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Abstract. Let I denote the commutator ideal in the free associative
algebra on m variables over an arbitrary field. In this article we prove
there are exactly m! finite Gröbner bases for I, and uncountably many
infinite Gröbner bases for I with respect to total division orderings.
In addition, for m = 3 we give a complete description of its universal
Gröbner basis.

Let A be a finite set and let K be a field. We denote the free associative
algebra over K with noncommuting variables in A by K〈A〉 and the poly-
nomial ring over K with commuting variables in A by K[A]. The kernel
of the natural map γ : K〈A〉 → K[A] is called the commutator ideal. The
commutator ideal in K〈A〉, and in particular its noncommutative Gröbner
bases, have been used to investigate properties of finite generated ideals in
the commutative polynomial ring K[A]. This has occurred, for example,
in the study of free resolutions [1] and the homology of coordinate rings of
Grassmannians and toric varieties [12]. In this article we establish several
new results about noncommutative Gröbner bases for the commutator ideal
in K〈A〉. Our main results are as follows:

Theorem A. There are exactly m! finite reduced complete rewriting systems
for the m-generated free commutative monoid and exactly m! finite reduced
Gröbner bases for the commutator ideal of the m-variable free associative al-
gebra. In addition, each such rewriting system and Gröbner basis is induced
by a shortlex ordering.

Theorem B. There are uncountably many reduced complete rewriting sys-
tems for the m-generated free commutative monoid which are compatible
with a total division ordering when m ≥ 3. As a consequence, there are un-
countably many reduced noncommutative Gröbner bases with respect to total
division orderings for the commutator ideal in the m-variable free associative
algebra, each with a distinct set of normal forms.
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Theorem C. The universal Gröbner basis for the commutator ideal in the
free associative algebra K〈a, b, c〉 consists of the binomials

ab − ba bc − cb ca − ac

abjck − bjcka bckai − ckaib caibj − aibjc

ackbj − ckbja baick − aickb cbjai − bjaic

for all positive integers i, j, and k.

These theorems extend and complement several other recent results. In
[5] Green, Mora, and Ufnarovski compare other properties of the Gröbner
fan and universal Gröbner basis for the noncommutative and commutative
cases. In [3] Eisenbud, Peeva, and Sturmfels show that for any ideal J of
K[A], after a generic change of coordinates, the ideal γ−1(J) must have a
finite noncommutative Gröbner basis, using a specific lift of a term ordering
(or total division ordering) for K[A] to a total division ordering for the free
associative algebra. For the more restrictive case of monoidal ideals, Diekert
[2] has shown that every commutative monoid has a finite complete rewriting
system. In [6], Kramer, Laubenbacher, and the first author showed that
there are uncountably many distinct Gröbner bases for the commutator ideal
with respect to division orderings which were not typically total division
orders. Finally, we note that U. Martin [9] has independently established
Theorem B.

Organization: As can be seen from the statements given above, the study
of Gröbner bases for the commutator ideal can also be reformulated in terms
of complete rewriting systems for the free commutative monoid. Section 1
is a brief review of rewriting systems, noncommutative Gröbner bases, and
the connection between these two theories. In Section 2 we use rewriting
systems to classify the finite reduced Gröbner bases for the commutator
ideal (Theorem A). The proof shows that every finite Gröbner basis for
this ideal which is compatible with a division ordering, is also compatible
with a total division ordering. Section 3 uses geometry to classify all of the
potential sets of normal forms for the 3-generator free commutative monoid.
This classification is needed in the proofs of Theorems B and C which are
established in Section 4. The last section, Section 5, is devoted to open
questions and a few final comments.

1. Basic definitions

In this section we review the basic definitions for noncommutative Gröbner
bases and rewriting systems, as well as the theorem (Theorem 1.7) connect-
ing these two concepts. For further information about rewriting systems see
[16], for a more detailed account of noncommutative Gröbner bases see [5]
and [11], and for the connections between these topics see [8]. We begin
with rewriting systems.
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Definition 1.1 (Division ordering). Let A be a finite set and let A∗ be
the collection of all (noncommutative) words, including the empty word,
over the alphabet A. A division ordering on A∗ is a partial ordering which
is well-founded and compatible with concatenation; that is, there are no
infinite descending sequences and for all u, v, w ∈ A∗ with u > v, we also
have wu > wv and uw > vw. A division ordering is total if any two elements
in A∗ are comparable.

We will follow the convention that symbols from the beginning of the
alphabet, such as a, b, c denote elements of A (i.e. “letters”) and symbols
from the end, such as u, v, w denote elements of A∗ (i.e. “words”).

A common example of a total division ordering is the shortlex order-
ing. Given a total ordering on a set A, there is a natural lexicographic,
or dictionary, ordering on words in A∗ which we will denote >lex. The
corresponding shortlex ordering > on A∗ is defined by setting u > v if
length(u) > length(v), or length(u) = length(v) and u >lex v.

Definition 1.2 (Rewriting system). A subset R of A∗ × A∗ is called a
rewriting system. Corresponding to each ordered pair (u, v) in R there is a
basic replacement rule u → v. In order to be compatible with concatentation
the basic rule u → v implies the replacement rules xuy → xvy for all x, y ∈
A∗. Since elements of R lead immediately to basic replacement rules, we
will simply say u → v is a rule in R or u → v ∈ R.

Every rewriting system R leads to a reflexive and transitive ordering on
A∗ defined by x ≥ y if x can be rewritten to y in a finite number of steps. A
rewriting system R is terminating if the induced ordering of A∗ is a division
ordering, it is confluent if x ≥ y and x ≥ z implies there is a w ∈ A∗ such
that y ≥ w and z ≥ w, and it is complete if it is both terminating and
confluent.

Definition 1.3 (Normal forms). The words in A∗ which cannot be rewritten
by a rewriting system R are called irreducible words. If every proper subword
of w is irreducible we say that w is nearly irreducible. If R is terminating,
then every word in A∗ can be rewritten to an irreducible word. If R is also
confluent then this irreducible word is unique. Thus, in a complete rewriting
system, every word can be reduced to a unique irreducible word called its
normal form. Since any subword of an irreducible word is also irreducible,
the set of normal forms is closed under the taking of subwords.

A complete rewriting system R is reduced if for every rule u → v in R, v

is irreducible and u is nearly irreducible.

Definition 1.4 (Monoid presentation). Every rewriting system R deter-
mines a monoid presentation M = 〈A | {u = v | (u, v) ∈ R}〉. Moreover, the
ordering on A∗ induced by R is compatible with this monoid in the sense that
x ≥ y implies that x and y are words representing the same element of M . If
R is also complete, then the normal forms are in one-to-one correspondence
with the elements of M .
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For each element m ∈ M , the congruence class of m is the set of all words
in A∗ that represent the element m. For a complete rewriting system, the
ordering on A∗ restricted to a congruence class of M is a partially ordered
set with a minimum element. Conversely, let M be a monoid generated by
A and let > be a division ordering on A∗ which is compatible with M . If >

restricted to each congruence class is a partially ordered set with a minimum
element then there is a unique reduced complete rewriting system R over
the alphabet A which presents M and such that for every rule u → v ∈ R,
u > v. Note that each irreducible word is precisely the minimum element of
its congruence class with respect to >.

Eschenbach [4] has given an example of a finite reduced complete rewriting
system for a monoid which is compatible with a division ordering, but not
with any total division ordering, so allowing division orderings which are
not total results in a more general construction.

We now turn to noncommutative Gröbner bases.

Definition 1.5 (Leading term). Let K be a field and let A be a set of
size m. The monoid ring for A∗ over K is known as the m-variable free
associative algebra over K, which we will denote by K〈A〉. If > is a total
division ordering on A∗ and f = k1m1 + · · · kjmj is an element of K〈A〉
(with ki ∈ K and mi ∈ A∗ for each i), then the leading term of f is the term
kimi such that mi > mj for all j 6= i. If > is merely a division ordering then
the leading term of f is defined as above, but not every f in K〈A〉 will have
a leading term. If f is an element of K〈A〉 with leading term kimi, then the
replacement rule corresponding to f is

mi →
−1

ki

∑

j 6=i

mjkj

The definitions for rewriting systems can readily be extended to this con-
text.

Definition 1.6 (Noncommutative Gröbner basis). Let I be an ideal in the
m-variable free associative algebra K〈A〉. A noncommutative Gröbner basis
for I with respect to a division ordering > is a set G of generators for I such
that (1) every element of G has a leading term and (2) the corresponding
system of replacement rules is confluent. When the ordering > is total, the
first condition is immediate and the second is equivalent to the statement
that the leading terms of G generate the same ideal as the leading terms of
I. We will always use the weaker definition which does not require a total
ordering unless otherwise specified.

A Gröbner basis G is reduced if no term of any polynomial in G is divisi-
ble by the leading term of another polynomial in G. The universal Gröbner
basis for I is the union of all of the reduced Gröbner bases with respect to
all (total) division orderings for this ideal. Theoretically, restricting to total
division orderings could change the universal Gröbner basis of an ideal. For
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the universal Gröbner basis for the commutator ideal described in Theo-
rem C, however, either definition yields the same result.

The following theorem outlines the connection between rewriting systems
and Gröbner bases in the specific case we will need to use in later sections.
Its proof is straightforward from the definitions and will be omitted.

Theorem 1.7. If N
m denotes the m-generated free commutative monoid

on A and I denotes the commutator ideal in the m-variable free associative
algebra, then there is a bijective correspondence between the reduced complete
rewriting systems on A for N

m and the reduced Gröbner bases for I. More
specifically, if R is a reduced complete rewriting system for N

m compatible
with a (total) division ordering > on A∗, then {u − v | u → v ∈ R} is
a reduced Gröbner basis for I with respect to >, and conversely, if G is a
reduced Gröbner basis for I with respect to a (total) division ordering >, then
the elements of G must be of the form u − v where u and v are monomials
and the set {u → v | u − v ∈ G, u > v} is a reduced complete rewriting
system for N

m compatible with >.

Note that Eschenbach’s result mentioned earlier shows that weakening
statements such as this to allow non-total division orderings tends to include
additional rewriting systems and additional Gröbner bases. In particular, a
consequence of Eschenbach’s example is that there exists a finitely generated
ideal in an associative algebra which has a Gröbner basis with respect to a
division ordering, but does not contain a Gröbner basis with respect to any
total division ordering.

2. Finite Gröbner bases

Let N
m denote the free commutative monoid generated by A = {a1, . . . , am}

and let K〈A〉 denote the free associative algebra with variables A. In this
section we classify the finite Gröbner bases for the commutator ideal in K〈A〉
by classifying the finite reduced complete rewriting systems for N

m. These
tasks are equivalent by Theorem 1.7. We begin by analyzing the simplest
rules in such a rewriting system.

Lemma 2.1. If R is a complete rewriting system for N
m, then for every

i 6= j between 1 and m, R contains either the rule aiaj → ajai or the rule
ajai → aiaj. If R is reduced, then these are the only rules which involve at
most two elements of A.

Proof. Since a word of length 1 is the unique representative of a monoid
generator it must be its normal form. Similarly, the product of two distinct
monoid generators ai and aj has only two representatives (namely aiaj and
ajai), so one of these is the normal form and the other must be reducible
to it. Since every proper subword of both words is already in normal form,
there must be an explicit rule in R which rewrites aiaj → ajai or ajai → aiaj

(but not both). The final assertion follows from the fact that every word in
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A∗ which involves only two letters can be reduced to a unique normal form
using only the rules already described. �

The 2-variable rules can be encoded in a graph to make them easier to
describe.

Definition 2.2 (2-variable graph). Let R be a complete rewriting system
for N

m. The 2-variable graph associated to R is a directed graph Γ with
vertex set A and a directed edge from ai to aj if and only if ajai → aiaj is
a rule in R.

By Lemma 2.1, every pair of vertices in Γ is connected by an edge in
one direction or the other. In other words, Γ is what graph theorists call a
tournament. In Lemma 2.4 we will show how 2-variable graphs restrict the
set of possible normal forms for a complete rewriting system.

Lemma 2.3. Let R be a complete rewriting system for N
m. If w is a nearly

irreducible word and a is a variable, then all occurrences of a in w occur
consecutively.

Proof. Suppose not and let w be a shortest nearly irreducible word which
fails to have this property. Since nearly irreducible words are closed under
the taking of subwords we can assume that w = aua where u is a non-
trivial word which does not contain a. Then the distinct words au and
ua are irreducible words which represent the same element of N

m, giving a
contradiction. �

Lemma 2.4. If R is a complete rewriting system for N
m and w is a nearly

irreducible word of length at least 3, then the sequence in which the variables
occur in w corresponds to a simple directed path in the 2-variable graph for
R.

Proof. Let Γ be the 2-variable graph for R. The path in Γ corresponding to
w is directed because the length 2 subwords of w are irreducible and it is
simple by Lemma 2.3. �

The following corollary is a sample application of Lemma 2.4.

Corollary 2.5. Let R be a complete rewriting system for N
3 whose 2-

variable graph is a directed cycle a → b → c → a. For every i, j, k > 0, a
nearly irreducible word which represents (i, j, k) is of the form aibjck, bjckai

or ckaibj.

There is also a strong connection between Γ and the finiteness of R.

Lemma 2.6. If R is a reduced complete rewriting system for N
m, then R

is finite if and only if its 2-variable graph is acyclic.

Proof. Let Γ be the 2-variable graph for R and suppose Γ contains a directed
cycle from ai1 to ai2 to ai3 to . . . aik to ai1 . If R were a finite system there
would be an upper bound on the length of the words involved in its rules.
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Let N be such an upper bound and consider the words u = aN
i1

aN
i2
· · · aN

ik

and v = aN
i2

aN
i3
· · · aN

ik
aN

i1
. These words represent the same element of the

monoid, but neither of these words can be rewritten using the rules in R.
Specifically, every subword of u or v of length at most N involves only two
variables, all 2-variable rules are of the form aiaj → ajai (Lemma 2.1), and
u and v are reduced with respect to these rules. Thus R is not finite.

On the other hand, if Γ is acyclic, then Γ is the graph of a total ordering of
A and by relabeling the ai we can assume that ajai → aiaj is a rule in R for
each i < j. Using only these rules, every word in A∗ can be reduced to a word
of the form an1

1
· · · anm

m . Since these words are in one-to-one correspondence
with the elements of N

m, the 2-variable rules in R form a complete rewriting
system for N

m. Because R is reduced, these are the only rules in R and R

is finite. �

The rest of the classification is nearly immediate.

Theorem A. There are exactly m! finite reduced complete rewriting systems
for the m-generated free commutative monoid and exactly m! finite reduced
Gröbner bases for the commutator ideal of the m-variable free associative al-
gebra. In addition, each such rewriting system and Gröbner basis is induced
by a shortlex ordering.

Proof. Let R be a finite reduced complete rewriting system for N
m and let

Γ be its 2-variable graph. By Lemma 2.6 Γ is acyclic and thus it can be
used to define a total ordering on A and a corresponding shortlex ordering
on A∗. There are exactly m! such shortlex orderings. This shortlex ordering
leads to the rewriting system R and to the corresponding Gröbner basis for
the m-variable free associative algebra using the correspondence described
in Theorem 1.7. �

3. Potential normal forms

For the remainder of the article we restrict our attention to the case m =
3. Let R be a reduced complete rewriting system for N

3 over A = {a, b, c}
and let Γ be its 2-variable graph. Of the possible 2-variable graphs, 6 are
acyclic and correspond to the 6 shortlex orderings on A∗. The remaining
possibilities contain a directed cycle, but with only three vertices, there are
only two choices for Γ: either a directed cycle a → b → c → a or a directed
cycle a → c → b → a. Without loss of generality we will restrict our
comments to the first case. We will assume, in other words, that R contains
the rules ba → ab, cb → bc and ac → ca. By Corollary 2.5 the set of normal
forms for such a rewriting system has all of the following properties.

Definition 3.1 (Potential normal forms). Let F be a subset of A∗ which
contains exactly one representative of each element in N

3. We will call F a
potential set of normal forms if (1) F contains ab, bc, and ca, (2) F is closed
under the taking of subwords, and (3) for all i, j, k > 0, the representative
of (i, j, k) is of the form aibjck, bjckai or ckaibj . Given a set F of potential



NONCOMMUTATIVE GROEBNER BASES 8

normal forms, we can form a rewriting system R as follows. We call a word
w irreducible with respect to F if it lies in F and nearly irreducible with
respect to F if w is not in F but all of its proper subwords lie in F . We then
let R be the rewriting system which consists of all rules of the form u → v

where u is nearly irreducible with respect to F , v is irreducible with respect
to F and u and v represent the same element of N

3.

Such an F is merely a potential set of normal forms because it is not clear,
a priori, whether or not the rewriting system defined above is terminating;
in particular, it may be possible for the rules to allow a loop of rewritings
x1 → x2 → · · · → x1. If the rewriting system is terminating, it would also be
complete. On the other hand, if F came from a reduced complete rewriting
system R for N

3 which contains the rules ba → ab, cb → bc and ac → ca,
then this procedure simply reconstructs R from F .

In order to classify the potential sets of normal forms, we first translate
these conditions into a coloring of the first octant in R

3.

Definition 3.2 (Octant coloring). A subset S of the first octant R
3
>0 is

called convex with respect to the x-axis if for every point (x, y, z) in S and
for all 0 < y′ < y and 0 < z′ < z, (x, y′, z′) is also in S. Convex with
respect to the y-axis and z-axis are defined similarly. An octant coloring is
a 3-coloring of the first octant R

3
>0 such that the green portion is convex

with respect to the x-axis, the blue portion is convex with respect to the
y-axis, the red portion is convex with respect to the z-axis. Thus, if (x, y, z)
is colored red, the entire rectangle (0, x]× (0, y]× {z} is red. This subset is
called a red rectangle. Green and blue rectangles are defined similarly. See
Figure 1 for an illustration of sample rectangles in each of the three colors.

x

y

z

red

green

blue

Figure 1. A green, red, and blue rectangle.

Definition 3.3 (Equivalent colorings). Two octant colorings will be called
equivalent if they agree on all integer lattice points. Every octant coloring
is equivalent to a coloring constructed out of unit cubes of color. Simply
remove the coloring from all points not in the integer lattice and then assign
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an uncolored (x, y, z) the same color as (i, j, k) where i, j, and k are the least
integers greater than or equal to x, y, and z, respectively. This process of
constructing an octant coloring from an appropriate coloring of the integer
lattice is called completing the coloring.

Lemma 3.4. There is a one-to-one correspondence between potential sets
of normal forms and equivalence classes of octant colorings.

Proof. Given a potential set F of normal forms for N
3, we can construct an

octant coloring by coloring an integer lattice point (i, j, k) (with i, j, k > 0)
blue if the normal form is aibjck, red if the normal form is bjckai, and
green if the normal form is ckaibj , and then completing the coloring. The
fact that the three color subsets are convex with respect to the appropriate
axes follows from the fact that F is closed under the taking of subwords.
Conversely, given an octant coloring, we can define a potential set of normal
forms by including aibj , bjck, and ckai as normal forms for i, j, k ≥ 0, and
using the color of the lattice point (i, j, k) to define its normal form for
i, j, k > 0. The convexity of the color regions shows that these normal forms
are subword closed. �

In the language of octant colorings, the main result of [6] is the following:

Theorem 3.5 (2-colorings are complete). If F is a set of potential normal
forms which induces a 2-coloring of the first octant, then the rewriting system
R derived from F is a reduced complete rewriting system.

x

y

blue

red green

Figure 2. A horizontal cross section.

Let P be a plane z = c which slices through an octant coloring. For each t,
let g(t) = sup{y|(t, y, c) is green}. Note that we are allowing the possibility
that g(t) = ∞ and we assign g(t) = 0 if this set is empty. Similarly define
b(t) = sup{x|(x, t, c) is blue}.

Lemma 3.6. If P is a plane z = c which slices through an octant coloring,
then the functions g(t) and b(t) defined above are non-decreasing, and the red
portion, if nonempty, is a rectangle (0, x]×(0, y]×{c} for some x, y ∈ (0,∞].
Analogous statements are true for cross-sections by planes x = c and y = c.



NONCOMMUTATIVE GROEBNER BASES 10

Proof. The red, blue and green rectangles determined by points in P in-
tersect P in red rectangles with the origin as a corner, green line segments
with an open endpoint on the x-axis, and blue line segments with an open
endpoint on the y-axis. See Figure 2. Suppose t′ < t and y < g(t′). The
point (t, y, c) cannot be colored blue or red without violating the convexity
requirements since the blue line segment or red rectangle would have to pass
through the green line segment from (t′, 0, c) to (t′, g(t′), c). Thus (t, y, c)
is green and g(t) ≥ g(t′). The proof that b(t) is nonincreasing is similar.
Finally, if x′ < x, y′ < y and (x, y′, c) and (x′, y, c) are both red, (x, y, c)
cannot be colored blue or green without violating convexity. Thus (x, y, c)
is red as well. This completes the proof. �

By combining the information from all three types of cross-sections, the
following corollary is immediate. See Figure 3 for an illustration of a stack
of blue rectangles.

Corollary 3.7. In any octant coloring, the portion which is red is a col-
lection of red rectangles whose dimensions are nondecreasing as their z-
coordinate increases. Similarly, the blue (green) portion is a collection of
nondecreasing blue (green) rectangles.

x

y

z

Figure 3. A stack of blue rectangles.

4. Directional orderings

This section shows that a special case of normal forms leads to an un-
countable family of distinct reduced complete rewriting systems induced by
total division orderings. This uncountable collection of examples enables us
to establish Theorem B and Theorem C.

We begin by defining a collection of total division orderings on A∗ which
are lifts of term orderings (or total division orderings) on the commutative
polynomial ring K[a, b, c]. Partial results are known toward classification of
all total division orderings on A∗ (see, for example, [15]), including a proof
that there are uncountably many total division orderings on the set of words
over an alphabet with at least two generators [14]. Total division orderings
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have been completely classified for words over two generators [10], [13]; the
orderings we define here utilize the orderings in [10].

Definition 4.1 (Path). Let w be a word in A∗. One possible representation
of w is as path in R

3 starting at the origin where, as we read w from left to
right, the path moves one unit in the x-direction when we see an a, one unit
in the y-direction when we see a b and one unit in the z-direction when we
see a c. We will call this the path for w.

Definition 4.2 (2-variable numbers). Let w be a word in A∗ representing
the element (i, j, k) ∈ N

3. The 1-variable numbers for w are Na(w) = i,
Nb(w) = j and Nc(w) = k. The 2-variable number Nba(w) will encode
information about the projection of the path for w into the xy-plane. In
particular, it will denote the area below the projected path, but inside the
rectangle [0, i]× [0, j]. Combinatorially, Nba(w) denotes the number of ways
w can be written as xbyaz where x, y and z are possibly empty words in A∗.
As an example, if w = abab2ca2b3, then Na(w) = 4 and Nba(w) = 7. The
numbers Nac(w) and Ncb(w) are defined similarly.

The following relationship between these numbers is immediate.

Lemma 4.3. For all words u, v ∈ A∗,

Nab(uv) = Nab(u) + Nab(v) + Na(u)Nb(v).

Definition 4.4 (Directional-ordering). Let α, β, and γ be any three positive
real numbers. We will call these numbers weights. Corresponding to these
weights we define a function wt(w) = αNba(w) + βNcb(w) + γNac(w), for
each w ∈ A∗, where Nba(w), Ncb(w), and Nac(w) are the 2-variable numbers
for w.

Let >c be any total division ordering on the elements of N
3, and let >lex

be the lexicographic ordering induced by any total ordering of A. For any
word u ∈ A∗, let [u] denote the corresponding element of N

3. For u, v ∈ A∗,
define u > v if

• [u] >c [v], or
• [u] = [v] and wt(u) > wt(v), or
• [u] = [v], wt(u) = wt(v), and u >lex v.

where [u] denotes the element of N
3 that u represents. This ordering > will

be called the directional-ordering corresponding to α, β, γ, >c, and >lex.

Lemma 4.5. For any positive real numbers α, β and γ, for any total di-
vision ordering >c on N

3, and for any lexicographic ordering on A∗, the
corresponding directional-ordering > is a total division ordering on A∗.

Proof. We start by showing that > is well-founded. Suppose w1 > w2 > · · ·
is an infinite descending sequence. Since >c is well-founded, the element of
N

3 represented by wi eventually stops changing as one proceeds through the
wi. At this point the remaining wi lie in a single congruence class. Because
this congruence class is finite, there are only a finite number of possible
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values for wt(wi), and this also eventually stops changing. Finally, for this
finite set of words in a single congruence class with the same weight, >lex is
a total order which eventually stops changing, giving a contradiction.

Next we show that > is a division ordering. Suppose that u, v, w are
words in A∗ with u > v. The proof that uw > vw will be in several cases
depending on the reason why u > v. If u > v because [u] >c [v], then
uw > vw because >c is a division ordering. Next, suppose [u] = [v] and
wt(u) > wt(v). Since [u] = [v] implies [uw] = [vw] we only need to
show wt(uw) > wt(vw). Using the definition of the weight function and
Lemma 4.3 we can write

wt(uw) = αNba(uw) + βNcb(uw) + γNac(uw)

= α(Nba(u) + Nba(w) + Nb(u)Na(w))

+β(Ncb(u) + Ncb(w) + Nc(u)Nb(w))

+γ(Nac(u) + Nac(w) + Na(u)Nc(w))

= wt(u) + wt(w)

+αNb(u)Na(w) + βNc(u)Nb(w) + γNa(u)Nc(w)

Similarly,

wt(vw) = wt(v) + wt(w)

+αNb(v)Na(w) + βNc(v)Nb(w) + γNa(v)Nc(w)

Since [u] = [v], we know that Na(u) = Na(v), Nb(u) = Nb(v), and
Nc(u) = Nc(v). Thus the expansions of wt(uw) and wt(vw) differ only
in their initial summands, and wt(uw) > wt(vw). Lastly, if [u] = [v],
wt(u) = wt(v) and u >lex v, then [uw] = [vw], the expansions above show
that wt(uw) = wt(vw), and uw >lex vw because >lex is a division ordering.

Finally, > is a total ordering because >c is a total ordering on N
3, any

two weights can be compared and >lex is a total ordering on A∗. �

Lemma 4.6. Let α, β and γ be positive real numbers, let >c be a total
division ordering on N

3, and let >lex be any lexicographic ordering of A∗.
The corresponding directional-order > determines a unique reduced complete
rewriting system R for the commutator ideal which is independent of >c.

Proof. By Lemma 4.5 the directional-ordering > is a total division ordering.
Thus > restricted to a congruence class has a unique minimum element, and,
as described in Definition 1.4 there is a unique reduced complete rewriting
system R for the commutator ideal with these minimum elements as normal
forms. Since >c plays no role in the selection of the minimum element in a
congruence class, R is independent of >c. �

Lemma 4.7. Let > be a directional-ordering associated to positive real
numbers α, β and γ and the lexicographic ordering >lex, and let R be the
corresponding reduced complete rewriting system. The octant coloring de-
rived from R is equivalent to one in which the line defined by the equations
x
β

= y
γ

= z
α

is in the boundary of all three regions of color.
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Proof. Note that R contains the rules ba → ab, cb → bc, and ac → ca as
a consequence of the definition of the weight function. Next, by Corollary
2.5, every irreducible word is of the form aibjck, bjckai or ckaibj . Since
wt(aibjck) = γik, wt(bjckai) = αij, and wt(ckaibj) = βjk, the normal
forms for R are

aibjck when γik ≤ αij and γik ≤ βjk

bjckai when αij < γik and αij ≤ βjk

ckaibj when βjk < γik and βjk < αij

Recall that the normal forms in this array correspond to blue, red and
green, respectively. The coloring of the integer lattice associated to these
normal forms can be extended to an octant coloring by coloring (x, y, z)
blue if γz ≤ αy and γx ≤ βy, red if αy < γz and αx ≤ βz, and green if
βy < γx and βz < αx. From these inequalities, it follows immediate that
the line defined in the statement lies in the boundary of all three regions of
color. �

Corollary 4.8. Let >lex be a fixed lexicographic ordering of A∗. If R is
the unique reduced complete rewriting system determined by >lex and the
positive real numbers α, β, γ and R′ is the unique reduced complete rewriting
system determined by >lex and the positive real numbers α′, β′, γ′, then R

and R′ are the same rewriting system if and only if the vectors (α, β, γ) and
(α′, β′, γ′) are parallel.

Proof. If (α, β, γ) and (α′, β′, γ′) are parallel (and the same lexicographic
ordering is used for both directional-orderings) then the octant colorings
described in Lemma 4.7 are identical. Since R and R′ can be recovered from
this coloring, R and R′ are identical. On the other hand, if these vectors are
not parallel then sufficiently far from the origin we can find lattice points
which are assigned different colors, and thus R and R′ are distinct. �

Theorem B. There are uncountably many reduced complete rewriting sys-
tems for the m-generated free commutative monoid which are compatible
with a total division ordering when m ≥ 3. As a consequence there are un-
countably many reduced noncommutative Gröbner bases with respect to total
division orderings for the commutator ideal in the m-variable free associative
algebra, each with a distinct set of normal forms.

Proof. For m = 3 this result is immediate from Corollary 4.8. For m > 3, let
A = {a1, . . . , am} and let a = a1, b = a2, and c = a3. Let > be a directional-
ordering on {a, b, c}∗ and define the rewriting system R consisting of all of the
rules induced by > together with the rules ajai → aiaj for all 3 < j and i < j.
It is straightforward to show that the total division ordering > on {a, b, c}∗

can be extended to total division ordering on A∗ so that R is the reduced
complete rewriting system derived from this extension, and that the normal
forms for R are normal forms derived from > followed by ar4

4
· · · arm

m . Since
two rewriting systems constructed in this way will be identical if and only
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if their restrictions to {a, b, c}∗ are identical, Corollary 4.8 shows there are
uncountably many reduced complete rewriting systems for A∗ as well. �

In our final result we use directional-orderings to construct the univer-
sal Gröbner basis for the commutator ideal in the free associative algebra
K〈a, b, c〉. We will need the following lemma which limits the set of rules
that need to be considered.

Lemma 4.10. If R is a reduced complete rewriting system for N
3 which

contains the rules ba → ab, cb → bc and ac → ca, then each of the remaining
rules is of one of the following six forms with i, j, k > 0:

abjck → bjcka aibjc → caibj

bjcka → abjck bckai → ckaib

caibj → aibjc ckaib → bckai

Proof. Let u → v be a rule in R different from the three specified in the
hypothesis. Lemma 2.1 and the fact that R is reduced show that u and v

must involve all three variables while Corollary 2.5 shows each of u and v

must be in one of the forms aibjck, bjckai, or ckaibj with i, j, k > 0. Suppose
u = aibjck and v = bjckai. If i > 1 then, since proper subwords of u and v

are irreducible, abjck and bjcka are irreducible words representing the same
element of N

3. This contradiction shows i = 1 when u and v have these
forms. The other possibilities for u and v lead to similar conclusions. �

Theorem C. The universal Gröbner basis for the commutator ideal in the
free associative algebra K〈a, b, c〉 consists of the binomials

ab − ba bc − cb ca − ac

abjck − bjcka bckai − ckaib caibj − aibjc

ackbj − ckbja baick − aickb cbjai − bjaic

for all positive integers i, j, and k.

Proof. The finite reduced complete rewriting systems for N
3 analyzed in

Section 2 contain all six rules of the form ab ↔ ba, ac ↔ ca, and bc ↔ cb

and only these rules. Thus the corresponding binomials ab − ba, ac − ca,
and bc − cb are elements of the universal Gröbner basis.

Next, let R be an infinite reduced complete rewriting system in which
ab, bc, and ca are normal forms. Lemma 4.10 severely restricts the form
of the 3-variable rules in R, and we will now show that every rule listed
in the lemma is, in fact, a rule in some infinite reduced complete rewriting
system. Let j and k be positive integers. We first choose a real number α

between k−1

j
and k

j
, and then we choose a real number β greater than both

α
k

and 1

j
, and finally let γ = 1. Let R be the rewriting system corresponding

to the directional-ordering > derived from α, β, and γ and any choice of
lexicographic ordering >lex. With respect to R, the word bjcka is irreducible
and the word abjck is nearly irreducible (in particular, bjck and abjck−1 are
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irreducible). This shows that R contains the rule abjck → bjcka and that
the universal Gröbner basis contains the binomial abjck − bjcka. The proof
for the other rules listed in Lemma 4.10 is similar.

Finally, for infinite reduced complete rewriting systems in which ba, cb,
and ac are normal forms, a relabeling of the variables reduces this to the
previous case and produces the binomials listed in the third row of the array
in the statement. Since every reduced complete rewriting system for this
commutator ideal is either finite, contains ab, bc and ca as normal forms, or
contains ba, cb and ac as normal forms, the proof is complete. �

Notice that this proof actually shows more. Since the restrictions on the
possible rules in a reduced complete rewriting system R for the commutator
ideal did not require R to be compatible with a total division ordering, but
all of the examples proving such rules actually occur came from rewriting
systems which were compatible with a total division ordering, the universal
Gröbner basis for the commutator ideal of the 3-variable free associative
algebra is same whether or not the Gröbner bases are required to be com-
patible with a total division ordering.

5. Open Questions

In Section 3, we introduced a class of potential normal forms and showed
that the rewriting systems associated to these sets are the only possible
complete reduced rewriting systems for N

3. Although we have shown that
various special cases of these potential normal forms actually do give rise to
reduced complete rewriting systems, the rest remain merely potential.

Problem 5.1. If F is a potential set of normal forms for N
3, does F give

rise to a rewriting system R which is reduced, complete, and compatible
with a (total) division ordering? In other words, is F the set of minimal
representatives with respect to some (total) division ordering?

The problem is proving that the rewriting system derived from F must
terminate. For some of these open cases we have run tests, using the rewrit-
ing software Herky (RRL) [7], and in each case the software has failed to
find a potential infinite chain of rewritings.
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