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0 Introduction

The problem of classifying the gaps in the Tilson ordering for the categories of
finite directed and finite transitive graphs was first proposed by John Rhodes
in [5]. In the present article we give a complete classification of the gaps in
these categories. More specifically, given an arbitrary finite directed or finite
transitive graph G, we give here a necessary and sufficient condition on the
structure of G for there to exist a gap H < G. In addition, a procedure is given
for constructing the graph H whenever the graph G satisfies the necesssary
conditions. Many of the methods used here are similar to those used in [2].
Many of these results have also been shown in [1].

The structure of the article is as follows. The first section contains the
basic definitions and key examples used in the rest of the article. In the second
section, the gaps in the category of finite directed graphs are classified, and in
the third section the classification is extended to the category of finite transitive
graphs. The fourth and final section relates these results to the previous work
in the field, and it concludes with the statement of an open problem.

1 Basic Definitions and Examples

In this first section we collect the basic definitions and examples used in the
remainder of the article. Notice that we have followed the convention of writing
all function and relation symbols to the right of their arguments.

1.1 Directed and Transitive Graphs

A directed graph G can be compactly described as a pair of disjoint sets O
and A together with a pair of functions D and C from A to O. Directed
graphs are sometimes referred to as digraphs and will usually be designated by



upper-case Roman letters such as G. The elements of O are called objects, the
elements of A are called arrows, and the functions D and C assign each arrow
to its domain and codomain respectively. Objects will be denoted by lower-case
Roman letters, and arrows by lower-case Greek letters. Thus if G = (0, A, D, C)
is a directed graph, then a € O is a typical object of G and a € A is a typical
arrow. Graphically, an arrow a with domain a and codomain b will be written
a3 b, oreven a — bif a is a unique arrow from a to b. The set of all objects and
arrows of G will also be referred to as Obj(G) and Arr(G), respectively. If both
Obj(G) and Arr(G) are finite sets, then G is called a finite directed graph. Since
all of the graphs in this article will be finite and directed, the words ‘graph’,
‘digraph’ and ‘finite directed graph’ will henceforth be used synonymously. Also
note that in practice, graphs are only distinguished up to isomorphism (defined
below). Thus Saunders MacLane[3, p. 7] gives ¢ — ¢ — o and e—{e as examples
of finite digraphs. Statements of the form ‘G is the unique digraph such that’
some property is true are generally interpreted to mean that G is the unique
digraph, up to isomorphism, for which that property holds.

The set of all arrows in G from a to b is called a hom-set of G and it is
denoted G(a,b). Notice that Arr(G) is a disjoint union of the hom-sets of G. A
graph G will be called a transitive graph iff G(a,b) # 0 and G(b,c) # 0 always
implies G(a, c) # 0. An arrow which starts and ends at the same object is called
a local arrow, and a graph with no local arrows is called locally trivial. If for
all distinct objects a and b either G(a,b) or G(b,a) is empty, then G is known
as a 1-way graph. Let a and b be objects in a graph G. If G(a,b) is not empty,
then a is called a predecessor of b, and b is a successor of a. If a and b are
also distinct, then a is a proper predecessor of b, and b is a proper successor of
a. The objects a in G which have a proper predecessor and a proper successor
will be called interior objects. An object with a proper successor but no proper
predecessor is called a source object. An object with a proper predecessor but
no proper successor is called a sink object. And an object with neither a proper
predecessor nor a proper successor is called an isolated object.

A subgraph H of G is a graph H = (0', A", D', (") such that O' C O,
A" C A with D) =D | A and C' = C | A'. A full subgraph of G is a
subgraph H such that H(a,b) = G(a,b) for all objects a,b € Obj(H). Notice
that full subgraphs are completely determined by the objects they contain, so
that G(O'"), where O’ is a subset of Obj(G), is an unambiguous notation for the
full subgraph of G determined by the objects in O'. For distinct objects a and
bin a graph G, let G{a,b} = G(a,b) UG(b,a). If G{a,b} is nonempty, then a
and b are said to be linked. The objects a and b are called connected in G if
there is a sequence of vertices cg,¢1,...,c, With ¢ = a, ¢, = b and ¢; linked
with ¢;41 for all i = 0,1,...,n — 1. The integer n is called the length of the
connection. Connections of length zero are allowed, in which case a = b = co.
As usual, the graph G is called connected if and only if every pair of objects in
G is connected, and every graph G can be uniquely decomposed into a disjoint
union of connected components which are full subgraphs of G.



The following common examples of graphs will be used in the course of the
proof. The unique graph with no objects and no arrows is called the empty graph
and is denoted by @. For each integer n > 0, n represents the digraph with n
objects labeled 0,1,...,n — 1 and no arrows. The digraph 1 is also called e
following MacLane’s method of specifying digraphs, alluded to above. Next, for
any integer n > 0, n°® represents the graph obtained from n by adding exactly
one arrow for each object of m and by requiring that each added arrow start
and end at its associated object. The graph 7, n > 0, is the graph (0, A, D,C)
with objects O labeled by the set {0,1,...,n}, arrows A labeled by the set
{(3,7) : 0 <i < j <n}, and with D and C defined as the projections of A onto
the first and second coordinate of the labels, respectively. At the other extreme
there are directed graphs with only a single object. For each integer n > 0,
let L,, be the digraph with one object denoted *, and n arrows which must, of
course, start and end at *.

As afinal example, let s1, s2,. .., s; be a finite sequence of integers with [ > 0.
The graph Ej, ,,....s, is the digraph with [ 4+ 1 objects labeled 0,1,...,1, such
that for each ¢ from 0 to [ there are s; arrows from 7 to ¢ + 1 when s; is positive,
and there are —s; arrows from i+ 1 to ¢ when s; is negative. The examples from
MacLane given above are E; ; and Es, respectively, in this notation.

1.2 Morphisms and Divisions between Graphs

Let G and H be directed graphs. A morphism ® from H to G, denoted & :
H — @, can be thought of as a family of functions with various domains. Since
each of these functions can be distinguished by their domains, they will all be
denoted ®. The specific functions constituting ® include an object function
® from Obj(G) to Obj(H) and, for each pair of objects a and b in Obj(G), a
hom-set function ® from G(a,b) to H(a®,b®). A morphism is called faithful if
each of its hom-set functions is injective. An embedding is a faithful morphism
with an injective object function. An isomorphism is a morphism whose object
function, and all hom-set functions, are bijections. Clearly, for every graph G
there is an identity morphism from G to itself which is an isomorphism, and for
every subgraph H in G there is an embedding of H into G. The category of
all finite directed graphs and their morphisms will be denoted FDG, and the
category of all finite transitive graphs and morphisms will be denoted FTG.

The following examples are illustrative. Given n > m > 0 there is an em-
bedding of E,, into E,, and a non-faithful morphism from E, to E,,. There are
exactly three morphisms from F; to Ei,_; 1, each one of which is an embedding,
and there is only one morphism from F; 1 ; to Ej, and it is faithful. There
are exactly two morphisms from Fj to E; ; but no morphisms from FE; ; to Es.
Finally, notice that there is a faithful morphism from G to L,,, where n is the
size of the largest hom-set of G.

A division ® from H to G, denoted ® : H < G, can be thought of as an
object function and an arrow relation. As above, the letter ® can be used for



all of these relations without risk of confusion. Specifically the function and
the relation are an object function & from the objects of H to the objects of
G, and a relation ® between the arrows of H and the arrows of G such that
for all arrows a from a to b in H, a® is a nonempty subset of G(a®,b®), and
for distinct arrows a and 8 in H(a,b), a® N 3® = (. Notice that a morphism
is a division if and only if it is faithful, and that, in fact, the following three
statements are equivalent: (1) H < G, (2) there exists a faithful morphism
®: H — G, and (3) there is a function f: Obj(H) — Obj(G) such that for all
objects a,b of H, |H(a,b)| < |G(af,bf)|. Notice that H 5 G does not imply
|Obj(H)| < |Obj(GQ)|, as is illustrated by the faithful morphism from E; _; ; to
E]_.

A graph H is called equivalent to a graph G if and only if H divides G and
G divides H, and H strictly divides G if and only if H divides G but G does not
divide H. These situations will be denoted H ~ G and H < G, respectively. A
gap from H to G occurs when H < G and every K with H < K < G has either
K ~ H or K ~ (. It is easy to see that the relation < is reflexive and transitive
on FDG, and that the quotient category of FDG by the relation ~ under <
is a countably infinite upper semilattice whose least upper bound is the join of
two graphs. Moreover, the join \/._; G; g G if and only if each G; g G. Proofs
of these facts can be found in [6].

iel

1.3 Constructions on Graphs

Let (G;)icr be an indexed family of graphs, where the index set I is finite.
The join \/;c;G; is the disjoint union of the indexed graphs. That is, if each
G; = (04, A, D;, C;), then the join is the graph (O, A, D, C), where O is the
disjoint union of the sets O;, A is the disjoint union of the sets A;, and D and
C' are the unique functions from A to O such that D|A; = D; and C|A; = C;.
We write Gy V -V Gy for ey ,1Gi. Similarly, the product [[;,G; is the
direct product of the indexed graphs. That is, if each G; = (0;, 4;, D;, C;), the
product is the graph (O, A, D, C), where O is the direct product of the sets O;,
A is the direct product of the sets A;, and D and C are the unique functions
from A to O such that the projection onto the i-th coordinate A; followed by
D; (or C;) equals the function D (or C) followed by the projection onto O;. We
write G1 X -+ X Gn for Hie{l,...,n}G’i'

One way of constructing a new graph from a given graph G is to start with
the direct product K = G x n®. The objects and arrows of K are ordered pairs
whose first coordinate represents an object or an arrow of G and whose second
coordinate represents its level. Projection onto the first coordinate is a faithful
morphism from K to G, and for all ¢ the full subgraph of objects with second
coordinate ¢ forms an isomorphic copy of G called G;. See Figure 1. When new
arrows are added to the graph K, the added arrows will be called global arrows
to distinguish them from the ‘local’ arrows already in K. Notice that every local
arrow may be labeled by an ordered triple of the form (a, (a,%), (b,7)) where «
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Figure 1: Graph K constructed from n copies of G. A nonempty hom-set G(a, b)
is portrayed here by a single bold arrow.

is an arrow in G from a to b, and that every global arrow has a label of the form
(a, (a,i), (b,7)), where 7 and j may or may not be identical and o may or may
not be an arrow in G.

1.4 Reductions of Graphs

Let H be a full subgraph of G. If there is a division ® : G < H such that
the restriction of ® to H is the identity morphism on H, then H is called a
retract of G and ® is called a retraction from G to H. If H is a retract of
G and no proper full subgraph of H is a retract of G, then H is called the
reduction of G. A graph whose only retract is itself is known as a reduced
graph. Almost by definition, a reduction of a graph G is reduced and equivalent
to G, a reduction of a reduction of G is a reduction of G, and G is reduced if
and only if G is isomorphic to one of its reductions. The notion of a ‘reduction’
of a graph, category, or other directed structure was introduced by Rhodes in
[6]. By the following lemma, we may speak of the unique reduction of G, up to
isomorphism.



Lemma 1.1 If G and H are reduced graphs, then G and H are equivalent if
and only if they are isomorphic. In particular, any two reductions of a graph G
are isomorphic.

Notice that if G is reduced then every component of G must be reduced,
and the distinct components must be pairwise incomparable in the < ordering.

Lemma 1.2 If G and H are graphs which are reduced and equivalent, then
every division ® : H 5 G is an isomorphism. In particular, if G is reduced then
every division ® : G g G is an automorphism of G.

Proof: Since G and H are equivalent there exists a division ¥ : G < H.
Notice first that the objects in H® must be all of Obj(G) or else the division
Ud : G g G shows that G is equivalent to one of its proper full subgraphs,
contradicting the assumption that G is reduced. Thus, since all of the sets
involved are finite, and since by Lemma 1.1, Obj(H) and Obj(G) have the same
size, ¥® merely permutes the objects of G. Set k = |Obj(G)|!, so that the
division (I®)F is the identity on the objects of G. Next, since each hom-set is
sent to itself, the relation on arrows must actually be a function, so that (¥ ®)*
is a faithful morphism from G to G, and this morphism at worst permutes the
arrows. If n is the size of the largest hom-set of G, let | = k(n!), so that (¥®)'
is now the identity morphism on all of G. A similar argument shows that (®¥)!
is the identity morphism on H, so that (¥®)'~!1¥ is a two-sided inverse of ®.
It follows quickly that ® is bijective on the arrows in each hom-set, completing
the proof of the first statement. The second is an immediate consequence of the
first. O

Let ® : H 5 G be a division and let K be a full subgraph of H. If & | K :
K = G is an isomorphism, then K is called a ®-readable copy of G in H.

Lemma 1.3 (Labeling Lemma) If H ~ G with G reduced, then for every
division ® : H 3 G, there exists a ®-readable copy of G in H. In particular,
if G is reduced and ® : H % G is a division whose object function is not onto,
then H strictly divides G.

Proof: Let R be the reduction of H, so that R is reduced and equivalent to
H and G. By Lemma 1.1 R is isomorphic to G, and by Lemma 1.2 the division
®|R: R < G is an isomorphism producing a ®-readable copy of G in H. O

1.5 Gaps between Graphs

In an earlier article [2] we showed that, up to equivalence, the only gaps between
finite, connected, undirected graphs are

D<e<FE <FEy<E3=<...



where the E,, denotes the undirected graph containing exactly 2 vertices and
connected to each other by n undirected edges.[pp We will conclude this intro-
ductory section by showing that there are connected gaps between finite directed
graphs corresponding to each of the connected gaps between finite undirected
graphs, and by showing that all gaps between directed graphs must be locally
trivial. The results below follow the approach used by Rhodes in [6].

Lemma 1.4 If K strictly divides E, with n > 0, then K divides E,_1. This
shows that the divisions e < Fy < Fs < ... are gaps in FDG. Trivially, ® < e
is a gap in FDG.

Proof: If K strictly divides E,,, then there exists a faithful morphism ¥ : K —
E, and no faithful morphism from E, to K. The latter fact implies that any
hom-set of K sent to E(0, 1) is not surjective, and this in turn shows that there
is a faithful morphism from K to E,_; with the same object function. Thus
E,_1 < E, is a gap. The final statement of the lemma is clear. O

Lemma 1.5 A graph G divides a graph H if and only if G x 71 divides H for
all n.

Proof: If G divides H, then it is clear by projection onto the first coordinate
that G x 11 < G g H for all n, so suppose that G x 7t divides H for all n, and
fix n so that n > |Obj(H)||Obj(G)|. For thisn let K =G x 7, let ®: K - H
be a faithful morphism arising from the assumed division, and let ®; be the
function from Obj(G) to Obj(H) defined by g®; = (g,¢)®. Since there are only
|Obj(H )|‘Obj(G)‘ such functions, there must exist distinct integers ¢ and j such
that ®; = ®;. Next, consider arbitrary objects a and b in G. Since

|G(a,b)| = |K((a,i), (b,5))| < [H(a®:,b®;)| = |H(a®s, b))

it follows that ®; is the object function of a faithful morphism from G to H.
Thus G divides H and the proof is complete. O

Lemma 1.6 If G is a connected graph which is not locally trivial, then H < G
is mot a gap. In particular, there is a finite directed graph K with H < K < G.

Proof: It is immediate that H x H V (G x 7i) < G for each n, and since G
is connected, any faithful morphism from G to H V (G x 7) must send G into
either a connected component of H or into G x 7. By assumption and by the
fact that G is not locally trivial, neither of these options are viable possibilities,
so that H g HV (G x 1) < G. Moreover, by Lemma 1.5 there is an integer
n such that G x 7 does not divide H. Setting K = H V (G x 7i) for this n
completes the proof. O



2 Gaps in FDG

In this section we investigate the gaps in the category of finite directed graphs.
We will begin by focusing specifically on connected graphs. For this special
case, we narrow down the types of divisions which can give rise to gaps, and
then we show by construction that all of the remaining possibilities do indeed
produce gaps. In the final portion of the section we extend these results to all
of the graphs in FDG. As a final note, we should mention that the wordings
used in the proofs in this section have often been chosen so that they will apply
without alteration to the circumstances considered in Section 3.

2.1 Connected Graphs

The following lemmas will show, among other results, that if G is a connected
graph and H < G is a gap in FDG, then it can be assumed without loss of
generality that H is also connected. First we will show a special case of this
result.

Lemma 2.1 Let G be a reduced, connected, and locally trivial graph, let Hy
and Hy be connected graphs, and let ®, : Hy < G, and ®4 : Hy < G be strict
divisions. If the subgraphs H,®,; and Hy®y in G are not disjoint, then there
exists a connected graph K such that Hy and Hy divide K and K strictly divides
G.

Proof: We may assume without loss of generality that &, and ®, are faithful
morphisms and that H; ®; and H>®, have an object in common, since when two
subgraphs have an arrow in common they must necessarily have the endpoints
of the arrow in common as well. Fix a; € Obj(H1) and as € Obj(H,) with
a1 P = a2 ®P,. Call this common image a. If one of the objects a;, say a;, has
neither a proper predecessor nor a proper successor, then since G is locally trivial
it follows that H; is the graph e and that the lemma is true with K equal to Hs.
Thus we may assume that both a; and as have either a proper predecessor or
a proper successor. For concreteness, suppose that a; has a proper predecessor
b, in H; and that as has a proper successor by in Hs. The other possibilities
can be treated analogously.

A new graph K can be constructed from H; V Hs by adding three new
objects ¢y, d, and ¢z, and four new arrows. In the particular case assumed here
there are arrows from ¢; to aq, from ¢; to d, from d to ¢, and from as to cs.
See Figure 2. Clearly, K is connected and each H; divides K. Moreover, K
divides G since there is a faithful morphism ® which agrees with ®; on the
objects of H; and with &5 on the objects of Hs and which sends ¢; to by ®y, d
to a, and ca to ba®s. If K were equivalent to G, then by the Labeling Lemma
(Lemma 1.3) there would exist a ®-readable copy G' of G in K. Since G is
connected, and since a1, a2, and d are all sent to the object a in G, it follows
that G' is contained in the full subgraph on Obj(H;) U {c1}, the full subgraph



Figure 2: Graph K constructed in the proof of Lemma 2.1

on Obj(H>2) U {ca}, or the full subgraph on {c1,d, c2}. Since the first two cases
are easily seen to be equivalent to Hy; and Hj, respectively, contradicting the
assumption that ®; and ®, are strict divisions, the only possibility is that G’
and thus G contains at most three objects and two edges. The lemma is easily
seen to be true for the severely restricted possibilities which remain. O

Lemma 2.2 If G is connected and locally trivial, then the family of connected
graphs strictly below G is upward-directed in the sense that if Hy and Hy are
connected and ®1 : Hi < G and ®5 : Hy < G are strict divisions, then there is
a connected K such that Hy and Hy divides K and K strictly divides G.

Proof: As in the previous lemma we may assume without loss of generality
that G is reduced, that each ®; is a faithful morphism, and that neither H; nor
Hj is the empty graph or the graph e. In particular, since G is locally trivial we
may assume that H; and Hy and their images in G contain at least two distinct
objects. By Lemma 2.1 we may further assume that the subgraphs H;®; and
Hy®, in G are disjoint. Since G is connected, there is a connection from H; ®,
to Ha®2, say objects cg,c1,...,¢, in G, where ¢g = a1®P1, ¢, = a2P2, and
G{¢i,¢it1} is nonempty for all i = 0,...,n — 1. If the connection chosen is the
shortest possible between Hy®; and H2®,, then the objects ¢, ¢, ..., 1 will
be dlSJOlI’lt from HI(I)I \Y HQ(I)Q in G.

Let H| be a graph constructed from H; by adding exactly n new objects,
b1,b2,...,by,, and exactly n new arrows, one each between b; and b;y; for ¢ =
0,1,...,n — 1 whose orientation depends on the orientation of the arrows in
G{ci,cit1}- Tt is clear that H; divides H; and that Hj divides G by a faithful
morphism whose object function agrees with ®; on the objects of H; and sends b;
to ¢;. Since Hy® has more than one object, and since the objects ¢1,¢2, ... ¢n_1,
H,®,, and Hy®, are pairwise disjoint, it follows that the image of H; does not
include all of the objects of G' and thus by the Labeling Lemma, H; strictly
divides G. Lemma 2.1 applied to H; and Hs completes the proof. O

Lemma 2.3 If G is connected and Hy,Hs < G are gaps in FDG, then Hy ~
H,, and there is a graph K ~ Hy ~ Hy with K connected.



Figure 3: The skeleton S of a graph G

Proof: First, G is locally trivial, by Lemma 1.6. Therefore Lemma 2.2 can be
applied repeatedly to the finite number of components of Hy V Hy to yield a
connected K divided by each component of H; V Hs and yet still strictly below
G. Since Hy,Hs < G are gaps, we must have Hy ~ K ~ Hy. O

2.2 Skeletons of Graphs

We will now show that the structure of an arbitrary reduced, connected graph
G which is part of a gap H < G in FDG must have a ‘skeleton’ which is a
‘tree’. We will begin with some definitions relating to the shape of a graph.
The skeleton of a graph G is a subgraph S with the same objects as G, but S
contains exactly one arrow from each nonempty hom-set of G. Such a subgraph
is clearly unique up to isomorphism, and notice also that G is connected if and
only if its skeleton is connected. The skeleton of a graph is analogous to the
graph Gp(C) associated to a category C as defined by Rhodes in [6]. Finally,
notice that if the skeleton of G is reduced, then this implies that G itself is
reduced.

A hom-set of a graph G is said to split G, if G is connected but the subgraph
obtained by removing the arrows in this hom-set is disconnected. Notice that
a graph G is a tree in the traditional sense if and only if G is isomorphic to its
skeleton and every nonempty hom-set splits G. More generally, if the skeleton
of G is a tree, then G is connected and locally trivial. Figure 3 illustrates these
definitions. In the figure, S is not a tree because the hom-set S(e,e) does not
split S. If G' is the graph obtained from G by deleting the local arrow at e,
then the skeleton of G’ will be a tree.

Let a and b be objects of some graph G, and let a be a new arrow from
a to b disjoint from the existing arrows in G(a,b). The graph G with the
arrow a added will be variously denoted as G + (a 3 b), G + (a — b), or
simply G®. More generally, we call any graph with the same objects but a
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finite number of additional arrows an extension of the original graph. Next,
let ® : H — G be a faithful morphism. A hom-set H(a,b) of H is called ®-
full if |H(a,b)| = |G(a®,bP)|. A graph H is called ®-saturated if for every
hom-set H(a,b) which is not ®-full, adding a new arrow to H (a,b) produces a
strictly larger graph in the sense that H < H + (a — b). Finally, let H < G
be a gap where H is ®-saturated. A hom-set G(c,d) of G is called ®-critical if
G(c,d) splits G and G(c,d) has a non-full pre-image in H, that is, if there exist
a € c® ! and b € d®~! such that H(a,b) is not ®-full. The next three results
are technical lemmas which will be used in the proof of Lemma 2.7.

Lemma 2.4 If ® : H — G is o faithful morphism, then there is o graph H'
which contains H as a subgraph and a faithful morphism ®' : H' — G which
agrees with ® on H, such that H' has the same objects as H, H' is equivalent
to H, and H' is ®'-saturated.

Proof: If H is not ®-saturated, then by definition there is a hom-set H(a,b)
which is not ®-full and H is equivalent to H 4+ (a — b). In this case extend
the faithful morphism ® to the new arrow in the obvious way and repeat this
procedure as many times as necessary. At some point the process must stop
since the total number of arrows in any extension H' of H which divides G is
bounded above by the number of hom-sets in H times the size of the largest
hom-set in G. When it does stop, the graph and the faithful morphism under
consideration satisfy the conclusion of the lemma. O

Lemma 2.5 (Splitting Lemma) Let G be a connected and reduced graph, let
H < G be a gap in FDG, and let ® : H — G be a faithful morphism with a
surjective object function. If H is ®-saturated and H(a,b) is a hom-set which
is not ®-full, then its image under ®, G(a®,bd), is ®-critical.

Proof: Let H' be the graph H + (a — b). Since H is ®-saturated and H(a,b)
is not ®-full, H < H' g G. The fact that H < G is a gap now implies that
H' and G are equivalent. Let N = |H'(a,b)| so that |H(a,b)| = N —1. We
now fix some n > |Obj(H)|, and construct a graph K from H x n® by adding
N new arrows connecting (a,?) to (b,7) for all integers with 0 < 7 < j < n.
See Figure 4. The levels of K, called H;, are isomorphic copies of H so that H
clearly embeds in K. On the other hand, the object function which sends (¢, 7)
in K to ¢® is the object function of a faithful morphism so that H g K g G.
Since H < G is a gap, K must be equivalent to either H or G.

If K is equivalent to H, then there exists a faithful morphism ¥ : K —
H, and since n > |Obj(H)|, there exist distinct integers ¢ and j with 0 <
i < j <nand (b,i)¥ = (b,7)¥. This implies that the size of the hom-set
H((a,7)®,(b,i)®) = H((a,i)P, (b,j)P) is at least N, and that there is a faithful
morphism from H' to H obtained by sending the objects ¢ in H' to (¢, i)¥. This
contradicts the fact that H strictly divides H' and shows that K is not equivalent
to H and that K must be equivalent to G.

11
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N
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(a,i) (b, 1)
N_1
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\ Y,

Figure 4: A detail in the construction of K from n copies of H

Now that we know that K is equivalent to G it follows by Lemma 1.3 that
there is a ®'-readable copy G' of G in K. In this context this implies that G’
contains exactly one object with first coordinate a and one object with first
coordinate b. If G’ contains objects (a,7) and (b, i) for some %, then it cannot
contain any of the objects (a, j) or (b, j) with j # ¢, and in particular, it cannot
contain any of the global hom-sets of K. Since G is connected, it follows that
G divides the i-th level of K. But since this level is isomorphic to H, we have
reached a contradiction. Thus G' must contain (a,i) and (b,j) with ¢ # j.
Since G’ cannot contain any of the other objects with first coordinate a or b, G’
contains at most one global hom-set, namely, the hom-set K ((a,?), (b, 7)). If i is
greater than j, then this hom-set is empty, contradicting the connected nature
of G and G'. On the other hand, if i is less than j, then since G’ is isomorphic
to G, it is clear that G'((a,1), (b, 7)) splits G’ and thus G(a,b) splits G. O

Lemma 2.6 (Continued-splitting) Let G be a connected and reduced graph,
let H < G be a gap in FDG, let ® : H — G be a faithful morphism with o
surjective object function, and let H be ®-saturated. Suppose further that G(a,b)
is ®-critical, and that there is an object ¢ in G such that one of the hom-sets
G(a,c), G(c,a), G(b,c), or G(c,b) is non-empty. If ¥ represents this non-empty
hom-set, then there is a graph K which is equivalent to H and contains H as
a full subgraph, and there is a faithful morphism ¥ : K — G, such that K is
U -saturated and the hom-set X in K is ¥-critical.
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Figure 5: A detail of the construction of H' from H in the proof of Lemma 2.6.
The boxed inset shows the corresponding hom-sets in G.

Proof: For the sake of concreteness, let ¥ = G(b,c). The other cases are
treated similarly. Let M = |G(a,b)| and N = |G(b,c)|. Next, choose a; € a®?
and by € b® ! so that |H(a1,b1)| = M — 1. Also let b® ! = {by,...,b;} and
c®! = {c1,...,¢} with k,1 > 0 be a listing of all of the inverse images of b and
c. We will construct a new graph H' from H as follows. First, add a single new
object called by and add N — 1 arrows from bg to each of the objects ¢y, ..., q.
Then add |G(b,d®)| new arrows from bg to d and |G(d®,b)| new arrows from
d to by for each object d € Obj(H) \ {c1,...,¢}. In particular, this involves
adding M new arrows from a; to bg. See Figure 5. Clearly H is a full subgraph
of H' and also there is a faithful morphism &’ : H' — G which agrees with &
on H and sends by to b, so that H < H' g G. Since H < G is a gap, H' is
equivalent either to G or to H.

If H' were equivalent to G, then by Lemma 1.3 there would be a ®'-readable
copy G' of G in H'. Since G £ H, G' would have to contain by as well as ¢; for
some i, but since H'(bg,¢;) is not full, this is impossible. Thus H' cannot be
equivalent to GG and so it must be equivalent to H instead.

Next, by Lemma 2.4, we can replace the graph H' with an extension H",
and the morphism ®' with a faithful morphism ®” : H” — @G, such that ¢"
agrees with ® on H', H'" has the same objects as H', H” ~ H' ~ H, and H"
is ®"-saturated. We now wish to show that not all of the hom-sets H" (bo, ¢;)
are ®"-full. First notice that since H is already ®-saturated, adding a single
new arrow from a; to by, by Lemma 1.3, produces a ®-readable copy G' of G
in H + (a1 — b1). The full subgraph G' must, of course, include ay, by, and
¢; for some i, and since it contains b; it cannot contain by. Next, suppose that
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H"(bg,c;) is ®"-full. Then there is an embedding of G’ in the full subgraph of
H" on the objects (Obj(G") \ {b1}) U {bo}, which is given by fixing all of the
objects in Obj(G’) \ {b1} and sending by to by. Since this would result in an
embedding of G in H"” ~ H, the hom-set H" (by, ¢;) must not be ®"-full and by
Lemma 2.5, G(b,¢) is ®"-critical. Setting K = H" and ¥ = ®" completes the
proof. O

Lemma 2.7 If G is a reduced and connected graph and H < G is a gap in
FDG, then G is locally trivial and the skeleton of G is a tree.

Proof: We will first show that the lemma is true if we assume that there
exists a faithful morphism ® : H — G with a surjective object function. By
Lemma 2.4, we may assume without loss of generality that H is ®-saturated.
Next, there must exist a hom-set H (a, b) which is not ®-full, since otherwise we
can select arbitrary pre-images of each object in G' (which is possible since ® is
surjective on objects), and thus we can find a full subgraph of H isomorphic to
G, contradicting the assumed strictness of the division H < G. By Lemma, 2.5,
the image of this non-full hom-set, G(a®, b®), is P-critical.

Call an object ¢ in G a type-a object if there is a connection between ¢ and
a® in the skeleton of G which does not pass through b®, and a type-b object if
there is a connection between ¢ and b® in the skeleton of G which does not pass
through a®. Since the skeleton of G is connected, every object of G is either
type-a or type-b but not both, since the hom-set G(a®,b®) splits G. Suppose
that G(c,d) is a hom-set corresponding to a hom-set in the skeleton of G, and
that ¢ and d are both type-a objects. We must show that G(c,d) splits G.
There is a connection eg, e1,...,e, where eg = a®, either c or d is e,,_1 and the
other is e,,. Moreover, if this is the smallest such connection, it follows that all
of the objects e; are also of type-a. By inductively applying Lemma 2.6, each
hom-set G(e;_1,€;), or G(e;,e;_1) as appropriate, is ®;-critical for some graph
H; containing H and some faithful morphism ®; : H; — G, and therefore this
hom-set splits G. This shows that the skeleton of G must be a tree, and by
Lemma 1.6 it is already known that G must be locally trivial.

It only remains to show that our initial assumption of a morphism with
surjective object function was justified. First, we may assume that H is non-
empty, for if H = @, then G must be the graph e, and the lemma is clearly true
in this case. Next, let & : H — G be a faithful morphism, and let a4,...,a,
be the objects of G which are not in the image of H under ®. We then form
a new graph H' from H by adding new objects b1,...,b, and extending & to
®' : H' — G by sending b; to a; for all ¢ = 1,...,n. Since H is not empty, H' is
equivalent to H, and H' ~ H < G is still a gap. This completes the proof. O

2.3 Gaps between Connected Graphs

At this point we have shown that whenever we are given a connected graph
G and a gap H < (G, we can assume without loss of generality that H is
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connected, that G is reduced and locally trivial, and that the skeleton of G is a
tree. We will now show by construction that given any G which is a reduced,
connected, locally trivial graph whose skeleton is a tree, there exists another
graph H, unique up to equivalence, such that H < G is a gap. This converse of
Lemma 2.7 will complete the classification of connected gaps in the category of
finite directed graphs.

Let G be a reduced, connected, locally trivial, and nonempty graph whose
skeleton S is a tree. First we need to establish some notation. Fix some object
r € Obj(S) = Obj(G) called the root of S. For distinct a,b € Obj(S), a will
be called an ancestor of b and b is a descendant of a if every connection in S
between r and b passes through a. The object a is called a parent of b and b is a
child of a if b is a descendant of a and the link S{a, b} is nonempty. We will write
#a for the number of children of a. A leaf is an object with no children. Since
G = e is an easy case to analyze, we may assume, without loss of generality,
that leaves are distinct from the root. The set of descendants of a together with
the object a itself, will be called the legacy of a. Next, for each a € Obj(S), we
will fix some arbitrary ordering of the children of a, and write a',a?,...,a#?
for the first, second, ..., last child of a respectively.

The construction involves making finitely many copies of each object of S,
and then creating links between the copies of an object and the copies of its
children. A step-by-step illustration of the entire construction can be found in
Figure 6. The i-th copy of an object a will be denoted a;, and the k-th copy of
the j-th child of a will be denoted aj,. In general, whenever a link H{a;, a3} is
nonempty, the orientation of the nonempty hom-set will match the orientation
of the nonempty hom-set in the link G{a,a’}. The link H{a;, a3} is called full
if |H{a;,al}| = |G{a,a’}|, and almost-full if |H{a;,al}| = |G{a,a’}| — 1. All of
the nonempty links in the construction will be either full or almost-full. Notice
that a link G{a,a’} cannot be empty, but that an almost-full link in H may be
empty.

For each a € Obj(S), a locally trivial graph H, will now be recursively
constructed, starting with the leaves of S. The object set of the graph H,
will consist of (1 + #b) copies of each b in the legacy of a. When a is a leaf,
then H, is the graph e, the graph with one object, labeled a;, and no arrows.
Next, assume that a is not a leaf, and that the construction has already been
completed from each of its children. That is, assume that H,: is already defined
for each 7 = 1,2,...,#a. The graph H, begins with the graph Vf&:“l H,: and
1 + #a new objects labeled aq,as,...,a144,. For each ¢ =1,...,#a, add a
non-full link between the ith copy of a, and the last copy of the ith child of
a. In notation, Ha{ai,a’i_‘_#a,-} is non-full. A full link is added to all of the
other possible links between a copy of a and a copy of any of the vertices in the
legacy of a. Notice that since G is locally trivial and its skeleton is a tree, this
is equivalent to adding a full link to all of the other possible links between a
copy of a and a copy of a child of a. The result is the graph H,. Once H, has

15



been constructed, define H to be the full subgraph of H, on the objects of H,
excluding r144.

Lemma 2.8 Let G be an arbitrary reduced, connected, locally trivial, and non-
empty graph whose skeleton S is a tree. If H,., and H are the directed graphs
constructed above, then H, and G are equivalent, and H strictly divides G.

Proof: The object function ® which sends all of the copies of a in H, to the a
in G used in its label shows that H, divides G, so it only remains to show that
G divides H,.. On the other hand, by construction the full subgraph of H, on
the objects aj4#, is an isomorphic copy of G. Thus H, and G are equivalent.

Next, let ® : H, — G be the faithful morphism described above, let G’ be a
®-readable copy of G in H which must exist by Lemma 1.3, and let ¥ : G — G’
be the unique isomorphism from G to G’ for which ®¥ is the identity on G. We
will show by induction that each a¥ = @144, for all a in G. This is certainly
true for the leaves of G since there is only one copy of each leaf in H,. Next,
assume that this has been shown for each child b of a and consider a¥. Since
the link from a; to a’i_i_#a,- is only almost full for each ¢ = 1,2, ..., #a, the only
possible image of a@ under ¥ is a;44,. This completes the induction, and shows,
among other things, that there is only one isomorphic copy of G in H,.. In
particular, the full subgraph H, since it does not contain the object r;4,, does
not contain an isomorphic copy of G, and thus it strictly divides G. O

Lemma 2.9 Let G be an arbitrary reduced, connected, locally trivial, and non-
empty graph whose skeleton S is a tree and let H be the graph constructed
above. If K is any graph such that K strictly divides G then K divides H. This
immediately implies that H < G is a gap in FDG.

Proof: Let ® : K — G be a faithful morphism. We inductively define a
faithful morphism ¥ : K — H, as follows. If a is a leaf of G then send all of
the objects of K in a®~! to the unique leaf a; in H,. Next, suppose that the
object function of ¥ has been defined on b® ! for all of the descendents b of a,
and define ¥ on a® ! as follows. Given an object ¢ in a®~! define c¥ to be the
copy of a in H, with the smallest possible subscript. In particular ¢¥ will be
G144 if and only if there are objects c¢tin K,i=1,...,#a, which have been
sent to the last copy of the child a? in H,., and each of the links between ¢ and
¢’ are @-full. In notation, ¢’ is sent to a ,,: and |[K(c,c)| = |G(a,a’)|. This
completes the inductive definition of ¥. Notice that if there is an object in K
which is sent to riy4,, then by repeatedly using the statement given above, we
can work out from the root to the leaves and find objects in K which form an
isomorphic copy of G in K. In particular, this shows that if K strictly divides
@G, then since it does not contain such a copy of G, the definition of ¥ given
above, defines a faithful morphism from K into H, completing the proof of the
first statement. The second follows immediately from the first and Lemma 2.8.
O
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Figure 6: Sample construction of a gap in FDG. G = E,;; is shown in the
upper left box. The object b is arbitrarily chosen as the root in S (upper right
box). Any other choice of root leads to a divisionally equivalent result for H.
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Theorem 2.10 If G is a nonempty, connected, and reduced directed graph, then
there is a gap H < G in FDG if and only if the skeleton of G is a tree. Moreover,
when such a gap exists, the directed graph H is unique up to equivalence.

Proof: The theorem is a combination of Lemmas 2.3, 2.7, and 2.9. O

Recall that the gaps specified in Lemma 1.4 exactly correspond to all the
connected gaps in FG. But since there are trees in FDG which do not reduce
to directed graph E;, that list does not include all gaps between connected finite
digraphs. In general gaps in FDG have a much richer structure than gaps in
FG. First, even though given G there is a unique graph H up to equivalence for
which H < G is a gap, the reverse is false in FDG. For example, it is now easy
to show that Ey < E» and Ey < Ep; are both gaps in FDG even though E»
and Ep; are not equivalent. Next, there exist infinite descending sequences of
gaps in FDG. As an example let s(n) be the finite sequence (1,1)(—1,1)""1(1),
where juxtaposition of finite sequences denotes concatenation and exponentia-
tion denotes multiple concatenations. It is not difficult to verify that each graph
Eg(r) is reduced, and that the divisions - -+ < Eg3) < Ey2) < Eg1) = E1,1,1 are
gaps in FDG.

2.4 Gaps between Disconnected Graphs

Having classified the gaps in the subcategory of finite connected digraphs, it is
now possible to extend this classification to the category of all finite directed
graphs. As in the connected case, we may assume without loss of generality
that G is reduced. The first two lemmas will show that the disconnected case
can be reduced to the connected one. First a definition: a graph H is called
close to G if the reduction of G has n connected components and exactly (n—1)
of these components divide the graph H.

Lemma 2.11 If H strictly divides G, but H is not close to G, then H < G is
not a gap in FDG.

Proof: First, if all n components of G divide H, then G itself divides H and the
division is not strict. Next, assume that G, and G5 are two distinct connected
components of the reduction of G which do not divide H, and consider the
graph K = HV (. Since G; and G, are distinct connected components of the
reduction, it follows that neither graph divides the other. There are obvious
divisions H ¥ K g G. Clearly, H strictly divides K since G1 does not divide
H, and just as clearly K strictly divides G since G5 does not divide H or G;.
Thus H < G is not a gap. O

Lemma 2.12 Given graphs H 5 K < G with G reduced and H close to G, then
there exist graphs H', K',G', and L such that G' is connected, H' % K' 5 G',
and H~H' VL, K~K'VL, and G~G'V L.
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Proof: By Lemma 2.11, we may assume that H is close to G. Define L to be
the join of the (n —1) connected components of G which divide H and let G' be
the unique connected component which does not divide H. Clearly LVG' ~ G.
Next, since L divides H, H is equivalent to H V L, and, by reduction, H is also
equivalent to H'V L where H consists only of those connected components of H
which do not divide L. Notice that the possibility that H' is the empty graph
is allowed. A similar analysis can be applied to K since L also divides K via
H. Thus there is a possibly empty graph K’ such that K ~ K'V L and no
connected component of K’ divides L. Finally, since H'VL g K'VL 5 G'V L,
but no component of H' or K' divides L it must be the case that H' g K' 5 G'.
O

Theorem 2.13 If G is reduced then there exists a graph H for which H < G
is a gap in FDG if and only if G contains a connected component G' which is
locally trivial and whose skeleton is a tree.

Proof: By Lemmma 2.12 the sufficiency of the stated conditions is immediate.
More specifically, suppose that G' is a component as described and let L be the
union of the other components. By the earlier construction there is a graph H'
such that H' < G’ is a gap. Define H = H' V L. Since G’ does not divide L or
H' it follows that H strictly divides G and by Lemma 2.12 it is a gap. Thus it
only remains to show that these conditions are necessary. Let H < G be a gap.
Since by Lemma 2.11 we may assume that H is close to G, let G' be the unique
connected component of G which does not divide H and let L be the union of
the other components. As above let H be written in the form H' V L where
H' does not divide L. All of the earlier arguments can now be repeated with
the graph L attached and with a few minor modifications. Since the details are
very nearly identical, we will give only a single illustrative example. Recall that
by Lemma 1.5 there is an n sufficiently large such that G' x 7 does not divide
H. If G’ were not locally trivial, then, as in the proof of Lemma 1.6, we could
create a graph H' V (G' x 7i) V L which is strictly between H = H' V L and
G = G' V L, thus showing that G' must be locally trivial. A similar alteration
of the proofs of the other lemmas succeeds in showing that the skeleton of G’
must be a tree. O

Notice that unlike the connected case, when G is disconnected, there may
be more than one H for which H < G is a gap. For example, if G = E», V E; ;
then H equal to either Ey or E;; forms a gap H < G. In fact the connected
components of G which are locally trivial and whose skeletons are trees are in
one-to-one correspondence with the gaps H for which H < G is a gap. This
completes our analysis of gaps in FDG.
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3 Gapsin FTG

In this section we shift our focus from the category of all finite directed graphs
(FDG) to the subcategory of all finite transitive graphs (FTG). Since the
transitivity of the graphs involved is irrelevant to the existence of a division, the
<-ordering on FTG is a restriction of the g-ordering on FDG. In particular,
given transitive graphs G and H, H divides G, H strictly divides G, or H is
equivalent to G in FTG if and only if the respective statements are true when
G and H are viewed as graphs in FDG. The existence of a gap on the other
hand, which is dependent on the existence or non-existence of a third graph can
and does change under this restriction. Certainly gaps H < G in FDG where
both H and G are transitive will also be gaps in FTQG, so that, for example,
the divisions @ < e < E; < Es ... are still gaps in FTG, but new gaps are also
created. As an example of the latter, consider T < 2. By Theorem 2.10 this
division is not a gap in FDG, but it will be shown below to be a gap in FTG.

More generally, all of the arguments given in Section 1 are unaffected by
the restriction to transitive graphs, and thus they remain valid in FTG. In
particular, since full subgraphs of transitive graphs are automatically tran-
sitive, the reduction of a transitive graph is still well defined and transitive
(Lemma 1.1), since the Labeling Lemma never uses transitivity, whenever G is
reduced, H ~ G, and ® : H — @ is a faithful morphism, there is a ®-readable
copy of G in H (Lemma 1.3), and since G x 7i is transitive whenever G is tran-
sitive, the transitive graphs G for which H < G is a gap must be locally trivial
(Lemma 1.6).

3.1 Connected Transitive Graphs

As stated earlier, a transitive graph is simply a directed graph G which is
transitive, so that a — b — ¢ in G implies that the homset G(a, ¢) is nonempty.
Notice that although a full subgraph of a transitive graph must be transitive,
an arbitrary subgraph need not be. For any directed graph, however, there does
exist a ‘smallest’ transitive graph which contains it as a subgraph. If G is a
directed graph, the transitive closure of G is the graph G, obtained from G by
adding a single new arrow a — b to every empty hom-set G(a, b) for which there
exist arrows
a—>cL—C —--—c,—b

in G. The transitive graph G is the smallest transitive graph containing G' in
the sense that i if H is a transitive graph which contains G as a subgraph, it must
also contain G as a subgraph.

Lemma 3.1 Let G be a reduced, connected, and locally trivial transitive graph,
let Hy and Hy be connected transitive graphs, and let &1 : Hy < G, and P, :
Hy < G be strict divisions. If the subgraphs H1®, and Hy®s in G are not
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disjoint, then there exists a connected transitive graph K such that H; and H,
divide K and K strictly divides G.

Proof: The proof is identical to that of Lemma 2.1 except that the graph K
constructed from H; V Hy requires a few more objects and arrows. Let aq,
a2, by and bs be defined as before, and let K be the transitive closure of the
graph H; V H, with seven objects and eight arrows added. In the concrete
situation where a; is a predecessor of b; and as is a successor of by, the added
objects c1,ds,e1, f,e2,ds, and ca should have arrows added from ¢; to ag, ¢
to di, €1 to di, e1 to f, f to es, d2 to es, d2 to ¢z, and ay to cp. Clearly
H, V H;, 3 K % G since there is a faithful morphism ® : K — G which agrees
with ®; on the objects of H; and with ®, on the objects of H, and which has
blq) = Cl(I) = 61‘1’, b2‘I> = CQ(I) = 62(1), and 0,1<I) = dl@ = f‘I) = dz@ = a2<I>.
Notice that the objects ¢;, d;, and e; for ¢ = 1,2 are either source or sink objects
whose removal would disconnect the constructed graph and that they retain this
property in the transitive closure K.

If K were equivalent to G, then by the Labeling Lemma there would exist
a ®-readable copy G' of G in K. Since G is connected, and since ¢; and e;
are sent to the object b;® in G, it follows that G’ contains either ¢; or e; (but
not both) and either ¢y or e; (but not both). Thus G’ is contained in the full
subgraph on Obj(H;)U{c1,d;}, the full subgraph on Obj(Hz) U{cz2,dz2}, or the
full subgraph on {di,ei, f,e2,d2}. Since the first two cases are easily seen to
be equivalent to H; and H,, respectively, contradicting the assumption that ®;
and ®, are strict divisions, the only possibility is that G' and thus G contains
at most five objects and five edges. The lemma is easily seen to be true for the
severely restricted possibilities which remain. O

Lemma 3.2 If G is a connected and locally trivial transitive graph, then the
family of connected transitive graphs strictly below G is upward-directed in the
sense that, if Hy and Hy are connected and ®1 : Hy < G and ®3 : Hy < G are
strict divisions, then there is a connected transitive graph K such that H; and
H, divide K and K strictly divides G.

Proof: The proof is identical to that of Lemma 2.2 once it is noted that the
argument which shows that H; strictly divides G, also shows that the transitive
closure of Hj strictly divides G. Lemma 3.1 applied to the transitive closure of
Hj and H> completes the proof. O

Lemma 3.3 If G is connected and H; < G for i = 1,2 are gaps in FTG, then
H, and H» are equivalent.

Proof: The proof is identical to that of Lemma 2.3. O
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3.2 Skeletons of Transitive Graphs

The skeleton of a finite transitive graph will be defined slightly differently from
the skeleton of a directed graph in order to take advantage of the similarities
between the two situations. A hom-set G(a,b) will be called composite if there
exist an object ¢ and arrows a — ¢ — b. If no such object ¢ exists, then G(a,b)
is called skeletal. A composite or skeletal arrow is an arrow in a composite
or skeletal hom-set. The FTG-skeleton of a transitive graph is the subgraph S
which consists of all of the objects of G and exactly one arrow from each skeletal
hom-set. Since the skeleton of a directed graph in the sense of Section 2 will
no longer be needed, we may safely refer to the FTG-skeleton of a transitive
graph G as simply the skeleton of G. Notice that the skeleton of a transitive
graph is not itself a transitive graph, merely a directed one.

In addition to reformulating the notion of the skeleton of a graph, it is
also necessary to reformulate the notions of a ®-saturated graph, and a -
critical hom-set with respect to a faithful morphism ®. Let ® : H — G be a
faithful morphism between transitive graphs G and H. The graph H is called
®-saturated if for every hom-set H(a,b) of H which is not ®-full, H strictly
divides the transitive closure of H + (a — b).

The new definition of a ®-critical hom-set requires an additional concept. A
hom-set G(c, d) is said to factor through G(a,b) if there are arrows ¢ — a and
b — d. This is equivalent, in a locally trivial transitive graph to the existence
of a sequence ¢ = e, = €p_1...¢g = a = b= fo = fo = ...f, = d where
G(es,ei—1) and G(fj—1, f;) are skeletal hom-sets for all4 =1,...m—1and j =
1,...n — 1. This is true since if repeated factorization does not eventually stop
at skeletal hom-sets, then an object will occur twice in the sequence, thereby, by
transitivity producing a local arrow which contradicts our initial assumption.
A hom-set G(a,b) of a transitive graph G will be called ®-critical if H < G is a
gap in FTG, & : H — G is a faithful morphism, H is ®-saturated, G(a,b) has
a pre-image under ® which is not ®-full, S(a,b) splits the skeleton of G, and
every composite hom-set G(c, d) which factors through G(a,b) contains exactly
one arrow. A transitive graph G will be called trivial if G is locally trivial and
all composite hom-sets have exactly one arrow. It should be noted that if all of
the skeletal hom-sets in G are ®-critical for some ®, then G must be a trivial
transitive graph.

Lemma 3.4 If ® : H —» G is a faithful morphism between transitive graphs
and G is locally trivial, then there is a transitive graph H' which contains H as
a subgraph, and there is an extension of ® to a faithful morphism ®' : H' — G,
such that H' has the same objects as H, H' is equivalent to H, and H' is
@' -saturated.

Proof: If H is not ®-saturated, then by definition there is a hom-set H(a,b)
which is not ®-full and H is equivalent to the transitive closure of H + (a — b).
In this case extend the faithful morphism & to the new arrows in the obvious
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way and repeat this procedure as many times as necessary. At some point the
process must stop since the total number of arrows in any extension H' of H
which divides G is bounded above by the number of hom-sets in H times the
size of the largest hom-set in G. When it does stop, the graph and the faithful
morphism under consideration satisfy the conclusion of the lemma. O

Lemma 3.5 (Splitting Lemma) Let G be a connected and reduced transitive
graph, let H < G be a gap in FTG, and let ® : H — G be a faithful morphism
with a surjective object function. If H is ®-saturated and H(a,b) is a hom-set
which is not ®-full, then its image under ®, G(a®,b®P), is ®-critical.

Proof: We will first show that whenever a hom-set exists which is not ®-full,
there also exists a possibly different hom-set which is not ®-full for which the
addition of an arrow to this hom-set results in a transitive graph. Let H(a,b)
be a hom-set of H which is not ®-full. If H(a,b) is nonempty then this is
immediate, since another arrow can be added to H(a,b) without altering the
fact that H is transitive. So assume H (a,b) is empty. Next, define the influence
of H(a,b) to be the number of arrows which must be added to H + (a — b)
to form its transitive closure. We will show that there are objects ¢ and d for
which H (e, d) is not ®-full and the influence of H(c,d) is 0.

Assume that the influence of H (a,b) is non-zero, and let ¢ — d be one of the
arrows which must be added to H + (a — b) to form its transitive closure. It is
easy to see that the hom-set H(c,d) is empty, that it factors through H(a,b),
and H(c,d) is not ®-full since G(c®,d®) factors through G(a®,b®) and is thus
nonempty. In addition, since G, and thus H, are locally trivial, it follows that
H(a,b) does not factor through H (¢, d). Combining this with the fact that all of
the hom-sets which factor through H (c, d) also factor through H (a,b), it follows
that the influence of H(c,d) is strictly smaller than that of H(a,b). Continuing
in this way we quickly find a hom-set satisfying the necessary conditions.

The rest of the proof follows the outline of the proof of Lemma 2.5. By the
above argument, the hom-set H (a, b) chosen at the beginning can now be chosen
so that H + (a — b) is itself transitive. Another change is that the graph K
which is constructed from H x n® should be replaced by its transitive closure
K. The impossibility of an equivalence between K and H follows as before, so
suppose that K is equivalent to G. As before, Lemma, 1.3 implies that there is
a ®'-readable copy G’ of G in K. In this context this implies that G’ contains
exactly one object with first coordinate a and one object with first coordinate b.
Next, notice that since composite hom-sets in K are sent under ®' to composite
hom-sets in G it follows that the inverse image under &' of a skeletal hom-set
in G consists solely of skeletal hom-sets in K. Thus the skeleton of G', which is
isomorphic to the skeleton of G, is contained in the skeleton of K. In particular,
the only global skeletal hom-sets in K are between objects with first coordinates
a and b.

Thus, if G’ contains objects (a, %) and (b, ) for some 4, then it cannot contain
any of the objects (a, j) or (b, j) with j # ¢, and in particular, it cannot contain
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any of the global skeletal hom-sets of K. Since the skeleton of G, like G itself,
is connected, it follows that G divides the i-th level of K. But this level is
isomorphic to H and we have reached a contradiction. Thus G' must contain
(a,i) and (b,j) with ¢ # j. Since G' cannot contain any of the other objects
with first coordinate a or b, G' contains at most one global skeletal hom-set,
namely, the hom-set K ((a,t),(b,5)). If ¢ is greater than j, then this hom-set
is empty contradicting the connected nature of the skeleton of G and G'. On
the other hand, if ¢ is less than j then, since G' is isomorphic to G, it is clear
that G'((a,1%), (b,7)) splits the skeleton of G' and all of the composite hom-sets
which factor through G'((a,%), (b,j)) contain exactly one arrow. Thus G(a,b)
splits the skeleton of G, and all of the composite hom-sets which factor through
G(a,b) contain exactly one arrow. In other words, G(a,b) is ®-critical. O

Lemma 3.6 (Continued-splitting) Let G be a connected and reduced tran-
sitive graph, let H < G be a gap in FTG, let ® : H — G be a faithful morphism
with a surjective object function, and let H be ®-saturated. Suppose further
that G(a,b) is ®-critical, and that there is object ¢ in G such that one of the
hom-sets G(a,c), G(c,a), G(b,c), or G(c,b) is nonempty. If ¥ represents this
nonempty hom-set, then there is a graph K which is equivalent to H, contains
H as a full subgraph, and there is a faithful morphism ¥ : K — G, such that K
is U-saturated and the hom-set ¥ in K is V-critical.

Proof: The proof is identical to that of Lemma 2.6. It should be noted, how-
ever, that one of the consequences of Lemma 3.5 is that all hom-sets in H which
are not ®-full are skeletal hom-sets in G, and thus also skeletal hom-sets in H.
In particular the graph H' constructed in the proof of Lemma 2.6 is already
transitive. The proof can therefore be repeated without modification. O

Lemma 3.7 If G is a reduced and connected transitive graph and H < G is a
gap in FTQG, then G is trivial and the skeleton of G is a tree.

Proof: The proof is identical to that of Lemma 2.7 once it is observed that if
all of the skeletal hom-sets in G are ®-critical for some ®, then G must be a
trivial transitive graph. O

3.3 Gaps between Connected Transitive Graphs

We shall now prove a converse of Lemma 3.7. Let G be a reduced, trivial,
and connected transitive graph whose skeleton S is a tree. The construction
given in Section 2 has been worded so that it applies equally well to the present
situation. Notice in particular that a full link is added to all of the other possible
links between a copy of a and a copy of any of the objects in the legacy of a.
Notice also that since all of the non-full links correspond to skeletal hom-sets in
G, H(aj,b;) is nonempty whenever G(a,b) is a composite hom-set. From this
fact it follows easily that H, is a transitive graph and thus so are all of its full
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subgraphs such as H, and H. Once these observations have been made the rest
of the results follow quickly. The complete construction has been carried out
for G = 3. See Figure 8.

Lemma 3.8 Let G be an arbitrary reduced, connected, locally trivial, and non-
empty transitive graph whose skeleton S is a tree. If H,., and H are the transitive
graphs constructed above, then H, and G are equivalent, and H strictly divides

G.
Proof: The proof is identical to that of Lemma 2.8. O

Lemma 3.9 Let G be an arbitrary reduced, connected, locally trivial, and non-
empty transitive graph whose skeleton S is a tree and let H be the transitive graph
constructed above. If K is any transitive graph such that K strictly divides G
then K divides H. This immediately implies that H < G is a gap in FTG.

Proof: The proof is identical to that of Lemma 2.9. O

Theorem 3.10 If G is a nonempty, connected, and reduced transitive graph,
then there is a gap H < G in FTG if and only if G is trivial and the skeleton of
G is a tree. Moreover, when such a gap exists, the transitive graph H is unique
up to equivalence.

Proof: The theorem is a combination of Lemmas 3.3, 3.7, and 3.9. O

The properties of the set of gaps in FTG are similar to those in FDG. For
example, it follows easily from the above construction that T<2<3<--
are gaps in FTG. This was also proved directed by Rhodes in [6]. Since it
is also true that @ < ¢ < E; < Ey < --- are gaps in FTG, we have an easy
example of a connected H which is at the bottom of two different gaps H < G
with G connected. Namely, let H be E; = 1 and let G be either F» or 2. A
less immediate example, one where G; and G5 are dual to each other and H is
self-dual, is shown in Figure 9.

3.4 Gaps between Disconnected Transitive Graphs

As in the previous section we conclude our discussion of gaps in the category of
finite transitive graphs by extending the above results on connected gaps to the
disconnected ones. As before, the transition is fairly quick and immediate.

Lemma 3.11 Let G and H be transitive graphs. If H strictly divides G, but H
is not close to G, then H < G 1is not a gap in FTG.

Proof: The proof is identical to that of Lemma 2.11. O
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Figure 7: Sample construction of H,. G = 3 is shown in the upper left box.
Object b is chosen as the root in S (upper right box). H will be obtained from
Hy by deleting b3 and all associated arrows. See Figure 8.
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Figure 8: H constructed for the example of Figure 7, where G is isomorphic to
3. This H is not reduced; it retracts to its full subgraph on by, ¢z, and dj.
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Figure 9: A connected H at the bottom of distinct gaps in FTG

27



Lemma 3.12 Given transitive graphs H 5 K < G with G reduced and H
close to G, then there exists transitive graphs H', K',G', and L such that G' is
connected, H x K' K G', and H~H' VL, K~K'VL, and G ~G'V L.

Proof: The proof is identical to that of Lemma 3.12. O

Theorem 3.13 If G is a reduced transitive graph then there exists a transitive
graph H for which H < G is a gap in FTG if and only if G contains a connected
component G' which is trivial and whose skeleton is a tree.

Proof: Asin the proof of Theorem 2.13, the sufficiency of the stated conditions
is immediate. Thus it only remains to show that these conditions are necessary.
Let H < G be a gap. Since by Lemma 3.11 we may assume that H is close to
G, let G’ be the unique connected component of G which does not divide H and
let L be the union of the other components. As above let H be written in the
form H'V L where H' does not divide L. All of the earlier arguments in this
section can now be repeated with the graph L attached and with a few minor
modifications to complete the proof. O

Exactly as in the case of finite directed graphs, the proof could actually be
extended to give a one-to-one correspondence between the connected compo-
nents of G which are trivial and whose skeletons are trees and those transitive
graphs H for which H x G is a gap in FTG.

4 History and an Open Problem

The ordering under investigation in this article was originally defined on the set
of finite categories by Bret Tilson in [7]. In [5], Rhodes first posed the question
of a classification of the gaps in the Tilson ordering for finite undirected graphs,
finite directed graphs, finite transitive graphs, and finite categories. In [6] he
went on to show that when gaps exist in any of these categories, the upper part
of the gap must be locally trivial, and he conjectured the following.

Conjecture 1 (Rhodes) The divisions @ < e < E3* are the only connected
gaps in FCat.

The next step forward came in [4] in which one of us (McCammond) an-
nounced new constructions which were thought to be sufficient to classify all of
the gaps between finite categories. Although this has turned out not to be true,
the announced constructions did form the basis for articles ([2] and the present
article) which have succeeded in classifying the gaps between finite undirected,
finite directed, and finite transitive graphs. In [1], significant partial results
have been obtained for gaps between finite categories. In particular, if G is a
reduced and connected finite category which does not divide E2® and H < G a
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gap in FCat, then it has been shown that the underlying transitive graph of G
with the identity arrows removed must be locally trivial and trivial, G cannot
contain F, » as a subgraph, the hom-sets of G must factor uniquely into skeletal
hom-sets, G must contain strictly more than two objects, and at least one of
the objects must have a proper predecessor and a proper successor. In spite of
this progress, Rhodes’ conjecture remains open.
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