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Subsets, Subdisks and Rotations

Recall: for each A ⊂ [n] of size k > 1 with B = [n] −A we have
defined a subset of vertices VA, a subdisk PA, a rotation δA and
a subgroup BRAIDA = FIX(B) isomorphic to BRAIDk .
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Atomic Generators and Relations

When A = {i , j} and e is the edge connecting vi and vj , we write
δe for the corresponding rotation of the bigon PA. The (n

2)
possible edges connecting vertices of P is denoted EDGES(P).

Definition (Atomic dual generators)

The set T = {δe ∣ e ∈ EDGES(P)} generates BRAIDn and its
elements are the atomic dual generators.

Definition (Atomic dual relations)
When e1 and e2 are disjoint, the rotations δe1 and δe2 commute.
When e1, e2 and e3 form the boundary of a triangle and the
subscripts indicate the clockwise order of the edges in the
boundary, then δe1δe2 = δe2δe3 = δe3δe1 . Together these two types
of relations are the atomic dual relations.
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Birman-Ko-Lee Presentation

Artin’s original presentation used a linear ordering of the
strands. In the 1990s Birman, Ko and Lee introduced an
alternative presentation that used a circular ordering instead.

Definition (Birman-Ko-Lee Presentation)
The atomic dual generators and atomic dual relations form the
Birman-Ko-Lee presentation of BRAIDn.

⟨{δe}
δe1δe2 = δe2δe1 e1,e2 disjoint

δe1δe2 = δe2δe3 = δe3δe1 e1,e2,e3 oriented triangle ⟩

Remark (Various generating sets)
The Artin generators are contained in the Birman-Ko-Lee
generators, which are a subset of the set of all rotations, which
are a subset of an even larger generating set.
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Noncrossing Partitions

Definition (Partitions)

A partition of [n] is a collection of pairwise disjoint subsets,
called blocks, whose union is [n]. A singleton block is trivial and
trivial blocks are omitted when describing a partition.

Definition (Noncrossing partitions)

A partition Π = {A1, . . . ,A`} of [n] is noncrossing when the
convex hulls CONV(VAi ) are pairwise disjoint.

Definition (Noncrossing Partition Lattice)

The set of all noncrossing partitions forms a poset under
refinement NCn. In other words, one partition is below another
if and only if every block of the first is a subset of a block of the
second. In fact, it is a lattice (i.e. meets and joins exists).
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Noncrossing Partitions of a Square
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Noncrossing Properties

Definition (Properties)

A poset is bounded if it has a unique maximum element 1̂ and a
unique minimum element 0̂ and it is graded is every maximal
chain has the same length. In a bounded graded poset the rank
of an element x is the number of covering relations between x
and the minimum element 0̂.

Remark (Noncrossing rank)
The noncrossing partition lattice is bounded and graded and
the height of a partition is n minus the number of blocks. The
identity has rank 0 and the top element has rank n − 1.
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Noncrossing Braids

Definition (Noncrossing Braids)

When Π = {A1, . . . ,A`} is a noncrossing partition of [n], the
subdisks PAi are pairwise disjoint and the rotations δAi pairwise
commute. Their product is the noncrossing braid δΠ.

Remark (Rotations and Irreducible Partitions)
A partition with exactly one nontrivial block is called irreducible.
Note that a noncrossing braid δΠ is a rotation if and only if Π is
an irreducible noncrossing partition.

Remark (Noncrossing permutations)
Every noncrossing partition Π also indexes a noncrossing
permutation, the permutation associated to the noncrossing
braid δΠ with one nontrivial cycle for each nontrivial block of Π.
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Dual Braid Relations

Remark (Atoms)
The atoms in a poset are the elements that cover the unique
minimum element. In the noncrossing partition lattice the atoms
are the edges which index the atom generators.

Definition (Cayley graphs and the Dual Garside Element)

The Hasse diagram of the noncrossing partition lattice can also
be viewed as a portion of the right Cayley grpah of BRAIDn with
respect to the atomic generating set T = {δe}. The top element
δ = δ[n] is called the dual Garside element.

Remark (Dual braid relations)

When Π′ ≤ Π in NCn, then δΠ = δΠ′δΠ′′ for some other
noncrossing braid Π′′. We call this a dual braid relation.
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Dual Presentation

The group generated by the noncrossing braids and subject to
the dual braid relations is a dual braid presentation of BRAIDn.

Definition (Dual Braid Presentation)
The noncrossing braids, also known as dual braids, and the
dual braid relations form the dual braid presentation of BRAIDn.

BRAIDn = ⟨{δΠ} ∣ δΠ′δΠ′′ = δΠ for Π′ ≤ Π in NCn⟩

Definition (Dual Braid Complex)
If we start with the right Cayley graph of BRAIDn with respect to
the set of all nontrivial dual braid generators and then attach a
simplex to each complete (directed) subgraph, then the result is
Tom Brady’s n-strand dual braid complex.
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Properties of the Dual Braid Complex

In 2001 Tom Brady proved the following result.

Theorem (Properties of the Dual Braid Complex)
For each n > 0, the n-strand dual braid complex is contractible
simplicial complex with a free vertex-transitive BRAIDn-action,
so the quotient complex is a classifying space for BRAIDn.

Triangles in the 2-skeleton are labeled by dual braid relations.

Remark (Strong fundamental domain)

The full subcomplex on the vertices labeled by the noncrossing
braids is a strong fundamental domain for the BRAIDn action on
COMPL(BRAIDn). Its simplicial structure is just the order
complex of the noncrossing partition lattice.
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The Origin of Orthoschemes

In 2010 Tom and I added a natural metric to the dual braid
complex that we call the orthoscheme metric.

Remark (Origin)

The name comes from Coxeter’s book on regular polytopes.
Roughly speaking an orthoscheme is the type of shape you get
when you metrically barycentrically subdivide a regular
polytope and a standard orthoscheme is what you get when
you barycentrically subdivide a cube of side length 2.

The image on the next slide shows a metric barycentric
subdivision of a 3-cube. The image was originally designed to
highlight how the B3 Coxeter group acts on the subdivided
cube. The focus here is on the shape of the simplices.
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A Subdivided Cube
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Boolean lattices and cubes

Let Rk be a euclidean vector space with a fixed ordered
orthonormal basis e1,e2, . . . ,ek .

Definition (Boolean lattices and cubes)

The boolean lattice BOOLk is the poset of subsets of [k] under
inclusion. The unit k -cube CUBEk in Rk is the set of vectors
where each coordinate is in the interval [0,1] and its vertices
are the vectors where each coordinate is either 0 or 1.

Definition (Special vectors)
There is a bijection between the elements in BOOLk and the
vertices of CUBEk , that sends B ⊂ [k] to the vector 1B that is
the sum of the basis vectors indexed by B, i.e. 1B = ∑i∈B ei . We
call these special vectors. At the extremes we write
1 = 1[k] = (1,1, . . . ,1) and 0 = 1∅ = (0,0, . . . ,0).



Dual Braids Orthoschemes Columns Robots

Orthoschemes

Definition (Orthoschemes)
A k -orthoscheme is a metric k -simplex formed as the convex
hull of a piecewise geodesic path in Rk where each of the n
individual geodesic segments are in pairwise orthogonal
directions. When every individual segment has unit length, the
shape that results is a standard k -orthoscheme.

In the simplicial structure on CUBEk , the k ! simplices
correspond to the various ways to take the k steps from 0 to 1
in the coordinate directions. A 3-orthoscheme from the
simplicial structure on CUBE3 is shown on the next slide. The
edges of the piecewise geodesic path are thicker and darker
than the others.
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An orthoscheme

0 1{1}

1{1,2}

1{1,2,3}
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Dual Complex for Zk

Before describing the orthoscheme metric on the dual braid
complex, let me describe the orthoscheme metric on the
analogous complex for the free abelian group Zk .

Remark (Dual presentation of Zk )
Braid groups and free abelian groups are both examples of
spherical Artin groups and they have a similar type of structure.
We use the boolean lattice instead of the noncrossing partition
lattice and the special vectors instead of the dual braids.

Definition (Dual complex for Zk )

The dual complex for Zk starts with the right Cayley graph of Zk

with respect to the special vector generating set and then
attachs a simplex to each complex subgraph. The lengths of the
special vectors determine the shape of the euclidean simplices.
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Two Types of Hyperplanes in Rk

The result is a subdivision of the natural cubical structure on Rk

with each cube built out of n! standard orthoschemes.
Alternatively, the orthoscheme tiling of Rk can be viewed as the
cell structure of a simplicial hyperplane arrangement.

Definition (Two Types of Hyperplanes in Rk )
Consider the hyperplane arrangement consisting of two types
of hyperplanes. The first type are defined by the equations

xi = ` for all i ∈ [k] and all ` ∈ Z.

The second type are defined by the equations

xi − xj = ` for all i ≠ j ∈ [k] and all ` ∈ Z.

Together they partitions Rk into its standard orthoscheme tiling.
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Affine Symmetric Group

The hyperplanes of the first type define the standard cubing of
Rk . The hyperplanes of the second type are closely related to
the Coxeter complex of the affine symmetric group.

Remark (Affine Symmetric Group)

The affine symmetric group S̃YMk is the euclidean Coxeter
group of type Ãk−1. It is generated by reflections acting on an
(k − 1)-dimensional euclidean space but its action is usually
described on Rk (where its roots and hyperplanes have elegant
descriptions) and then restricted to a hyperplane orthogonal to
the vector 1 ∈ Rk .
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Roots, Hyperplanes and Coxeter Shapes

Definition (Roots and Hyperplanes)

The root system for S̃YMk is the set Φ = {ei −ej ∣ i ≠ j ∈ [k]}. The
span of this set is the hyperplane H orthogonal to the vector 1.
The affine hyperplanes for this root system are defined by the
equations ⟨x , α⟩ = ` for all α ∈ Φ and all ` ∈ Z. These simplify to
the equations of hyperplanes of the second type.

Definition (Ãk−1 Coxeter shape)
The second type of hyperplanes restricted to H partitions
H ≅ Rk−1 into a reflection tiling by euclidean simplices. The
common shape of these simplex is encoded in the extended
Dynkin diagram of the type Ãk−1. We call this shape the
Coxeter shape or Coxeter simplex of type Ãk−1.
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Columns

Definition (Coxeter shapes and columns)
When this hyperplane arrangemet is not restricted to a
hyperplane orthogonal to the vector 1, the closure of a
connected component of the complementary region is an
unbounded infinite column that is a metric product σ ×R where
σ is a Coxeter simplex of type Ã and R is the real line. We call
these the columns of Rk .

One consequence of this column structure is that the standard
orthoscheme tiling of Rk partitions the columns of Rk into a
sequence of orthoschemes. We begin with an explicit example
in R3. Let C be the unique column of R3 that contains the
3-simplex shown earlier.
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A column of orthoschemes

(1, 1, 1)

(2, 2, 2)

(3, 3, 3)

(0, 0, 0)

(1, 1, 0)

(2, 2, 1)

(2, 1, 1)

(3, 2, 2)

(4, 3, 3)

(3, 3, 2)

(4, 4, 3)

(1, 0, 0)
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A column in R3

Example (Column in R3)
The column C is defined by the inequalities x1 ≥ x2 ≥ x3 ≥ x1 − 1
and its sides are the hyperplanes defined by the equations
x1 − x2 = 0, x2 − x3 = 0 and x1 − x3 = 1.

Example (Vertices in the Column)

The vertices of Z3 contained in this column form a sequence
{v`}`∈Z where the order of the sequence is determined by the
inner product of these points with the special vector
1 = (13) = (1,1,1). Concretely the vertex v` is the unique point
in Z3 ∩ C such that ⟨v`,1⟩ = ` ∈ Z. The vectors in this case are
v−1 = (0,0,−1), v0 = (0,0,0), v1 = (1,0,0), v2 = (1,1,0),
v3 = (1,1,1), v4 = (2,1,1) and so on.
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Shape of the Column

Example (Spiral of Edges)

Successive points in this list are connected by unit length
edges in coordinate directions and this turns the list into a spiral
of edges. Traveling up the spiral, the edges cycle through the
possible directions in a predictable order: x , y , z, x , y , z, . . ..

Example (Shape of the Column)
Any 3 consecutive edges in the spiral have a standard
3-orthoscheme as its convex hull and the union of these
individual orthoschemes is the convex hull of the full spiral,
which is also the full column C. Metrically C is σ ×R where σ is
an equilateral triangle also known as the Ã2 Coxeter simplex.
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Columns in Rk

Columns in Rk have many of the same properties.

Definition (Columns in Rk )

A column C in Rk is defined by inequalities of the form

xπ1 + aπ1 ≥ xπ2 + aπ2 ≥ . . . ≥ xπk + aπk . . . ≥ xπ1 + aπ1 − 1

where (π1, π2, . . . , πk) is a permutation of integers (1,2, . . . ,k)
and a = (a1,a2, . . . ,ak) is a point in Zk .

Definition (Vertices in a Column in Rk )

The vertices of Zk contained in C form a sequence {v`}`∈Z
where the order is determined by the inner product with the
vector 1 = (1k) = (1,1, . . . ,1). Concretely the vertex v` is the
unique point in Zk ∩ C such that ⟨v`,1⟩ = ` ∈ Z.
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Columns are Convex

Definition (Spiral of Edges)

Successive points are connected by unit length edges in
coordinate directions and this turns the full list into a spiral of
edges. The edges cycle through the possible directions in a
predictable order based on the list (π1, π2, . . . , πk).

Definition (Columns are Convex)
Any k consecutive edges in the spiral have a standard
k -orthoscheme as its convex hull and the union of these
individual orthoschemes is the convex hull of the full spiral,
which is also the full column C.
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Columns are CAT(0)
Remark (Columns are CAT(0))

Metrically, C is σ ×R where σ is a Coxeter simplex of type Ãk−1.
As a convex subset of Rk , the full column is a CAT(0) space. It
is also the metric product of the euclidean polytope σ and R.

Definition (Dilated columns)

If the −1 in the final inequality defining a column in Rk is
replaced by a −` for some positive integer `, then the shape
described is a dilated column.

As a metric space, a dilated column is a metric direct product of
the real line and a Coxeter shape of type Ã dilated by a factor of
` and as a dilation of a CAT(0) space, it is also a CAT(0)
space. As a cell complex, a dilated column is the union of `k−1

ordinary columns of Rk tiled by orthoschemes.
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Dilated Columns

Some of these dilated columns are of particular interest.

Definition ((k ,n)-dilated columns)

Let n > k > 0 be positive integers and let C be the full
subcomplex of the orthoscheme tiling of Rk restricted to the
vertices of Zk that satisfy the strict inequalities

x1 < x2 < ⋯ < xk < x1 + n.

We call C the (k ,n)-dilated column in Rk .

A point x ∈ Zk is in C if and only if its coordinates are strictly
increasing in value from left to right and the gap between the
first and the last coordinate is strictly less than n. The
(k ,n)-dilated column C is a (n − k) dilation of an ordinary
column and thus a union of (n − k)k−1 ordinary columns.
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(2,6)-dilated Column

Example ((2,6)-dilated column)

When k = 2 and n = 6, the defining inequalities are x < y < x + 6.
and a portion of the (2,6)-dilated column C is shown on the
next slide. Note that metrically C is an ordinary column dilated
by a factor of 4, its cell structure is a union of (6 − 2)2−1 = 4
ordinary columns, and it is defined by the weak inequalities
x + 1 ≤ y and y ≤ x + 5.

The meaning of the vertex labels used in the figure are
explained afterwards.
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A Dilated Column
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Labeled Robots on a Cycle

Example (Labeled Robots on a Cycle)

When this strip is quotiented by the portion of the (6Z)2-action
on R2 that stabilizes this strip, its vertices can be labeled by two
labeled points in a hexagon. The black dot indicates the value
of its x-coordinate mod 6 and the white dot indicates the value
of its y -coordinate mod 6. The left vertex of the hexagon
corresponds to 0 mod 6 and the residue classes proceed in a
counter-clockwise fashion. The five hexagons on the y -axis, for
example have x-coordiate equal to 0 mod 6 and y -coordinate
ranging from 1 to 5 mod 6.

The answer to Exercise 1 is the annulus formed by identifying
the top and bottom edges of the region shown according to
their vertex labels.
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A Dilated Column
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Unlabeled Robots on a Cycle

Example (Unlabeled Robots on a Cycle)
The unlabeled version is formed by further quotienting to
remove the distinction between black and white dots. In
particular the 5 vertices shown on the horizontal line y = 6 are
identified with the 5 vertices on the vertical line x = 0. This
identification can be realized by the glide reflection sending
(x ,y) to (y ,x + 2), a map which also generates the unlabeled
stabilizer of the (2,6)-dilated column.

The heavily shaded region is a fundamental domain for this
Z-action and the unlabeled orthoscheme configuration space is
the formed by identifying its horizontal and vertical edges with a
half-twist forming a Möbius strip. The heavily shaded labels
represent the vertices in the quotient. This is the answer to
Exercise 2.
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A Dilated Column
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Robots on a Cycle: Universal Covers

The universal covers in Exercise 3 are all of the form σ ×R:

Example (Universal Covers)
When k = 3, σ is a dilated equilateral triangle dilated by a
factor of 3 and the cover contains 32 = 9 ordinary columns.
When k = 4, σ is an Ã3 tetrahedron dilated by a factor of 2
and the cover contains 23 = 8 ordinary columns.
When k = 5, σ is an Ã4 shape and the cover contains a
single ordinary column (14 = 1).
When k = 6, the only motion is when all 6 Robots move at
once, σ is a point, the cover is just R with 05 = 0 columns.
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Robots on a Cycle: Labeled and Unlabeled

Example (Labeled Robots)

The labeled versions are quotients of the CAT(0) dilated
columns that are the universal covers. In each case the
Z-action is generated by a pure translation and the quotient is
metrically σ × S1 where the circumference of the circle depends
on the value of k .

Example (Unlabeled Robots)

The unlabeled versions are quotients of the CAT(0) dilated
columns that are the universal covers. In each case the
Z-action is generated by loxodromic isometry that moves every
vertex in the spiral up one step. The quotient is a twisted
product of σ and a circle.
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General Case

Proposition (General Case)
In the general case of k robots on an n-cycle,

the universal cover is always a CAT(0) dilated column,
the labeled robot case is always a non-positively curved
direct product of a dilated affine symmetric group Coxeter
shape and a metric circle, and
the unlabeled robot case is always a non-positively curved
twisted direct product of a dliated affine symmetric group
Coxeter shape and a metric circle.

And this is the answer to Exercise 4.
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