation BRAIDn means π1(UCONF(P),V).
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Standard Disks and Subdisks
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Standard Subdisks

Definition (Subsets of vertices)

For each non-empty A ⊂ [n] of size k , let VA = {vi ∣ i ∈ A} ⊂ V .

Definition (Subdisks k > 2)
For k > 2, let PA be the convex hull of the points in VA and note
that PA is a k -gon homeomorphic to D. We call this the
standard subdisk for A ⊂ [n].

Definition (Subdisks k = 2)

For k = 2 and A = {i , j}, we define PA so that it is a topological
disk. Take two copies of the path along the straight line
segment eij connecting vi and vj and then bend one or both of
these copies so that they become injective paths from vi to vj
with disjoint interiors which together bound a bigon inside P.
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Representatives

Definition (Representatives)
Each braid α ∈ BRAIDn is a basepoint-preserving homotopy
class of a path f ∶ [0,1]→ UCONFn(P,V) that describes a loop
based at the standard basepoint V . We write α = [f ] and say
that the loop f represents α. Greek letters - α, β, δ - are braids
and Roman letters - f , g, h - are their representatives.

Vertical drawings of braids in R3 typically have the t = 0 start at
the top and the t = 1 end at the bottom. As a mnemonic, we use
superscripts for information about the start of a braid or a path
and subscripts for information about its end.
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Strands

Let f be a representative of a braid. A strand of f is a path in P.

Definition (Strand that starts at vi )

The strand that starts at vi is the path f i ∶ [0,1]→ P defined by
the composition f i = PROJi ○ f̃ v⃗ .

Definition (Strand that ends at vj )

The strand that ends at vj is the path fj ∶ [0,1]→ P defined by
the composition fj = PROJj ○ f̃v⃗ .

When the strand of f that starts at vi and ends at vj the path f i

is the same as the path fj . We write f i , fj or f i
j for this path and

we call it the (i , ⋅)-strand, the (⋅, j)-strand or the (i , j)-strand of f .
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Drawings

A drawing of a braid representative f is the union of the graphs
of its strands inside the polygonal prism [0,1] ×P.

Definition (Drawings)

To embed this prism into R3 the complex plane containing P is
identified with either the first two coordinates of R3 and the third
coordinate indicates the value t ∈ [0,1] arranged so that the
t = 0 start of f is at the top and the t = 1 end of f is at the
bottom.

Definition (Multiplication)
Let α1 and α2 be braids with representatives f1 and f2. The
product α1 ⋅ α2 is [f1.f2] where f1.f2 is the concatenation of f1
and f2. In the drawing of f1.f2 the drawing of f1 is above and the
drawing of f2 is before.
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Rotations

Definition (Rotations of subdisks)

For A ⊂ [n] of size k = ∣A∣ > 1 we define an element δA ∈ BRAIDn
that rotates the vertices in VA. It is the braid represented by the
path in UCONFn(P) that fixes the vertices in V −VA and where
every vertex vi ∈ VA travels in a counter-clockwise direction in
∂PA to the next vertex of PA.

Definition (Rotations of edges)

If A = {i , j} and e = eij is the edge connecting vi and vj , then we
sometimes write δe to mean δA, the rotation of vi and vj around
the boundary of the bigon PA.

The next slide shows that product α = α1 ⋅ α2 where
α = δ{1,2,3,4,5,6}, α1 = δ{1,5,6} and α2 = δ{2,3,4,5}. The map PERM

sends this product to (1,2,3,4,5,6) = (1,5,6) ⋅ (2,3,4,5).
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Product of two rotations

v1v2

v3
v4 v5

v6 = v0

α2 = δ{2,3,4,5}

α1 = δ{1,5,6}

t = 1

t = 0
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Dual Parabolic Subgroups

For each A ⊂ [n] of size k , let B = [n] −A and PB = P −VB.

Lemma (Isomorphic groups)

The inclusion map PA ↪ PB extends to an inclusion map
h∶UCONFk(PA)↪ UCONFk(PB) and it induces an isomorphism
h∗∶π1(UCONFk(PA),VA)→ π1(UCONFk(PB),VA).

For k > 1, PA is a disk, π1(UCONFk(PA),VA) is isomorphic to
BRAIDk and by the lemma so is π1(UCONFk(PB),VA).

Definition (Dual Parabolic Subgroups)

For each A of size k , BRAIDA is g∗(π1(UCONFk(PB),VA))
where g∶UCONFk(PB)↪ UCONFn(P) is the map that sends
U ∈ UCONFk(PB) to g(U) = U ∪VB ∈ UCONFn(P).

Note that g(VA) = V . BRAIDA is a dual parabolic subgroup.
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Fixing Vertices

Definition (Fixing Vertices)

Let α = [f ] be a braid in BRAIDn. We say that f fixes vi ∈ V if the
strand that starts at vi is a constant path, f fixes VB ⊂ V if it
fixes each vi ∈ VB and α fixes VB if it has some representative f
that fixes VB. Let FIX(B) = {α ∈ BRAIDn ∣ α fixes VB}.

Special representatives can be concatenated and inverted
while remaining special, so FIX(B) is a subgroup of BRAIDn.

Lemma (FIX(B) = BRAIDA)

If A and B are sets that partition [n], then the fixed subgroup
FIX(B) is equal to the parabolic subgroup BRAIDA.
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Disks and Subdisks revisited
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Dual Parabolic Intersections

It is straight-forward to show that the collection of of irreducible
dual parabolic subgroups is closed under intersection and
extremely well-behaved.

Proposition (Dual Parabolic Intersections)

For all n > 0 and for every non-empty B ⊂ [n],

FIXn(B) = ⋂
i∈B

FIXn({i})

and, as a consequence, for all non-empty C,D ⊂ B,

FIXn(C ∪D) = FIXn(C) ∩ FIXn(D).
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