CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections

Braid groups and Curvature Talk 3: The Proof

Jon McCammond

UC Santa Barbara

Regensburg, Germany Sept 2017

000

Consequences of being a CAT(0) group

For those not familiar with CAT(0) groups: When a group G has a nice action on a CAT(0) space there are many algebraic consequences for G. Here is a list taken from Chapter III. r in the book by Bridson and Haeflieger.

Remark (CAT(0) groups)

If G has a geometric action on a CAT(0) space X, then:

- G is finitely presented.
- G has finitely many conjugacy classes of finite subgroups.
- Every solvable subgroup of G is virtually abelian.
- Every abelian subgroup of G is finitely generated.
- If G is torsion-free, then G is the fundamental group of a compact cell complex with contractible universal cover.

Closure Properties and Algorithmic Properties

Remark (Closure Properties)

The class of CAT(0) groups is closed under direct products, free products with amalgamation, HNN extensions along finite subgroups, and free products with amalgamation along virtually cyclic subgroups.

Remark (Algorthmic Properties)

Groups that are CAT(0) have

- a solvable word problem,
- a quadratic Dehn function,
- a solvable conjugacy problem,
- an algorithm to test if an element has finite order,
- an algorithm to test if torsion elements are conjugate.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Intersections
000				

Semi-simple actions

Definition (Semi-simple isometries)

An elliptic isometry fixes some point, a hyperbolic isometry moves every point at least $\epsilon > 0$ and both types are semi-simple.

Remark (Semi-simple isometries)

If H is a fin. gen. group that acts properly (but not necessarily cocompactly) by semi-simple isometries on X, then:

- Every polycyclic subgroup of H is virtually abelian.
- Every fin. gen. abelian subgroup of *H* is quasi-isometrically embedded (with respect to any choice of word metrics).
- If does not contain BS(p,q) subgroups with $|p| \neq |q|$.
- If A ≅ Zⁿ is central in H then there exists a subgroup of finite index in H that contains A as a direct factor.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Interse
	000000			

Roman Wall in Regensburg

CAT(0) Groups	Review o●ooooo	Subcomplexes	Boundary Braids	Intersections

Old Foundations

Remark (Main Goal)

The main goal of today's talk is to outline the proof that the braid groups are CAT(0), but like the building on the previous slide, the foundations for the proof are very old. It is only the final insight that is new.

Remark (Notation)

Recall that for each $A \subset [n]$ of size k > 1 with B = [n] - A we have defined a subset of vertices V_A , a subdisk P_A , a rotation δ_A and a subgroup BRAID_A = FIX(B) isomorphic to BRAID_k. And for every noncrossing partition Π we have defined a dual braid δ_{Π} that is a product of commuting rotations.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Ir
	000000			

Subsets, Subdisks, Rotations and Dual Braids

If $\Pi = \{\{\{1, 2, 6, 9\}, \{3, 5\}, \{7, 8\}\}\)$, then $\delta_{\Pi} = \delta_{\{1, 2, 6, 9\}}\delta_{\{3, 5\}}\delta_{\{7, 8\}}$

Subcomplexes

Boundary Braids

Intersections

Dual braid complex with the orthoscheme metric

Definition (Dual braid complex with the orthoscheme metric)

The dual braid complex for BRAID_n with the orthoscheme metric starts with the Cayley graph of BRAID_n with respect to the dual braid generating set. The length of each edge labeled by δ_{Π} is \sqrt{k} where $k = \text{RANK}(\Pi)$ in the noncrossing partition lattice. An orthoscheme with the correct edge lengths is added to each complete subgraph. The resulting PE simplicial complex is denoted CPLX(BRAID_n).

The proof scheme is by induction and the base cases are true.

Theorem (Previous results)

The *k*-strand dual braid complex with the orthoscheme metric is CAT(0) when $k \le 6$.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Intersections
	0000000			

Dual Parabolic Subcomplexes

So suppose that $CPLX(BRAID_k)$ is known to be CAT(0) for all k < n and consider the space $X = CPLX(BRAID_n)$. We already know several subcomplexes that are CAT(0).

Definition (Subcomplexes and Subsets)

For each $S \subset BRAID_k$ let CPLX(S) be the full subcomplex of $CPLX(BRAID_k)$ whose vertex set is indexed by S.

Proposition (Dual parabolic subcomplexes)

For every $A \subset [n]$ of size k, the isomorphism $BRAID_k \rightarrow BRAID_A$ extends to an isometric embedding of $CPLX(BRAID_k)$ into $X = CPLX(BRAID_n)$ with image $CPLX(BRAID_A)$. In particular, $CPLX(BRAID_A)$ is a CAT(0) subspace of X by induction.

CAT(0) Groups	Review ooooo●o	Subcomplexes	Boundary Braids	Intersections 0000000000
Local crite	rion			

Recall the local criterion from Talk 1.

Theorem (Local criterion)

Let G be a group acting vertex-transitively by isometries on a connected and simply-connected euclidean cell complex X with finitely many shapes. If X contains a CAT(0) subcomplex that contains a neighborhood of a vertex, then X is a CAT(0) space.

If we can create such a subspace Y and vertex v, then the induction will be complete.

Remark (Parabolics are too small)

The dual parabolic subspaces are insufficient because they have strictly smaller dimensions than *X*. We need a subcomplex *Y* with dim(*Y*) = dim(*X*) to use the local criterion.

CAT(0)	Groups
000	

Review 0000000 Subcomplexes

Boundary Braids

Intersections

The 3-strand dual braid complex

The copies of CPLX(BRAID₂) inside CPLX(BRAID₃) are lines.

CAT(0) Groups Review Subcomplexes Boundary Braids Intersections

Action of δ on X: Left vs. Right

Recall that $\delta = \delta_{[n]}$ is the rotation of all the vertices of *P*.

Remark (Left action of δ)

For n = 3, the left action of δ on CPLX(BRAID₃) translates the vertical line through the identity vertex but rotates the 3-valent tree through a $2\pi/3$ rotation. For all *n* it is a loxodromic isometry of CPLX(BRAID_n) with a single line as its min-set.

Remark (Right action of δ)

For n = 3 the right action of δ on the vertices of CPLX(BRAID_n) (surprisingly!) extends to a cell map on all of CPLX(BRAID_n) that merely moves every vertex $\sqrt{2}$ in the vertical direction. But note that this map does not preserve edge labels. For all *n*, right multiplication by δ extends to a cellular isometry.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Intersections
000		00000		

Full-dimensional Subcomplexes

Definition (Maximal Dual Parabolic Subgroups)

For each $i \in [n]$ let $F_i = FIX(\{i\})$ which is equal to BRAID_A with $A = [n] - \{i\}$. These are simply the maximal dual parabolic subgroups of BRAID_n.

Definition (Vertical Shifts)

Let $\Delta = \langle \delta \rangle = \{ \delta^{\ell} \mid \ell \in \mathbb{Z} \}$ be the copy of \mathbb{Z} generated by $\delta = \delta_{[n]}$. Right multiplying by elements in Δ is an isometry of $X = CPLX(BRAID_n)$ that we describe as a vertical shift.

Definition (Full-dimensional Subcomplexes)

For each $i \in [n]$ consider the set $F_i \cdot \Delta = \{\alpha \cdot \delta^\ell \mid \alpha \in F_i, \ell \in \mathbb{Z}\}$. This is a subset but not a subgroup of BRAID_n. We define $Y_i = CPLX(F_i \cdot \Delta) \subset X$ and note that dim $(Y_i) = dim(X)$.

Review

Subcomplexes

Boundary Braids

Intersections 0000000000

Full-dimensional subcomplex of CPLX(BRAID₃))

Review

Subcomplexes

Boundary Braids

Intersections

The 3-strand dual braid complex

 $Y = Y_1 \cup Y_2 \cup Y_3$ contain a neighborhood of the identity vertex.

Review

Subcomplexes

Boundary Braids

Intersections

Neighborhood of the Identity Vertex

Proposition (Neighborhood of a Vertex)

The subcomplex $Y = Y_1 \cup \cdots \cup Y_n$ contains a neighborhood of the identity vertex in $X = CPLX(BRAID_n)$.

Proof sketch.

Let v be the vertex indexed by the identity of BRAID_n. Every simplex containing v is contained in a maximal simplex containing v, which is part of a column, which is determined by a maximal simplex σ starting at v. This reduction uses the fact that X and all of the Y_i are invariant under the right action by δ and that they are unions of columns of orthoschemes. The vertices of σ can be described by a non-crossing tree, every non-crossing tree has a boundary edge, and from this we show that every vertex of σ is contained in some Y_i .

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids ●○○○○○○	Intersections 0000000000

The Hard Part

Recall the gluing lemma from the first talk.

Lemma (Gluing n subspaces)

Let $Y = Y_1 \cup \cdots \cup Y_n$ be a metric space. If for each $\emptyset \neq B \subset [n]$, the corresponding intersection $Y_B = \bigcap_{i \in B} Y_i$ is a non-empty complete CAT(0) space, then Y is a complete CAT(0) space.

The material up to this point is pretty well-known.

Remark (The Hard Part)

By induction there are subcomplexes Y_i with $i \in [n]$ that should be CAT(0) (and they are) and their union Y contains a neighborhood of a vertex in $X = CPLX(BRAID_n)$. By the gluing lemma and the local criterion, the induction will be complete IF we can understand the intersections of the subcomplexes Y_i and show that they are CAT(0). This is the hard part.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Intersections
			000000	

Lowering the Dimension

The standard approach to this problem has been to lower the dimension of the space one needs to analyze.

Definition (Cross-section Complex)

Since every top-dimensional orthoscheme of *X* belongs to a unique column of orthoschemes, the complex *X* splits as metric direct product $X = C \times \mathbb{R}$ where *C* is a complex built out of \widetilde{A} Coxeter shapes. We call *C* the cross-section complex.

Definition (Vertex Links)

All of the vertex links in *C* are isometric so it is sufficient to show that just one of them is CAT(1). Let *L* be the link of a vertex in *C*. If *L* is CAT(1) then *C* is CAT(0), *X* is CAT(0) and BRAID_n is a CAT(0) group. Note that dim(L) = dim(X) – 2. Subcomplexes

Boundary Braids

Intersections

Dimension Lowering Distorts Metrics

Remark (Distortions)

For small values of *n*, *L* can be visualized and this is an effective method for proving results. For general values of *n*, passing from *X* to *C* to *L* distorts the geometry of the subspaces Y_i - for example, squares become rhombi - and this makes the exact relationship between this subspaces hard to analyse and understand. The intersections in the cross-section *C* or in the link *L* look like they are CAT(0) or CAT(1) but proving this in this context was hard.

Remark (The Structure of the Link)

The link *L* is covered by subcomplexes that are metric unit spheres, it is a subcomplex of a spherical building and it can be described as a union of apartments in this spherical building.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Intersections
			000000	

Noncrossing hypertrees

Remark (The First Breakthrough)

In the summer of 2015, I found a way to simplify the cell structure of the vertex link L using combinatorial structures I call noncrossing hypertrees. There is a preprint on the arxiv that discusses this simplification and its uses.

Remark (From L to C to X)

Using the noncrossing hypertree simplification, we were able to start to understand large portions of the cross-section complex C. Working in C instead of L has some advantages and the arguments simplified. Eventually, we started working directly in the orthoscheme complex X instead of the cross-section complex C and the arguments simplified even more.

CAT(0) Groups	Review	Subcomplexes	Boundary Braids	Intersections
000			0000000	

A Strand in the Boundary

Remark (The Second Breakthrough)

The second breakthrough came this summer when Michael computed an explicit intersection of two Y_i 's inside BRAID₅. As we tried to make sense of this concrete example, the true nature of the set $F_i \cdot \Delta$ emerged. After the second breakthrough, noncrossing hypertrees were no longer needed.

Recall that $F_i = FIX(\{i\}) = BRAID_A$ where $A = [n] - \{i\}, \Delta = \langle \delta \rangle$ and $Y_i = CPLX(F_i \cdot \Delta)$.

Lemma (A Strand in the Boundary)

For each $\alpha \in F_i \cdot \Delta$, there is a representative f of α such that the (i, \cdot) -strand of f is contained in ∂P , the boundary of the polygon P. In fact, this condition characterizes the braids in set $F_i \cdot \Delta$.

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 0000000000

Boundary Braids

Definition (Boundary Braids)

For each $B \subset [n]$ let BNDRY(B) be the set of braids with a representative f where for all $i \in B$, the (i, \cdot) -strand of f is contained in ∂P . In other words, the strands that start in positions V_B stay in ∂P . We call BNDRY(B) the set of B-boundary braids.

Remark ({*i*}-Boundary Braids)

By the lemma $F_i \cdot \Delta$ is the set of $\{i\}$ -boundary braids and Y_i is the complex of the $\{i\}$ -boundary braids.

One might guess that $BNDRY(C) \cap BNDRY(D) = BNDRY(C \cup D)$ and this is indeed the case. From this we also prove that $Y_B = \bigcap_{i \in B} Y_i$ is CPLX(BNDRY(B)) and that $Y_C \cap Y_D = Y_{C \cup D}$.

Review

Subcomplexes

Boundary Braids

Intersections

The 3-strand dual braid complex

When n = 3, Y_B is the same as CPLX(BNDRY(B)), and their intersections behave as expected.

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections •ooooooooo

Locally Marked Strands

The final step is to show that the intersection $Y_B = \bigcap_{i \in B} Y_i$ is CAT(0) for each $B \subset [n]$.

Definition (Locally Marked Strands)

Fix $B \subset [n]$ and let $\alpha = [f]$ be a braid. The strands of f that start at V_B end at a set $V_{B'}$ with |B| = |B'|. Let v_{α} be the vertex of the Cayley graph indexed by α . We assign the set B' to this vertex and say that $V_{B'}$ is the set of locally marked strands at v_{α} .

As we analyzed the structure of BNDRY(B), it became clear that there were two types of basic changes: those that move the locally marked strands and those that do not. And this realization leads to an unexpected product structure.

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 000000000
Basic Mov	es			

Definition (Basic Moves)

Let v_{α} be a vertex in the Cayley graph with marked strands B'. A basic move at v_{α} is a dual braid δ_{Π} with three properties: (1) it must move at least one marked strand in B', (2) all of the marked strands that move under δ_{Π} must stay in ∂P , and (3) it cannot be factored into dual braids so that one of the factors fails to move a marked strand.

Definition (Move graph)

Fix a set $B \subset [n]$ of marked strands at the identity vertex and then locally mark strands at every vertex of *X*. The move graph with respect to *B* is a subgraph of the Cayley graph with the same vertex set and it contains an edge *e* if and only if the label of *e* is a basic move at the start vertex of *e*.

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 000000000

Move sets

Definition (Move sets)

The set $MOVE(B) \subset BRAID_n$ is defined to be the set of braids α indexing vertices in the connected component of the identity vertex in the move graph with respect to B. In other words, α is in MOVE(B) if and only if it can be represented as an undirected path in the Cayley graph with respect to the dual braid generators so that every directed edge of the path is a basic move at its start vertex.

The braids in MOVE(B) are in some precise sense orthogonal to those in FIX(B). This is easy to see in the full-dimensional subcomplexes of $CPLX(BRAID_3)$.

Review

Subcomplexes

Boundary Braids

Intersections 000000000

Full-dimensional subcomplex of CPLX(BRAID₃))

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 0000000000
Product St	ructure			

Proposition (Product Structure)

The set BNDRY(B) is equal to the set FIX(B) · MOVE(B). This means that every braid γ in BNDRY(B) can be written as product $\gamma = \alpha \cdot \beta$ with $\alpha \in FIX(B)$ and $\beta \in MOVE(B)$, and that every braid $\gamma = \alpha \cdot \beta \in FIX(B) \cdot MOVE(B)$ is in BNDRY(B).

On the level of subcomplexes the structure is even nicer.

Proposition (Metric Products)

The natural map from (an orthoscheme subdivision of) $CPLX(FIX(B)) \times CPLX(MOVE(B))$ to $CPLX(BNDRY(B)) = Y_B$ is an isometry of metric simplicial complexes.

As a consequence CPLX(BNDRY(B)) is CAT(0) if and only if both factor complexes are CAT(0).

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 0000000000

Move sets and Robots

The complex CPLX(FIX(B)) is the complex of a dual parabolic subgroup and it is CAT(0) by our induction hypothesis. And the complex CPLX(MOVE(B)) is one that we saw in Talk 2.

Proposition (Move sets and Robots)

The complex CPLX(MOVE(B)) is isometric to the universal cover of the configuration space of $\ell = |B|$ robots on an n-cycle. In particular, it can be identified with a dliated column in \mathbb{R}^{ℓ} and it is a CAT(0) space.

Remark (Universal Cover)

It is the universal cover rather than the configuration space because moving all of the marked robots *m* times around ∂P using basic moves is a non-trivial braid unless *m* = 0.

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections
A Dilated (Column			

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 00000000000

A Labeled Projection Map

CAT(0) Groups	Review 0000000	Subcomplexes	Boundary Braids	Intersections 0000000000

Assembling the Pieces

Remark (Projection Map)

There is even a projection map from CPLX(BNDRY(B)) to CPLX(MOVE(B)) where the preimage of each vertex is the complex of some dual parabolic subgroups.

And we can now assemble the pieces.

Proof (Assembling the Pieces).

For each $B \subset [n]$, CPLX(MOVE(B)) is CAT(0) by the proposition and CPLX(FIX(B)) is CAT(0) by our induction hypothesis. Thus their metric product $CPLX(BNDRY(B)) = Y_B$ is CAT(0). Since every intersection $Y_B = \bigcap_{i \in B} Y_i$ is nonempty complete CAT(0), the union $Y = Y_1 \cup \cdots \cup Y_n$ is CAT(0) (Gluing Lemma). And since Y contains a neighborhood of the identity vertex, X is CAT(0) (Local Criterion). CAT(0) Groups Review Subcomplexes Boundary Braids Intersections

Next Steps and Future Directions

The very next step is to finish writing the article! All of the proofs have been written down. We are currently working to streamline the notation and improve the exposition. There should be an article ready to post sometime this fall.

Remark (Future directions)

There are several obvious avenues to pursue.

- other Artin groups
- other Garside groups
- other surface braid groups with boundary
- other robot configuration spaces

And I can say more about each of these if there is still time.

Keview 0000000 Subcomplexes

Boundary Braids

Intersections

Thank You for your Attention!

