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Abstract. The implicit operation ω is the unary operation which sends each
element of a finite semigroup to the unique idempotent contained in the sub-
semigroup it generates. Using ω there is a well-defined algebra which is known
as the free aperiodic semigroup. In this article we show that for each n, the n-
generated free aperiodic semigroup is defined by a finite list of pseudoidentities
and has a decidable word problem. In the language of implicit operations, this
shows that the pseudovariety of finite aperiodic semigroups is κ-recursive. This
completes a crucial step towards showing that the Krohn-Rhodes complexity
of every finite semigroup is decidable.
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1. Introduction

The implicit operation ω is the unary operation which sends each element of a
finite semigroup to the unique idempotent contained in the subsemigroup it gener-
ates. Using ω there is a well-defined algebra which is known as the free aperiodic
semigroup (see Definition 3.1). In this article we show that the n-generated, free
aperiodic semigroup, usually denoted Ωκ

nA, is defined by a finite list of pseudoiden-
tities and has a decidable word problem. In the language of implicit operations,
this shows that the pseudovariety of finite aperiodic semigroups is κ-recursive. This
completes a crucial step towards showing that the Krohn-Rhodes complexity of ev-
ery finite semigroup is decidable [1].
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1.1. Overview of the article. The article consists of two parts. In sections 2
through 7 we show that some particular n-generated κ-semigroups Fn defined by
a finite list of identities have a decidable term problem. In the second half of
the article, we use the structure of the Burnside semigroups to show that these
κ-semigroups are in fact the free aperiodic semigroups known as Ωκ

nA. The combi-
nation of these two lines of reasoning yields the main results.

2. Implicit operations

In this section we review the necessary background definitions and results about
relatively free profinite semigroups. Detailed descriptions of implicit operations and
the profinite topology can be found in [1], [6], and [7]. For background on term
algebras see [2].

Definition 2.1 (Implicit Operations). Recall that a pseudovariety is any collec-
tion of finite semigroups which is closed under subsemigroups, homomorphic image,
and finite direct products. If V is a pseudovariety, an n-ary implicit operation on
V is an operation π which consistently assigns an element of S to every n-tuple
of elements of S ∈ V. In symbols we have functions πS(s1, . . . , sn) = s for each
S in V. The consistency requirement is that for every morphism φ : S → T ,
φ(πS(s1, . . . , sn)) = πT (φ(s1), . . . , φ(sn)). The set of all n-ary implicit operations
on V is denoted ΩnV. The bar is meant to suggest the topological closure operator,
and in fact there is a way of defining a metric and a topology on the projective
limit of V – viewed as a category – with the consequence that the set of all n-ary
implicit operations is indeed the topological closure of the so-called explicit opera-
tions. Since this viewpoint will not be needed here, we refer the interested reader
to [7] for further details.

Example 2.2. The operation ω described above is an example of a unary implicit
operation. The usual binary multiplication is an example of a binary implicit
operation. These two implicit operations (and their compositions) will be the only
implicit operations which arise in this article. We will denote the two-element
set consisting of just these two implicit operations by κ. Technically, κ is usually
reserved for the set containing binary multiplication and another implicit operation
denoted ω − 1. Since ω is derivable from these two operations and since ω − 1 will
not be needed in the sequel, this slight deviation from the standard notation will
be of no consequence.

Definition 2.3 (κ-semigroups). An n-generated κ-semigroup is an algebra with n
distinct variables, say x1, . . . , xn, and the two implicit operations in κ. The terms of
the algebra are formed from the variables and the operations via composition. Let
Tn denote the set of all such terms. The terms are then subject to various identities,
including, of course, the associativity of the binary multiplication. Whenever fewer
than 3 variables are involved we will use x, y, and z in place of the xi.

Remark 2.4 (Notation). The variable xi can itself be viewed as the n-ary im-
plicit operation corresponding to the projection onto the i-th coordinate, so that
(xi)S(s1, . . . , sn) = si for all semigroups S and for all elements s1, . . . , sn ∈ S. No-
tice that since the composition of implicit operations is another implicit operation,
all of the terms in Tn are well-defined n-ary implicit operations on the collection
of finite semigroups. The notation typically used for the implicit operation which
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results from the composition of ω with the term α is (α)ω . Since we will be work-
ing with κ-semigroups exclusively, we will simplify the notation. Since the binary
multiplication is associative, parentheses can be used for convenience to suggest a
grouping of repeated binary multiplications, but such a grouping will not change
the resulting implicit operation. We choose instead never to use parentheses in this
manner so that parentheses can be reserved for the purpose of indicating composi-
tion of ω with a term. Thus the operation ω applied to the term α will be indicated
by (α). If ω is applied to (α), the result will be ((α)). This economical notation
will help to facilitate the proofs. Terms of the form (α) will be called limit terms ,
and α will be called its content .

Definition 2.5 (Subexpressions). If α = βγ for possibly empty terms β and γ,
then β is called an initial segment of α and γ is called a final segment of α. If
α = βδγ where δ is a term, but β and γ are not necessarily terms, then δ is called
a subexpression of α. The reason why β and γ may not be terms in this instance is
that β may contain an open parenthesis which is closed only inside γ. For example,
in the term xx(xy)xz, xx is an initial segment, (xy)xz is a final segment, and xx,
(xy)xz, and xy are subexpressions. On the other hand, the sequence of symbols
xx(x is neither an initial segment nor a subexpression of the term.

Definition 2.6 (Length). The length of a term α can be defined inductively. The
length of each xi is 1, the length of αβ is the sum of the lengths of α and β and the
length of (α) is two more than the length of α. Alternatively, each term in Tn can
be viewed as an element of the free semigroup generated by the characters “xi”, the
open parenthesis “(” and the close parenthesis “)”. The length of α defined above
is thus the number of characters needed to write it as an element of this semigroup.
As an example, the length of x(x(y))z is 8.

Definition 2.7 (Simple Terms and Proper Powers). A term α will be called sim-
ple if there does not exist a term β and an integer k > 1 such that α = βk. Terms
which are not simple will be called proper powers . If α = βk, where β is simple and
k is a positive integer, then β will be called the root of α, and k will be called its
exponent . A term α is said to be periodic in β if α is a subexpression of βk for some
k. Finally, if α = γ1γ2 and β = γ2γ1, then α and β are called cyclic conjugates .
We should note that the notion of cyclic conjugation in κ-semigroups is slightly dif-
ferent from the corresponding notion in semigroups without additional operations.
In the latter situation, any string of symbols can be moved from the end of the
word to the beginning, while in the former, this can only be done when the string
of symbols form a term in their own right. Thus (xz)xy is a cyclic conjugate of
xy(xz), but z)xy(x is not.

As with words in the free semigroup, every proper power can be written uniquely
as a power of a simple term, and there are bounds on the length of terms which are
periodic in two non-conjugate simple terms, or periodic in a single simple term in
two distinct ways.

Lemma 2.8. For every term α in Tn there is a unique simple term β and unique
integer k such that α = βk.

Proof. When we view α as a word in the free semigroup generated by the “xi”,
“)”, and “(”, the result follows immediately from the corresponding result in that
context.
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Lemma 2.9. Let α and β be simple terms which are not cyclic conjugates of each
other. If γ is a term which is periodic in both α and β, then the length of γ is less
than |α| + |β|.

Proof. Once again, when we view these terms as words in the free semigroup, the
result follows immediately from the corresponding theorem in that context. See [4]
for further details.

Lemma 2.10. Let α and β be distinct simple terms which are cyclic conjugate to
each other. If γ is an initial segment of both αk and βk for some k, then the length
of γ is less than |α| = |β|.

Proof. This follows from the observation that all of the proper cyclic conjugates of
simple words in the free semigroup are distinct.

Definition 2.11 (Preferred Cyclic Conjugates). Let α be a simple term which is
not a limit term. Since α is simple, there is a unique cyclic conjugate which occurs
first in the dictionary ordering. The usual dictionary ordering will be arbitrarily
extended so that an open parenthesis is alphabetized before each of the xi and the
closed parenthesis is alphabetized after each of the xi. The cyclic conjugate which
occurs first in this ordering will be called the preferred cyclic conjugate of α. If,
on the other hand, α is a proper power, say α = βk where β is simple, then the
preferred cyclic conjugate of α is the one which is the k-th power of the preferred
cyclic conjugate of β.

3. Free aperiodic semigroups

The identities satisfied by a κ-semigroup can either be given explicitly, as a
possibly recursive list, or implicitly, as the list of all identities which are valid
in some particular class of semigroups. The following definitions define our main
objects of study and they illustrate both of these possibilities.

Definition 3.1 (Free Aperiodic Semigroups). The n-generated free aperiodic semi-
group, usually denoted Ωκ

nA, is the n-generated κ-semigroup which is subject to
exactly those identities which are valid in every finite aperiodic semigroup. In par-
ticular, if α and β are two terms in Tn, then α = β is an identity in Ωκ

nA if and
only if the element of S selected by the n-ary implicit operation α is the same
as the element of S selected by the n-ary implicit operation β, for every semi-
group S ∈ A and for every n-tuple of elements in S. In symbols, this requires
αS(s1, . . . , sn) = βS(s1, . . . , sn) for every S ∈ A and for all s1, . . . , sn ∈ S.

Rather than study Ωκ
nA directly, we begin by studying the following κ-semigroup

which is defined by a finite list of pseudoidentities.

Definition 3.2. Let Fn be the κ-semigroup subject only to the following identities:

1. ((α)) = (α)
2. (αk) = (α)
3. (α)(α) = (α)
4. (α)α = α(α) = (α)
5. (αβ)α = α(βα)

where α and β represent arbitrary terms in Tn, k is a positive integer, and the
notational conventions are those of Remark 2.4.
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Since all of these identities are true in every finite aperiodic semigroup, it is
clear that there is a homomorphism of κ-semigroups, φ : Fn → Ωκ

nA. The main
goal of the next several sections will be to establish that the term problem for Fn is
algorithmically decidable using a set of normal forms defined below (Definition 6.1).
To do so, we need to introduce a number of additional concepts and notations.

Definition 3.3 (Elementary Changes). Instead of viewing the equations in Defi-
nition 3.2 as identities, we can also view them as rules for rewriting expressions for
the term algebra Tn. The various ways of applying the rules can then be described
according to their effects. For example, if we start with an expression which con-
tains a subexpression of the form (α) and we rewrite this subexpression to look like
the left-hand side of one of the first four rules, then this will be called an elementary
expansion since (α) will be a subexpression of the subexpression which results. The
reverse operation will be called an elementary contraction. An application of the
fifth rule, in either direction, will be called an elementary shift .

We will distinguish between a shift left and a shift right by the direction the
parentheses are moving. When we wish to clarify which expansion rule is being
applied we will refer to an expansion of the form (α) → ((α)) as an expansion
of type 1, etc. For expansions of type 4 we will distinguish between 4L and 4R

depending on the side on which the new material appears. Thus (α) → α(α) is an
expansion of type 4L. Contractions will be similarly denoted.

Definition 3.4 (Derivations). A derivation from α to β is a finite sequence of
elementary expansions, contractions, and shifts which start at α and end at β.
Terms in Tn will be called equivalent in Fn (and will represent the same element of
Fn) if and only if there is a derivation from one to the other.

Example 3.5. By Definition 3.2, the term (xy)x(yx) can be rewritten as follows:

(xy)x(yx) ⇒ (xy)xyx(yx) ⇒ (xy)x(yx) ⇒ x(yx)(yx) ⇒ x(yx)

The first step in this derivation is an expansion of type 4R, the second is a contrac-
tion of type 4L, the third step is a shift, and the final step is a contraction of type
3. In each case, we have underlined the subexpression to which the rule is about
to be applied.

Definition 3.6 (Rank of an Expression). The rank of an expression α in Tn is
defined inductively. The variables {x1, . . . , xn} have rank 0. If α has rank i and
β has rank j, then αβ has rank max i, j. If α has rank i, then (α) has rank i+ 1.
In essence, the rank is the maximum number of nested parentheses which occur in
the expression. Rank provides a convenient way to assign a grading to the terms
in Tn. We let T i

n be the set of all terms of rank i, and let T≤i
n be the union of T j

n

with j ≤ i. We will also extend this notion of rank to the parentheses. The rank of
a pair of parentheses which enclose the term α is the rank of the term (α). Thus
(x(y))(z) has two pairs of parentheses of rank 1 and one pair of rank 2.

Definition 3.7 (Rank of an Identity). The rank of a identity is the maximum of
the ranks of the two expressions used to define it. In most cases, these ranks are
identical, the only exception being expansions and contractions of type 1. As an
example, the rule xy(xy) ⇒ (xy) is a rank 1 contraction of type 4L, while the rule
(x(y)) ⇒ ((x(y))) is a rank 3 expansion of type 1. We will call two terms rank
i equivalent if there is a derivation of one from the other using only identities of
rank at most i. Similarly, we define two terms to be conjugate in rank i if there is
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a finite sequence of terms which start at one term, end at the other term, and if
every term in the sequence is derived from the previous one by either an identity
of rank at most i, or a cyclic conjugation.

In order to describe the normal form algorithm more efficiently, we introduce the
following terminology.

Definition 3.8 (Portions). Let α be a rank i term. The smallest initial segment
of α which contains a limit term of rank i will be called the initial portion of α.
Similarly, the smallest final segment of α which contains a limit term of rank i
will be called the final portion of α. A minimal subexpression of α which contains
exactly two limit terms of rank i will be called a crucial portion of α.

Example 3.9. If α is the rank 2 term

x(x)(y(yyy))yxy((x)y)x((y))x(x)

then x(x)(y(yyy)) is the initial portion of α, ((y))x(x) is the final portion of α,
and there are two crucial portions: (y(yyy))yxy((x)y) and ((x)y)x((y)). Notice
that initial portions and crucial portions always have a rank i limit term as a final
segment and that final portions and crucial portions always have a rank i limit term
as an initial segment.

4. The normal form algorithm in rank 1

In this section we show how to reduce every term of rank 1 to a unique normal
form. Although these procedures will be incorporated in the general, inductively
defined normal form reduction algorithm (Definition 6.1), the detailed description of
this special case should help to orient the reader to the inductive situation. Before
continuing with our description in rank 1, we will briefly review the situation for
terms with no parentheses at all.

Definition 4.1 (Rank 0 Normal Forms). If α is a rank 0 term then none of the
identities can be applied to α and thus the class of terms equivalent to α contains
only α itself. As a result we define all rank 0 terms to already be in normal form
and in cyclic normal form. If the term α happens to be a simple term and it occurs
first in the dictionary ordering among all of its cyclic conjugates, then α will be
said to be in preferred cyclic normal form. Finally, notice that since multiplication
of rank 0 terms is simply concatenation, there are no idempotents in rank 0. Also,
for the purposes of the inductive definitions, a rank 0 limit term will simply be
another name for a single variable (in other words, for one of the xi).

Definition 4.2 (Rank 1 Normal Form Algorithm). The rank i normal form reduc-
tion algorithm contains four major steps. The procedure for each step will be given
separately, followed by a series of lemmas outlining its major properties. Roughly
speaking, the algorithm consists of the following steps: (1) apply all possible rank i
contractions of type 1, (2) apply all possible rank i contractions of type 2, (3) apply
all possible rank i contractions of type 3, and (4) standardize the result. As each
step is described it will become clear what we mean by the phrases “all possible”
and “standardize.”

Throughout the remainder of this section let α be a rank 1 term to which the
normal form reduction algorithm is being applied. We will denote the term which
emerges after the j-th step as αj .



NORMAL FORMS FOR FREE APERIODIC SEMIGROUPS 7

Step 1: The first step, in rank 1 at least, is trivial. This is because step one only
applies to idempotents in the previous rank and there are no idempotents in rank
0. Thus α1 = α. The full description of this step will be given in the inductive
context.

Step 2: In the second step, we rewrite each rank 1 limit term in α in a normal
form. In particular, if (β) is a limit term in α, then there is a well-defined term of
the form ε1(γ)ε2 with the following properties:

1. γ is a simple rank 0 term in preferred cyclic normal form
2. the term ε1(γ)ε2 is rank 1 equivalent to (β)
3. the term (γ)ε2ε1(γ) is rank 1 equivalent to (γ)

This term will be called the standard form for (β). The procedure which produces
this standard form goes as follows. If β is not a simple term, then by Lemma 2.8
we can write it as a proper power of a simple rank 0 term, and a contraction of
type 2 can be applied to the limit term (β). As a result, we might as well assume
that β is already a simple term. Next, let γ denote the preferred cyclic conjugate
of β. If β = γ, then we set ε1 = ε2 = γ and we are done. Otherwise, we use two
expansions of type 4 and a shift to produce a term of the form ε1(γ)ε2 which is
rank 1 equivalent to (β) for which ε1 and ε2 are not empty. Although there may be
more than one way to arrange the parentheses to satisfy these conditions, all that
matters is that at least one way exists and that every time the second step of the
reduction algorithm is applied to (β) the same result be obtained. For concreteness,
we will stipulate that the parentheses be shifted to the leftmost position satisfying
these conditions.

We observe that β2 = ε1ε2 and γ2 = ε2ε1. Thus the term (γ)ε2ε1(γ) is identical
to (γ)γ2(γ) and two contractions of type 4 and another of type 3 show that it is
rank 1 equivalent to (γ).

Given a rank 1 term α1, the term α2 is formed by replacing limit term (β)
with the equivalent term ε1(γ)ε2 which results from the procedure described above.
Notice that we have not claimed (or shown) that γ, ε1, and ε2 are the unique
terms which satisfy these conditions, only that these terms are well-defined by the
procedure described.

The procedure for placing rank 1 limit terms in their normal forms has the
following properties:

Lemma 4.3. The normal form for (β) is identical to the normal form for (βk).

Proof. If β is a power of a simple term β′, then βk will also be a power of the
same simple term. Thus these procedures merge as soon as the contents of the
parentheses are made to be simple terms.

Lemma 4.4. If β is a simple rank 1 term and the normal form for (β) is ε1(γ)ε2,
then the second step applied to the term βj(βk)βl results in the term ε1γ

j(γ)γlε2.

Proof. The result is immediate since by the construction βε1 = ε1γ and ε2β =
ε2γ.

Lemma 4.5. Let β be a term of rank 0 and let η be a single limit term of rank 0
(i.e. a variable such as x). If the second step is applied to the terms (ηβ)η and to
η(βη), then the results will differ at most by an expansion and a contraction of type
4.
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Proof. We may assume ηβ is already simple. When the expansions of type 4 are
applied to each term, the results are ηβ(ηβ)ηβη in the first case and ηβη(βη)βη in
the second. The same shifts can be applied to both. Let γ denote the preferred
cyclic normal form of βη and ηβ. Since the first pair of parentheses originally
extended one limit term further to the left, this may be enough of a change to
cause the rank 1 parentheses for the first term to end up one copy of term γ further
to the left. This can be counteracted by a contraction of type 4R followed by an
expansion of type 4L.

Lemma 4.6. If α and β differ by a single shift, then α2 and β2 differ by contrac-
tions and expansions of type 4.

Proof. Since every shift can be decomposed into shifts which only shift a single
letter, the result follows from Lemma 4.5.

Step 3: In the third step we eliminate crucial portions of the form (γ)γj(γ) for
some integer j ≥ 0. This can be done by applying j contractions of type 4 followed
by one contraction of type 3. Notice that doing this does not change the initial
portion, the final portion, or any of the other crucial portions. It simply eliminates
one of the crucial portions. Thus the order in which these eliminations take place is
irrelevant and the final result is the same. We say that (γ) is the normal form for
crucial portions of the form (γ)γj(γ) where γ is a simple rank 0 term in preferred
cyclic normal form.

Step 4: The final step is to standardize the results, which we do one portion at a
time. In particular, we apply contractions of type 4L to the initial portion of α3

and contractions of type 4R to the final portion of α3 until this is no longer possible.
For the crucial portions, a more complicated procedure is necessary.

If γ and δ are simple rank 0 terms which are in preferred cyclic normal form, ε
is a rank 0 term, and (γ)ε(δ) is a crucial portion of α3, then there is another rank
0 term ε′ with the following properties:

1. (γ)ε(δ) is rank 1 equivalent to (γ)ε′(δ)
2. ε′ is not an initial segment of γj for any integer j
3. ε′ is not a final segment of δj for any integer j
4. any contractions of type 4 applied to (γ)ε′(δ) will result in a term which fails

to have these properties

The procedure for producing such an ε′ goes as follows. First choose j to be the
smallest integer with |γj | ≥ |γ|+ |δ|, and then apply j expansions of type 4R to the
limit term (γ) so that (γ)γj is an initial segment of the result. Similarly, choose k
to be the smallest integer with |δk| ≥ |γ| + |δ|, and apply k expansions of type 4L

to the limit term (δ) so that δk(δ) is a final segment of the result. Let ε′ denote
the term between the rank 1 limit terms at this point. This ε′ will satisfy the first
three of the four desired properties.

To see this, note that since this crucial portion remains in α3, either Lemma 2.9
or Lemma 2.10 can be applied. According to these lemmas, the largest initial
segment of ε′ which is also an initial segment of γl for some large l cannot be all of
ε′. Similarly, the largest final segment of ε′ which is also a final segment of δl for
some large integer l cannot be all of ε′.

We now apply any contractions of type 4 which will preserve these properties. We
note that since a contraction of type 4 on an initial segment cannot affect whether
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the third condition is satisfied and a contraction of type 4 on a final segment cannot
affect whether the second condition is satisfied, the resulting term is independent of
the order in which these contractions are performed. The expression (γ)ε′(δ) which
results will be called the normal form of (γ)ε(δ).

The term α4 is formed from α3 by replacing each portion with its normal form.
Since none of these procedures change any of the limit terms at either end, they
can be carried out independently of each other. This completes the rank 1 normal
form reduction algorithm. The final result, α4, will be called the rank 1 normal
form for α.

When α is identical to its normal form we will say that α is in normal form.
Subexpressions of normal forms will be called subnormal forms . Before describing
the properties of these normal and subnormal forms in greater detail, we record a
few properties of this fourth step in the algorithm, followed by an example and a
few remarks.

Lemma 4.7. Let γ be a simple rank 0 term in preferred cyclic normal form. If
ε is any term of rank 0, then the normal forms for ε(γ) and εγj(γ) are identical.
Similarly, the normal forms for (γ)ε and (γ)γjε are identical.

Lemma 4.8. Let γ and δ be simple rank 0 terms in preferred cyclic normal form.
If ε is any term of rank 0 then the normal forms for (γ)ε(δ) and (γ)γjεδk(δ) are
identical.

Example 4.9. If α = α1 = y(xy)x(xyxy)x(yx)yxyx(yxyxyx)(zzzz), then α2 will
be y(xy)x(xy)xy(xy)xyxyxy(xy)x(z). Among the four crucial portions, the first is
not removable even though it starts and ends with the same limit term. The second
and third crucial portions are removable, while the fourth is not. Thus α3 is the
term y(xy)x(xy)x(z), and finally, the normal form will be y(xy)xxy(xy)xz(z).

Remark 4.10 (Overlaps). Notice that the term ε′ produced by the procedure in
the fourth step may need to contain more than one copy of γ or δ in order to
satisfy the second and third conditions. For example, the normal form for the term
(xxxxy)(x) is (xxxxy)xxxxyxxxxx(x). Five copies of x need to appear before
the limit term (x) in order to ensure that the term between these two pairs of
parentheses is not periodic in xxxxy.

Remark 4.11. Now that the algorithm has been completely described, it should
be clear that calling the reduction of a limit term in the first step its normal form
is indeed justified. If the term α had consisted solely of the limit term (β), then
the term α2 would be unchanged by the remaining two steps. The other uses of
the phrase normal form can be similarly justified.

By far the most important property of rank 1 normal forms is that they can be
used to decide whether two rank 1 terms are rank 1 equivalent. Similar results will
be shown for terms in rank i (Theorem 6.9) and in general (Theorem 7.2).

Theorem 4.12. Let α and β be rank 1 terms. The terms α and β are equivalent
in rank 1 if and only if α and β have the same normal form. In particular, the
normal form reduction algorithm can be used to decide whether rank 1 terms are
rank 1 equivalent.

Proof. Since terms are rank 1 equivalent with their normal forms, it is clear that
rank 1 terms with the same rank 1 normal form are themselves rank 1 equivalent.
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Thus we only need to show the other implication. Suppose that α and β are rank
1 terms which are rank 1 equivalent but whose normal forms are distinct. By
considering the normal forms for each intermediate stage in a rank 1 derivation
from α to β, we may in fact assume that α and β differ by the application of a
single rule. For concreteness, assume that β is obtained from α by a contraction
or a shift. We will consider each type of rule in turn and show that their normal
forms cannot in fact be distinct.

If α and β differ by a contraction of type 2, then by Lemma 4.3, α2 and β2 will
already be identical and their eventual normal forms will thus be the same.

If α and β differ by a contraction of type 3, then α contains a pair of adjacent
limit terms, say (δ)(δ). When these are placed in normal form in the second step,
the result is ε1(γ)γ

2(γ)ε2. Thus α2 and β2 will differ by two contractions of type 4
and a contraction of type 3. More importantly, the crucial portion of α2 bracketed
by (γ) will be removed in the third step and α3 and β3 will be identical, and their
eventual normal forms will be the same.

If α and β differ by a contraction of type 4, then by Lemma 4.4, α2 and β2

differ by a series of contractions of type 4. There are now three possibilities. If the
contractions involve a crucial portion of α2 which is removed in the third step, it
will also remove this crucial portion in β2. Thus α3 and β3 will be identical and
so will their normal forms. If the contractions affect a crucial portion which is not
removed in the third step, then α3 and β3 will still differ by a series of contractions
of type 4, but by Lemma 4.8 the resulting normal forms will be the same. Similarly,
if the contractions affect an initial portion or a final portion then α3 and β3 will
differ by a series of contractions of type 4, but by Lemma 4.7 the normal forms will
be identical.

Finally, if α and β differ by a shift, then by Lemma 4.6 α2 and β2 will differ
by contractions and expansions of type 4 and we have already shown that these
types of changes yield the same normal forms. In all cases, α and β must have the
same normal form and we have contradicted our assumption. This completes the
proof.

5. Consequences of the normal form algorithm

We will now begin the inductive step in the argument. Most of the definitions
and theorems in Section 5 and Section 6 are defined inductively. To begin we will
assume that all of these results have been shown in the previous ranks, and we will
now show that they are true in rank i. The first time through, i will have a value of
1 and the only results which will be needed either were established in the previous
section or are trivial.

At this point in the argument we have shown that every term of rank at most
i has a normal form and that two terms of rank at most i are equivalent in rank
i if and only if they have the same normal form (Theorem 4.12 or Theorem 6.9).
We will now make a number of observations which will allow us to draw the same
conclusion about the words of rank i+ 1. In particular, we begin with a number of
fairly immediate consequences of normal form algorithm.

As can be seen from the description of the algorithm, certain types of subexpres-
sions are more important than others for determining whether a term is in normal
or subnormal form.
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Lemma 5.1. A rank i term α is in normal form if and only if its initial portion,
its final portion, and all of its crucial portions are in normal form.

Proof. The result of the rank i normal form algorithm clearly produces these types
of words, and conversely, any word of this type will pass unchanged through every
step of the normal form procedure.

Lemma 5.2. A rank i term α is in subnormal form if and only if all of its crucial
portions are in normal form and its initial and final portions are in subnormal form.

Proof. Using Lemma 5.1 is it possible to mix and match the normal forms which
contain each of these pieces to create a new normal form which contains the entire
term.

The most important thing to note is that each of these conditions is checked
locally. In particular, the following assertions are now immediate. They describe
replacements in terms which are in normal and subnormal form, respectively.

Lemma 5.3. Let α be a rank i term in normal form which contains a subexpression
β which starts and ends with limit terms of rank i. If β′ is another expression in
normal form which starts and ends with the same limit terms, then the term α′

formed by replacing the expression β in α with β ′ will still be in normal form.
Similarly, if β is an initial segment (final segment) of α which ends (starts) with a
rank i limit term and β′ is another expression in normal form which ends (starts)
with the same limit term, then the term obtained by replacing the expression β with
the expression β′ will still be in normal form.

Lemma 5.4. Let α be a rank i term in subnormal form which contains a expression
β which starts and ends with limit terms of rank i. If β′ is another expression in
subnormal form which starts and ends with the same limit terms, then the term α′

formed by replacing the expression β in α with β ′ will still be in subnormal form.
Similarly, if β is an initial segment (final segment) of α which ends (starts) with a
rank i limit term and β′ is another expression in subnormal form which ends (starts)
with the same limit term, then the term obtained by replacing the expression β with
the expression β′ will still be in subnormal form.

In order to extend our knowledge of rank i normal form to terms in rank i+ 1,
we will need a number of results about products and idempotents.

Definition 5.5 (i-length). The i-length of a rank i term α is the number of rank i
limit terms which are contained in the normal form for α. Specifically, every rank
i term α in normal form can be written as

α = ε0(β1)ε1(β2)ε2 . . . (βN )εN(1)

where each βj is a rank i− 1 term in preferred cyclic normal form and each εj is a
possibly empty term of rank at most i− 1. The i-length of α in this case is N .

Definition 5.6 (Cyclic normal forms). Let α be a rank i term in normal form with
i-length N and let εj and βj be subexpressions of α as shown in Equation 1. The
normal form of the term

α′ = (β1)ε1(β2)ε2 . . . εN−1(βN )εNε0(β1)

is a term which is conjugate to α in rank i. This is because it can be obtained from
α by an expansion of type 3 applied to (β1), followed by a cyclic conjugation and a
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reduction. A slightly simpler form α′′ is obtained if we then cyclically conjugate the
initial segment (β1) to the end of the term, followed by a contraction of type 3. The
reason for the expansion of type 3 followed by a contraction of type 3 is to ensure
that this procedure will yield the correct result even in the case where the i-length
of α is 1. The final result α′′ will be called a cyclic normal form for α. Notice that
in order to reduce α′ to its normal form, by Lemma 5.1 it is sufficient to reduce
the crucial portion (βN )εNε0(β1) to its normal form. In particular, the i-length of
α′ will either be N or N + 1 depending on whether the expression (βN )εNε0(β1)
is equivalent to a single limit term or not, and the i-length of α′′ will be either
N − 1 or N . The cyclic conjugate of α′′ which is preferred by dictionary ordering
(as extended in Definition 2.11) will be called the preferred cyclic normal form for
α.

Lemma 5.7. If α is a rank i term in preferred cyclic normal form, then α begins
with a rank i limit term and i open parentheses in a row. More generally, each limit
term of rank j in α begins with j open parentheses in a row for j ≤ i.

Proof. Since open parentheses are ordered prior to all of the xi and the closed
parenthesis, it is clear that the preferred cyclic normal form will begin with a limit
term of some rank. Since the lemma in the previous rank shows that the content of
each limit term of rank i begins with i−1 open parentheses, each rank i limit term
will itself begin with i open parentheses. Given this, it is clear that the preferred
cyclic normal form will always have one of the maximal rank limit terms as an
initial segment.

Lemma 5.8. Let α and β be two rank i terms in normal form. When the crucial
portion of the product αβ containing the transition between α and β is reduced to
its normal form, the result is the normal form for αβ. In particular, if α and β
have i-length of k and l respectively, then the i-length of αβ will be either k + l or
k+ l− 1. Moreover, the latter case occurs only when the final portion of α followed
by the initial portion of β is a crucial portion which reduces to a single rank i limit
term.

Proof. This follows immediately from Lemma 5.1 since reducing this crucial portion
to its normal form does not alter the rank i limit terms at either end and every
portion of the resulting term will be in normal form.

Lemma 5.8 allows us to classify exactly which rank i terms are idempotents.

Definition 5.9 (Idempotent). If α is a rank i term in normal form, and α is equiv-
alent in rank i to αα, then α will be called an idempotent in rank i.

Lemma 5.10. Let α be a rank i term in normal form. The term α is an idempotent
in rank i if and only if the i length of α is 1 and its preferred cyclic normal form
is a rank i limit term. In other words, the normal form for α must have the
form ε0(β1)ε1 and the term (β1)ε2ε1(β1) must be rank i equivalent to (β1). As a
consequence, it can be algorithmically determined whether a rank i term in normal
form is in fact an idempotent in rank i.

Proof. Let k denote the i-length of α. Since α is rank i, k is at least 1. On the
other hand, since α and αα are equivalent in rank i, by Theorem 6.9 they must
have the same normal form and the i length of αα must also be k. By Lemma 5.8
this implies that k is at most 1 and that the term (β1)ε2ε1(β1) reduces to (β1). In
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this case, (β1) is the cyclic normal form for α and since it has no non-trivial cyclic
conjugations, it is also the preferred cyclic normal form. The reverse implication
is immediate since the conditions listed are enough to show that α and αα are
equivalent in rank i. Finally, note that both of the conditions listed can be checked
using the normal form reduction algorithm and Theorem 6.9.

Lemma 5.11. If α is a rank i term in normal form which is not an idempotent in
rank i, then the i-length of the normal form of αα is strictly greater than that of α.

Proof. This is immediate from the proof of Lemma 5.10.

Lemma 5.12. If α is an idempotent in rank i then (α) is equivalent in rank i+ 1
to the term α.

Proof. By Lemma 5.10, we can assume that α = ε0(β1)ε1. The remainder of the
proof is a derivation.

(α) = (ε0(β1)ε1) ⇒ (ε0(β1)(β1)ε1) ⇒ (ε0(β1)(β1)ε1)ε0(β1)(β1)ε1

⇒ ε0(β1)((β1)ε1ε0(β1))(β1)ε1 ⇒ ε0(β1)((β1))(β1)ε1

⇒ ε0(β1)(β1)(β1)ε1 ⇒ ε0(β1)ε1 = α

Each of these steps is an elementary operation of rank at most i+ 1 except for the
derivation on the second line. This particular equivalence is justified by the second
condition of Lemma 5.10.

Lemma 5.8 also gives us a great deal of information about the structure of proper
powers. For example, the following lemma is now immediate.

Lemma 5.13. Let α be a rank i term in normal form which is not an idempotent.
Even though the normal form for αj need not be a proper power, the cyclic normal
form for αj will be a j-th power of the cyclic normal form for α.

Lemma 5.14. If α is a rank i term which is not an idempotent, then the i length
of αj is the i-length of α plus j − 1 times the i-length of its cyclic normal form.

Proof. Let k be the i length of α. In the case where the final portion of α followed
by the initial portion of α is a crucial portion does not reduce to a single rank
i limit term, the i length of αj is kj = k + k(j − 1). If this crucial portion
does reduce to a single limit term as its normal form, then the i length of αj is
kj − (j − 1) = k+ (k− 1)(j − 1). When α is an idempotent, it falls into this latter
category, but the verbal description will be inaccurate in that case since the cyclic
normal form still has one rank i limit term despite the reduction.

Definition 5.15 (Simple in Rank i). If β is a rank i term in normal form which
is not an idempotent, then β will be called simple in rank i if its cyclic conjugate
is a simple term. If β is a simple term in rank i and βj is equivalent in rank i to α
then β will be called the rank i root of α and k will be called the rank i exponent
of α.

We will now show that the rank i exponent and the rank i root of a rank i term
in normal form are unique.

Lemma 5.16. For each rank i term α in normal form which is not an idempotent,
there is a unique simple term β which has rank i and is in normal form for which
α and βj are rank i equivalent for some integer j. Moreover, the term β and the
integer j can be algorithmically derived from α.
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Proof. If β is a simple term in rank i and βj is rank i equivalent to α, then by
Lemma 5.13 the cyclic normal form of α will be a j-th power of the cyclic normal
form for β. Moreover, since the cyclic normal form of β is itself a simple term in
the sense of Definition 2.7, by the definition of rank i simple terms, it is the unique
root of the cyclic normal form for α.

Conversely, by Lemma 2.8 the cyclic normal form for α has a unique root which
we can use to construct a root in rank i for α. Let β′′ be this unique root of
the cyclic normal form for α and let j be its exponent. By the first part of this
argument, if β is to be a simple term with a power equivalent in rank i to α, then
β must have β′′ as its cyclic normal form and the power of β rank i equivalent to
α must be j. Moreover, since the initial portion of the normal form for βj will be
the same as the initial portion of β and must be the same as the initial portion of
α in order for them to be rank i equivalent, β must has the same initial portion as
α. Similarly, β must have the same final portion as α.

At this point we have determined the initial portion, the final portion, and all of
the crucial portions that any potential simple term β must have. Using Lemma 5.1,
combining these portions yields a term in normal form which will satisfy all of our
requirements, and since each step was uniquely determined, this is the only term
which meets these conditions. Finally, notice that the proof also gives a procedure
for deriving the term β and the integer j from the term α.

In addition to being able to determine which rank i terms are simple in rank i,
we can also determine which are idempotents.

6. The normal form algorithm in rank i+ 1

We are now ready to describe the normal form algorithm for terms of rank i+1.

Definition 6.1 (Normal Form Algorithm in Rank i+ 1). Let α be a rank i + 1
term. The normal form reduction algorithm applied to α proceeds through the
following four steps: (1) apply all possible rank i + 1 contractions of type 1, (2)
apply all possible rank i+ 1 contractions of type 2, (3) apply all possible rank i+ 1
contractions of type 3, and (4) standardize the result. We will describe each step
in detail. Let αj denote the word which emerges after the j-th step.

Step 1: In order to apply all possible rank i+1 contractions of type 1, first, we use
the rank i normal form reduction algorithm to ensure that the content of each rank
i + 1 limit term is in normal form. Some of the limit terms which began as rank
i+ 1 limit terms may cease to be rank i+ 1 limit terms at this point. Next, we use
Lemma 5.10 to determine whether the content of any of the rank i+1 limit terms is
an idempotent in rank i. If it is, then by Lemma 5.12 the term obtained by simply
removing the rank i + 1 pair of parentheses surrounding this idempotent is rank
i + 1 equivalent to the original term. Clearly, the order in which the parentheses
are tested is irrelevant to the final outcome. The term which has all possible pairs
of rank i+ 1 parentheses removed will be called α1. If α1 is no longer of rank i+ 1
(i.e. if all of the rank i + 1 parentheses have been removed or there were none to
begin with), then we apply the rank i normal form reduction algorithm instead to
α1 and the result of this process will be called the normal form for α. If rank i+ 1
limit terms still exist, then we continue on with the second step.
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Step 2: In the second step, we write each rank i+ 1 limit term in a normal form.
In particular, if (β) is a rank i+1 limit term in α, then there is a well-defined term
of the form ε1(γ)ε2 with the following properties:

1. γ is a simple rank i term in preferred cyclic normal form
2. the term ε1(γ)ε2 is rank i+ 1 equivalent to (β)
3. ε1γε2 is the rank i normal form for β3

4. the term ε1ε2 is the rank i normal form for β2

5. the term ε2ε1 is rank i equivalent to γ2 when its crucial portions are reduced
to normal form and as a result (γ)ε2ε1(γ) is rank i+ 1 equivalent to (γ)

6. ε1 and ε2 each contain at least one limit term of rank i

This term will be called the standard form for (β). The procedure which produces
this standard form goes as follows. First, recall that β was already reduced to
normal form in the first step. Next, if β is not a simple term in rank i, then by
Lemma 5.16 we can rewrite it as a proper power of a simple rank i term, and apply
a contraction of type 2 to the resulting limit term which contains a proper power.
As a result, we might as well assume that β is already a simple term in rank i.
Next, let γ denote the preferred cyclic normal form for β. If β = γ, then we declare
ε1 and ε2 to be equal to γ and we are done. Otherwise, let

β = η0(δ1)η1 . . . ηN1
(δ)ηN

be the rank i normal form for β. The normal form of (δN )ηNη0(δ1) be either (δ1)
or (δN )η(δ1) for some term η. If β has an i length of at least 2, then after applying
an expansion of type 4R and another of type 4L to (β) we can shift the parentheses
so that neither of the transitions from (δN ) to (δ0) is split by either the open or
the closed parenthesis of rank i + 1. At this point we can reduce both copies of
the crucial portion (δN )ηNη0(δ1) to its normal form. The rank i + 1 limit term
in the result will now contain a cyclic conjugate of the cyclic normal form for β.
Furthermore, by shifting the parentheses it will be possible to make the content of
the rank i + 1 limit term be the preferred cyclic normal form subject even to the
additional restriction that there be at least one limit term of rank i before and after
the unique rank i + 1 limit term. Although there may be more than one way to
arrange the parentheses to satisfy these conditions, all that matters is that at least
one exists and that the same result be obtained every time the second step of the
reduction algorithm is applied to (β). For concreteness, we will stipulate that the
parentheses be shifted to the leftmost position satisfying these conditions. Once
the rank i+ 1 parentheses have been placed we define γ, ε1 and ε2 appropriately.

The only remaining case is where the i length of β is 1. The normal form for
β will be η0(δ1)η1 and since parentheses surrounding idempotents were removed in
the first step we can assume that the normal form for (δ1)η1η0(δ1) is (δ1)η(δ1) for
some term η of rank at most i. Thus the cyclic normal form for β will be (δ1)η
and this will also be the preferred cyclic normal form by Lemma 5.7. We have the
following derivation:

(β) = (η0(δ1)η1) ⇒ (η0(δ1)η1)η0(δ1)η1 ⇒ (η0(δ1)(δ1)η1)η0(δ1)η1

⇒ η0(δ1)((δ1)η1η0(δ1))η1 ⇒ η0(δ1)((δ1)η(δ1))η1

⇒ η0((δ1)(δ1)η)(δ1)η1 ⇒ η0((δ1)η)(δ1)η1 ⇒ η0(δ1)η((δ1)η)(δ1)η1

Each step is either an elementary rule of rank at most i + 1 or the equivalence
assumed at the beginning of this case. In the final result, the content of the rank
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i+ 1 limit term is the preferred cyclic normal form for β. We now define γ, ε1 and
ε2 appropriately.

We will now show that this procedure produces results which have the desired
properties. From the explicit forms given above, it is easy to check that in all cases
ε1ε2 is the normal form for β2 and that the term ε2ε1 is rank i equivalent to γ2.
The latter statement does, however, rely on the fact that both ε1 and ε2 contain
at least one limit term of rank i. Finally, the derivations given above have shown
that ε1(γ)ε2 is rank i+ 1 equivalent to (β).

Given a rank i+ 1 term α1, the term α2 is formed by replacing each limit term
(β) with the equivalent term ε1(γ)ε2 which results from the procedure described
above, and then reducing all of the rank i crucial portions which fall between the
rank i + 1 limit terms. This last step is meant to ensure that the terms between
the limit terms are at least in subnormal form. Notice that we have not claimed
(or shown) that γ, ε1, and ε2 are the unique terms which satisfy these conditions,
only that these terms are well-defined by the procedure described. Since the form
which results from this procedure is not quite the eventual normal form in all cases,
we will call this the standard form for the limit term (β).

The procedure for placing rank i limit terms in their standard forms has the
following properties:

Lemma 6.2. The standard form for (β) is identical to the standard form for (βk).

Proof. If β is a power of a simple term β′ in rank i, then βk will also a power of the
same simple term in rank i. Thus these procedures merge as soon as the contents
of the parentheses are made to be simple terms in rank i.

Lemma 6.3. If β is a simple term in rank i and the standard form for (β) is
ε1(γ)ε2, then the second step applied to the term βj(βk)βl results in the term
ε1γ

j(γ)γlε2.

Proof. The result follows from the observation that the normal form for βj is
ε1γ

j−2ε2. Thus as we proceed through the second step, βj(βk)βl becomes first
βjε1(γ)ε2β

k, and then as the crucial terms not contained in the rank i + 1 limit
terms are reduced to their normal form, it becomes ε1γ

j−2ε2ε1(γ)ε2ε1γ
l−2ε2 and

finally ε1γ
j(γ)γlε2. For this last reduction we have used the property that ε2ε1 is

equivalent to γ2 when its crucial portions are reduced to normal form.

Lemma 6.4. Let β be a term of rank i and let η be a limit term of rank at most i.
If the second step is applied to the terms (ηβ)η and to η(βη), then the results will
differ at most by an expansion or a contraction of type 4 and rank i+ 1.

Proof. We may assume ηβ is already simple. When the expansions of type 4 are
applied to each term, the results are ηβ(ηβ)ηβη in the first case and ηβη(βη)βη in
the second. The shift and reductions which take place are the same. Let γ denote
the preferred cyclic normal form of βη and ηβ. Since the first pair of parentheses
originally extended one limit term further to the left, this may be enough of a
change to cause the rank i+ 1 parentheses for the first term to end up one copy of
term γ further to the left. This can be counteracted by a rank i+ 1 contraction of
type 4R followed by a rank i+ 1 expansion of type 4L.

Lemma 6.5. If α and β differ by a single shift, then α2 and β2 differ by rank i+1
contractions and expansions of type 4.
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Proof. Since every shift can be decomposed into shifts which only shift a single
variable or a single limit term, the result follows from Lemma 6.4.

Step 3: In the third step we eliminate crucial portions of the form (γ)γj(γ) for
some integer j ≥ 0. This can be done by applying j contractions of type 4 followed
by one contraction of type 3. Notice that doing this does not change the initial
portion, the final portion, or any of the other crucial portions. It simply eliminates
one of the crucial portions. Thus the order in which these eliminations take place is
irrelevant and the final result is the same. We say that (γ) is the normal form for
crucial portions of the form (γ)γj(γ) where γ is a simple rank i term in preferred
cyclic normal form.

Step 4: The final step is to standardize the results, which we do one portion at a
time. We begin with the crucial portions.

If γ and δ are simple rank i terms which are in preferred cyclic normal form, ε
is a term of rank at most i, and (γ)ε(δ) is a crucial portion of α3, then there is
another rank i term ε′ with the following properties:

1. (γ)ε(δ) is rank i+ 1 equivalent to (γ)ε′(δ)
2. The term γε′δ is in rank i normal form
3. ε′ is not an initial segment of γj for any integer j
4. ε′ is not a final segment of δj for any integer j
5. any contractions of type 4 applied to (γ)ε′(δ) will result in a term which fails

to have these properties

The procedure for producing such an ε′ goes as follows. First choose j to be the
smallest integer with |γj | ≥ |γ|+ |δ|, and then apply j expansions of type 4R to the
limit term (γ) so that (γ)γj is an initial segment of the result. Similarly, choose k
to be the smallest integer with |δk| ≥ |γ| + |δ|, and apply k expansions of type 4L

to the limit term (δ) so that δk(δ) is a final segment of the result. Let ε′ denote
the term between the rank 1 limit terms at this point. This ε′ will satisfy the first
three of the four desired properties.

To see this, note that since this crucial portion remains in α3, either Lemma 2.9
or Lemma 2.10 can be applied. According to these lemmas, the largest initial
segment of ε′ which is also an initial segment of γl for some large l cannot be all of
ε′. Similarly, the largest final segment of ε′ which is also a final segment of δl for
some large integer l cannot be all of ε′.

We now apply any rank i + 1 contractions of type 4 which will preserve these
properties. We note that since a rank i + 1 contraction of type 4 on an initial
segment cannot affect whether the third condition is satisfied and a rank i + 1
contraction of type 4 on a final segment cannot affect whether the second condition
is satisfied, the resulting term is independent of the order in which these contractions
are performed. The expression (γ)ε′(δ) which results will be called the normal form
of (γ)ε(δ).

A similar procedure is used for the initial and final portions. If γ is a simple
rank i term which is in preferred cyclic normal form, ε is a term of rank at most
i, and (γ)ε is a final portion of α3, then there is another rank i term ε′ with the
following properties:

1. (γ)ε is rank i+ 1 equivalent to (γ)ε′

2. The term γε′ is in rank i normal form
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3. any contractions of type 4 applied to (γ)ε′ will result in a term which fails to
have these properties

The procedure for producing ε′ goes as follows. First apply an expansion of type
4R to produce (γ)γε, and then reduce all of the rank i portions of γε (except the
initial one) to their normal forms. Let (γ)ε′ denote the result. At this point the first
two properties are satisfied. Finally, we apply as many rank i + 1 contractions of
type 4 to (γ)ε′ as possible. This final alteration cannot disrupt the second property
since the term which results is a subexpression of a rank i term we know to be in
normal form. The final result is called the normal form of (γ)ε. The procedure for
the initial portion is analogous.

The term α4 is formed from α3 by replacing each portion with its normal form.
Since none of these procedures change any of the limit terms at either end, they can
be carried out independently of each other. This completes the rank i+ 1 normal
form reduction algorithm. The final result (α4) will be called the rank i+1 normal
form for α.

Before describing the properties of these normal forms in greater detail, we record
a few properties of this fourth step in the algorithm, followed by a remark.

Lemma 6.6. Let γ be a simple rank i term in preferred cyclic normal form. If
ε is any term of rank i, then the normal forms for ε(γ) and εγj(γ) are identical.
Similarly, the normal forms for (γ)ε and (γ)γjε are identical.

Proof. The reason the extra γ’s do not change the final normal form is that in
the second step a copy of γ is added to each side of the rank i + 1 limit term
and the resulting word γε is reduced in rank i. When the extra copies of γ are
present, the normal form for γj+1ε appears instead. Since γ is cyclically reduced
the difference between these two forms is j exact copies of γ which are removed as
the standardization proceeds.

Lemma 6.7. Let γ and δ be simple rank 0 terms in preferred cyclic normal form.
If ε is any term of rank 0 then the normal forms for (γ)ε(δ) and (γ)γjεδk(δ) are
identical.

Proof. The proof is similar to the proof of Lemma 6.6. In the second step, extra
copies of γ and δ are added to the beginning and the end. Any modifications which
occur during the reduction part of the second step will not change the fact that the
results differ by j exact copies of γ occurring at the beginning of the term between
the rank i + 1 limit terms and k exact copies of δ occurring at the end. At this
point it should be clear that the result of the fourth step applied to one will be the
same as the fourth step applied to the other.

Remark 6.8. Notice that if the rank i + 1 normal form reduction algorithm is
applied to a term α of rank j ≤ i, then the result is the same as the normal form
produced by the rank j normal form reduction algorithm applied to α. Thus the
normal form reduction algorithms in the various ranks agree whenever several of
them can be applied to the same term.

We will now conclude the inductive step by showing that rank i+ 1 equivalence
between words of rank at most i+1 can be determined based on whether their rank
i+ 1 normal forms are identical.

Theorem 6.9. Let α and β be terms of rank at most i + 1. The terms α and β
are equivalent in rank i+ 1 if and only if α and β have the same normal form. In
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particular, the normal form reduction algorithm can be used to decide whether rank
i+ 1 terms are rank i+ 1 equivalent.

Proof. Since terms are rank i+1 equivalent with their normal forms, it is clear that
rank i+ 1 terms with the same rank i + 1 normal form are themselves rank i+ 1
equivalent. Thus we only need to show the other implication. Suppose that α and
β are terms of rank at most i+ 1which are rank i+ 1 equivalent but whose normal
forms are distinct. By considering the normal forms for each intermediate stage in
a rank i + 1 derivation from α to β, we may in fact assume that α and β differ
by the application of a single rule. For concreteness, assume that β is obtained
from α by a contraction or a shift either of rank i + 1 or of lower rank. We will
consider each type of rule in turn and show that their normal forms cannot in fact
be distinct.

If α and β differ by either a contraction or a shift of rank lower than i+ 1, then
this rule must be applied either inside one of the rank i + 1 limit terms or in one
of the words between the rank i limit terms. In the former case, the difference
between α and β is eliminated at the beginning of the first step. In the latter it is
eliminated at the end of the second step. In both cases, the eventual normal form
will be identical.

If α and β differ by a rank i + 1 contraction of type 1, then this extra rank
i+ 1 parenthesis is removed during the first step. Thus the eventual normal forms
will be the same. If α and β differ by a rank i + 1 contraction or shift and the
pair of rank i+ 1 parentheses used in the relation is removed during the first step,
then the content of the limit term is an idempotent, and the difference now occurs
in a portion of the terms which is outside of the rank i + 1 limit terms. As such
this difference is eliminated at the end of the second step. Thus from now on we
may assume that our rank i+1 contractions and shifts emerge virtually unchanged
from the first step (other than having the contents of the rank i+ 1 limit terms be
reduced to normal forms).

If α and β differ by a rank i + 1 contraction of type 2, then by Lemma 6.2, α2

and β2 will already be identical and their eventual normal forms will thus be the
same.

If α and β differ by a contraction of type 3, then α contains a pair of adjacent
limit terms, say (δ)(δ). When these are placed in normal form in the second step,
the resulting α2 contains (γ)γ2(γ) where β2 contains only (γ). Thus α2 and β2

will differ by at most a contraction of type 4 and a contraction of type 3. More
importantly, the crucial portion of α2 bracketed by two limit terms (γ) will be
removed in the third step, α3 and β3 will be identical, and their eventual normal
forms will again be the same.

If α and β differ by a contraction of type 4, then by Lemma 6.3, α2 and β2

differ by a series of contractions of type 4. There are now three possibilities. If the
contractions involve a crucial portion of α2 which is removed in the third step it
will also remove this crucial portion in β2. Thus α3 and β3 will be identical and
so will their normal forms. If the contractions affect a crucial portion which is not
removed in the third step, then α3 and β3 will still differ by a series of contractions
of type 4, but by Lemma 6.7 the resulting normal forms will be the same. Similarly,
if the contractions affect an initial portion or a final portion then α3 and β3 will
differ by a series of contractions of type 4, but by Lemma 6.6 the normal forms will
again be identical.
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Finally, if α and β differ by a shift, then by Lemma 6.5 α2 and β2 will differ
by contractions and expansions of type 4 and we have already shown that these
types of changes yield the same normal forms. In all cases, α and β must have the
same normal form and we have contradicted our assumption. This completes the
proof.

7. The term problem for Fn

Now that the inductive step is complete, it is easy to show that every element
of Fn has a unique normal form and that the term problem for Fn is decidable.

Lemma 7.1. If α is a term of rank i, then α is equivalent to a unique term in
normal form. These terms are moreover equivalent in rank i.

Proof. Applying the normal form reduction algorithm (Definition 6.1) in rank i
produces a well-defined normal form for α. Moreover, by Remark 6.8, applying
the normal form reduction algorithm in rank j for any j ≥ i would produce the
identical normal form.

Theorem 7.2. Two terms α and β are equivalent in Fn if and only if they have
the same normal form. In particular, the normal form reduction algorithm can be
used to decide whether terms in Tn are equivalent in Fn, and thus the term problem
is decidable for the κ-semigroup Fn.

Proof. If α and β have the same normal form, then since both α and β are equivalent
to this normal form, they are equivalent to each other in Fn. Conversely, if α and
β are equivalent in Fn, then there is a derivation from α to β, this derivation
has an upper bound on the ranks of the rules invoked, and thus α and β are also
equivalent in rank i for some i. By Theorem 6.9, α and β must then have the
same normal form. Finally, notice that since the normal form reduction algorithm
is an algorithm which stops in finite time, this procedure is effective and the term
problem is decidable.

8. Burnside semigroups

In the second half of the article we will show that Fn and Ωκ
nA are in fact

identical. The proof will rely heavily on the structure of the Burnside semigroups
of large exponent. In this section and the next we will review this structure using the
notation and citing the results from [5]. Similar results were obtained independently
by de Luca and Varricchio ([3]). None of the results stated in these two sections
are new and the reader is referred to [5] for detailed proofs.

Definition 8.1 (Burnside Semigroups). A Burnside semigroup is a relatively free
semigroup satisfying a single identity of the form T r = T r+s for every word T .
More explicitly, the n-generated aperiodic Burnside semigroup of exponent m has
the presentation

Bn(m) = 〈x1, . . . xn|T
m = Tm+1 ∀T ∈ {x1, . . . , xn}

∗〉

For our purposes, two of the most important properties of the Burnside semi-
groups are that they are finite J -above, and that the language of words equivalent
to a given element can be expressed as either a Kleene expression without unions
or as the language accepted by a loop automaton.
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Definition 8.2 (Finite J -Above). Let S be a fixed semigroup and let x and y be
elements of S. If there are elements u and v in S such that uxv = y, then x is
said to be J -above y. If for every element y in S there are only a finite number of
elements which are J -above y, then S is said to be finite J -above.

The property of being finite J -above plays the role in semigroup theory that
residual finiteness plays in group theory. In particular, if S is a semigroup which is
finite J -above, then for every pair of distinct elements, there is a homomorphism
onto a finite semigroup in which their images remain distinct. Explicitly, if x and
y are the two elements and I is the ideal of all elements which are not J -above the
product xy, then S/I is finite and x and y remain distinct in this quotient.

Definition 8.3 (Languages). Let X = {x1, . . . , xn}, and let X∗ denote the set of
all finite strings of variables from X . The elements of X∗ are typically called words .
A subset of X∗ is called a language.

Definition 8.4 (Automata). Let X be a set and let ε be a symbol which is not
contained in X . A finite state automaton over X is a finite directed graph with
an element of X ∪ ε assigned to each edge together with a unique vertex known as
the start state and a subset of vertices known as the end states . The automaton is
deterministic if for every vertex and choice of label, there is at most one directed
edge starting at that vertex which has that particular label. The language accepted
by such an automaton is the set of words which are formed by concatenating the
labels on the edges of a path which starts at the start state and ends at one of the
end states. The ε label corresponds to the empty word and contributes nothing to
the concatenation.

Definition 8.5 (Regular Languages). A regular language is a subset ofX∗ which is
the language accepted by a finite state automaton over X . The rational languages
are the smallest collection of languages which contain the singleton sets and are
closed under union, product and monoid closure.

Remark 8.6. By Kleene’s theorem, the set of rational languages and the set of
regular languages coincide. By the Kleene-Rabin-Scott theorem, the automata used
to define regular languages can be required to be deterministic and to exclude edges
whose label ε represents the empty word without altering the collection of languages
defined.

We will mainly be interested in a third representation of these languages, namely,
by Kleene expressions. Of particular interest will be the Kleene expressions defined
without using unions and the corresponding loop automata which accept them.

Definition 8.7 (Kleene Expressions). A Kleene expression is a compact way to
describe a regular language. Kleene expressions can be defined inductively as fol-
lows. A single variable xj is a Kleene expression and the regular language associated
to this expression is the language consisting of one word, namely the singleton xj .
If α and β are Kleene expressions, then the concatenation αβ, the union (α∪β) and
Kleene star (α)∗ are also Kleene expressions. The corresponding regular languages
are defined as follows. Let A and B be the regular languages which correspond to α
and β, respectively. The language corresponding to the concatenation αβ is the set
of words formed by concatenating a word from A with a word from B. The language
corresponding to (α ∪ β) is the union of A and B. The language corresponding to
(α)∗ is the set of words formed by concatenating a finite sequence of words from
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Figure 1. A loop automaton which requires ε edges
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z

Figure 2. A rank 1 straightline automaton

A. This finite sequence can also be empty so that the empty word is always an
element in the language of (α)∗ for any α. Alternatively, the language of (α)∗ can
be described as the union of the languages of the expressions {}, α, αα, ααα, . . . .

In this article, all of our Kleene expressions will be defined using only concate-
nation and the Kleene star. Unions will not be used. One consequence of not
allowing unions is that the automata which accept the languages of these Kleene
expressions can be chosen to be of a very restricted type. Moreover, these types of
Kleene expressions closely parallel the normal forms defined for the elements of Fn.

Definition 8.8 (Loop Automata). A loop automaton is a finite state automaton
which can be constructed inductively as follows. Start with an automaton which is
a sequence of directed edges, directed from left to right, with the leftmost vertex
as its unique start state and the rightmost vertex as its unique end state. Then
repeatedly attach sequences of edges which form a directed loop with exactly one
of its vertices in the pre-existing construction. Examples can be seen in Figures 1
through 4.

Kleene expressions which do not contain unions and loop automata are essentially
equivalent. The following lemma is, in fact, nearly immediate.

Lemma 8.9. A regular language can be defined by a unionless Kleene expression
if and only if it is the language accepted by a loop automaton.

Example 8.10. Let α be the Kleene expression zz(z)∗zzzz. The loop automaton
for this expression is shown in Figure 2. A loop automaton for the expression
xyxy(xy)∗xyxyxyxyx can be found in Figure 3. In general, these loop automata
require ε edges in their construction. For example, consider the Kleene expression
(x)∗(y)∗(z)∗. There is an easily constructed loop automaton which accepts this
language, as shown in Figure 1. It is not hard to show that a loop automaton for
this language cannot be constructed without using ε edges.

We can now summarize the basic properties of the Burnside semigroups of suf-
ficiently large exponent.

Theorem 8.11. For m ≥ 6, the aperiodic Burnside semigroup Bn(m) is finite J -
above and has a decidable word problem. Moreover, for each element α of Bn(m),
the language of words which represent this element is regular and can be described
by either a single Kleene expression without unions or as the language accepted by
a loop automaton without ε edges.
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Figure 3. Another rank 1 straightline automaton
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Figure 4. A rank 2 straightline automaton

Example 8.12. Let U be the word z20, and let α be the element of B2(6) which
is represented by U . The language of words which represent α can be described by
the Kleene expression zz(z)∗zzzz or by the loop automaton shown in Figure 2.
Similarly, let V be the word (xy)10x, and let β be the element it represents.
The language of words which represent β is described by the Kleene expression
xyxy(xy)∗xyxyxyxyx or by the loop automaton shown in Figure 3. For a more
complicated example, consider the word W = (V U)105, where U and V are as
above. The loop automaton for the language of words equivalent to this particular
word in B2(6) is shown in Figure 4. The portions of the automaton labeled by α
and β correspond to copies of the automata in Figure 2 and Figure 3, respectively.
In particular, the portion contained in the dashed box is the same as that shown
in Figure 3.

9. Normal forms for Burnside semigroups

In addition to showing that the word problem is decidable, [5] provides an ex-
plicit algorithm for constructing the normal form of an element, a Kleene expression
for the language of equivalent words, and a loop automaton which accepts this lan-
guage. At first glance, it might seem like the set of rules which replace Tm+1 with
Tm for each word T should be sufficient to replace every word with its shortest pos-
sible form. The reason why this does not quite work is illustrated by the following
example.

Example 9.1. Let T be the word x(yx)mz and let W be the word (yx)mzTm.
Even though W does not contain an (m+ 1)-st power, it is equivalent to a strictly
shorter word. In particular,

(yx)mzTm ⇒ yx(yx)mzTm = yTm+1 ⇒ yTm = yx(yx)mzTm−1 ⇒ (yx)mzTm−1

Notice that the first step in this derivation is an expansion. Despite this example,
there is a modified set of rules which allow every word to be reduced to its shortest
possible form using only rules which strictly reduce its length. This leads to an
explicit procedure for reducing words in Burnside semigroups to their normal forms.
In order to fully describe the procedure, we will need to review a few more definitions
from [5].

First note that not all of the identities of the form Tm+1 = Tm are needed
in order to define a presentation for the Burnside semigroups. It is sufficient to
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consider only words T which are simple and which do not already contain (m+ 1)-
st powers of shorter words. More generally, we only need consider identities of the
form Tm+1 = Tm where T is a simple, cir-reduced word.

Definition 9.2 (Simple in Bn(m)). An element of Bn(m) (m ≥ 6) is called a
proper power if it is equal to a nontrivial power of another element. An element
which is not a proper power of any element is called simple. A word representing
an element of Bn(m) is called simple if it represents a simple element.

When W is a proper power, the unique simple word T of which W is a power is
called the simple root of W .

Lemma 9.3. Every word W representing an element of Bn(m) (m ≥ 6) satisfies
exactly one of the following conditions:

1. it is a simple word
2. it is equivalent to T j where T is a simple word, j is number less than m and
T and j are uniquely defined

3. it is equivalent to T j for all j ≥ m where T is a uniquely defined simple word.

In addition W represents an idempotent in Bn(m) if and only if it satisfies the third
condition.

Definition 9.4 (cir-reduced words). A word is called str-reduced if it does not con-
tain subwords of a particular type. We will postpone the precise definition of str-
reduced words until after these particular types of subwords have been defined. A
simple word T is called cir-reduced if and only if T 3 is str-reduced. One conse-
quence of this definition is that every simple, cir-reduced word is itself str-reduced.
In most cases str-reduced words are also cir-reduced. The exceptions occur when
the prohibited subwords exist in T 2 or T 3, but not in T itself as in Example 9.14.
Words which are proper powers will be called cir-reduced only if they are equal to
(not just equivalent to) a proper power of simple, cir-reduced word.

Definition 9.5 (Minimal Supports). If T i is a power of a simple, cir-reduced word
with i ≥ 3, then there is a unique minimal subword U of T i such that T i is J -above
U in Bn(m). This minimal subword is called the minimal support of T i and it will
be denoted by MinSup(T i). Minimal supports could also be defined for arbitrary
str-reduced words, but in that generality they are not unique. They are unique for
high powers of simple, cir-reduced words.

Definition 9.6 (str-reduced words). A word T is called str-reduced if it does not
contain MinSup(Um+1) for any simple, cir-reduced word U . Since minimal supports
of this type will contain Um−1 as a subword (see Lemma 9.9 below), there are only
a very limited number of minimal supports of this type in any particular word T
and it is easy to identify where they might occur.

Although these definitions may appear circular, they can be rigorously defined
by inducting on the length of the words under consideration.

Lemma 9.7. Let Bn(m) be fixed with m ≥ 6. Every element in Bn(m) is repre-
sented by a unique str-reduced word and every conjugacy class is represented by a
cir-reduced word which is unique up to cyclic conjugation. In particular, every word
T in Bn(m) is equivalent to a unique word which is str-reduced and it is conjugate
to a cir-reduced word which is unique up to cyclic conjugation.
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Lemma 9.8. An element of Bn(m), m ≥ 6, is simple in the sense of Definition 9.2
if and only if the unique cir-reduced word in its conjugacy class is a simple word in
the sense of Definition 2.7.

Lemma 9.9. If T is a simple, cir-reduced word, then the subword MinSup(T j) is
formed by removing fewer than |T | letters from the beginning of T j and fewer than
|T | letters from the end of T j. In particular, the minimal support for T j will contain
T j−2 as a subword. Moreover, the exact number of letters removed is independent
of j so that the minimal supports of T i and T j, i, j ≥ 3, differ by the insertion or
deletion of an integral number of copies of T in the interior of the word. Finally,
the words MinSup(Tm+1) and MinSup(Tm) are equivalent in Bn(m).

The easiest way to organize a study of minimal supports is to arrange them by
their rank.

Definition 9.10 (str-rank). Let Bn(m) be a Burnside semigroup with m ≥ 6.
The str-rank of a str-reduced word T is the length of the longest chain of nested
minimal supports for m-th powers of simple, cir-reduced words. If, for example, a
word contains no minimal supports for m-th powers at all, then its str-rank is 0.
If it contains a minimal support for Um which in turn strictly contains a minimal
support for V m, then it has a str-rank of at least 2. If T is not str-reduced, then
the str-rank of T is defined to be the str-rank of its unique str-reduction.

Definition 9.11 (cir-rank). The cir-rank of a simple, cir-reduced wordW in Bn(m)
is the str-rank of W 3. If W is a cir-reduced word which is a proper power, then its
cir-rank is the cir-rank of the cir-reduction of its unique simple root.

Example 9.12. The normal forms of the words U , V and W described in Ex-
ample 8.12 have str-ranks of 1, 1 and 2, respectively. As can be seen from the
corresponding figures, the rank of a word also corresponds to the number of loops
within loops within loops which need to be attached to the initial base in order to
form the corresponding loop automaton.

For our purposes we only need the following result.

Lemma 9.13. Let W be a word in Bn(m) with m ≥ 6 and let i and j denote the
str-rank and the cir-rank of W , respectively. If W is an idempotent in Bn(m) then
j = i− 1. If W is not an idempotent in Bn(m) then either j = i or j = i+ 1. The
latter case only occurs in the situation described in Example 9.14.

Example 9.14. Let W be the simple word yz(xyzxy)m−1x. The str-rank of W
is 0 since it does not contain any m-th powers. The str-rank of W 2 is also 0 for
the same reason. The word W 3, however, contains an m-th power of xyzxy. Thus
W 3 has str-rank 1 and W has cir-rank 1. If some high power of W contains a
minimal support of a rank i base word U whose length is less than that of W , then
by Lemma 2.9 the entire periodic word has length less than |U | + |W | < |W 2|.
This does not imply that the U -periodic section occurs in W 2, as we saw, but this
subword does occur somewhere in W 3. Thus the str-rank of W i and W j is the
same for all i and j between 3 and m − 2. This is the reason why W 3 is used to
define the cir-rank of simple words.

Definition 9.15 (Normal Forms). Let Bn(m) be a fixed Burnside semigroup with
m ≥ 6, let T be a word and let Γ be the loop automaton which accepts the language
of words equivalent to T in Bn(m). The word T will be str-reduced with respect
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to Bn(m) if and only if it is the unique shortest word accepted by Γ. In particular,
every word T is equivalent to a unique str-reduced word which is called its normal
form.

Definition 9.16 (Reduction Algorithm). Let Bn(m) be a fixed Burnside semi-
group with m ≥ 6. Every word T can be reduced to its str-reduced normal form
by repeatedly replacing subwords of the form MinSup(Um+1) with the equivalent
subword MinSup(Um). More specifically, these substitutions can be carried out by
rank and only for minimal supports of powers of simple, cir-reduced words. If U
is a simple, cir-reduced, cir-rank i word, then U will be called a rank i base. In
this language, the basic type of reduction replaces a minimal support of an (m+1)
power of a rank i base with a minimal support of an m-th power of the same rank
i base.

The complete algorithm goes as follows. It is sufficient to first reduce all minimal
supports of (m+1) powers of a rank 0 base. When no more reductions of this type
are possible, the uniquely defined result is called the str1-reduction of T . Then
all minimal supports of (m + 1) powers of a rank 1 base are reduced. When no
more reductions of this type are possible, the uniquely defined result is called the
str2-reduction of T . This process continues up through the ranks. The word which
results from reducing all of the minimal supports of (m+ 1) powers of a rank k− 1
base is called the strk-reduction of T . If the str-rank of T is k, then this process
only needs to continue up to rank k. In other words, the strk-reduction of T is the
unique str-reduced word which is equivalent to T .

Definition 9.17 (Incompatible Subwords). Let W be a word and let U and V be
rank i bases such that W contains a minimal support of Um and a minimal support
of V m. If the minimal support for V m is contained in the maximal periodic subword
of W which contains the minimal support for Um, then since they have the same
rank, U and V must be cyclic conjugates of each other and the minimal support
for Um and the minimal support for V m will be called compatible. Notice that this
definition is symmetric with respect to U and V . The minimal supports for Um

and V m will be called incompatible in all other cases.

Definition 9.18 (Domain). Let W be a word which represents an element of
Bn(m) with m ≥ 6 and let U be a rank i base word. If W contains a minimal
support for Um, then the largest U -periodic subword of W which contains this
minimal support will be called the domain of this minimal support .

Lemma 9.19. Let U be a rank i base word which represents an element of Bn(m)
with m ≥ 6. If V is a rank j base word with j < i and a minimal support of V m is
contained in Um, then the domain of this particular minimal support has length at
most |U2| and it will mostly survive in the minimal support for Um. In particular,
the portion of the domain of V m which survives will still contain a minimal support
for a cyclic conjugate of V m.

It is in fact this feature of minimal supports which allows us to establish most
of the properties listed in Lemma 9.9.

Lemma 9.20. If S is a word with cir-rank at least i, then there exist words T ,
P , and Q such that for all j ≥ 4, the stri-reduction of Sj is PT jQ, where T is a
ciri-reduced word. That is, the words T , P , and Q can be chosen independently of
j. Moreover, the cir-rank of T is the same as that of S.
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Proof. This is Lemma 4.8 in [5].

Lemma 9.21. Let S be a subword of T . If the stri-reduction of S (in Bn(m),
m ≥ 6) contains a minimal support for Um where U is a rank j base, then the
stri-reduction of T will also contain this particular minimal support. In particular,
the str-rank of S in Bn(m) is at most that of T .

Proof. This is the essential content of Lemma 2.8 in [5].

Lemma 9.22. Let fi(m) be the length of the shortest word of cir-rank i in Bn(m)
for m ≥ 6. For every i, fi is bounded below by a polynomial in m of degree i. In
particular, fi is bounded below by (m − 3)i. As a consequence the length of the
shortest str-rank i word is bounded below by (m− 2)(m− 3)i.

Proof. The argument is by induction. If U is cir-reduced and has cir-rank 1, then
U3 contains a minimal support for anm-th power of a rank 0 base V . By Lemma 9.9
this minimal support contains V m−2. Moreover, since U and V have different cir-
ranks they can not be cyclic conjugates. Thus, by Lemma 2.9 |V m−2| < |U |+ |V |.
This shows that |U | > (m−3)|V |. Since the length of V is at least 1, |U | > (m−3).
Next, suppose that the result is true for some i, and let U be a cir-reduced word
with cir-rank i+1. By definition U 3 contains a minimal support for an m-th power
of a rank i base word V . The same argument shows that |U | > (m− 3)|V |. Since
by assumption |V | > (m − 3)i, the length of U is greater than (m − 3)i+1. For
the final statement simply note that every str-reduced word of str-rank i contains
a subword of the form V m−2 where V is a cir-reduced word of cir-rank i− 1.

10. Operations on Terms

In this section we present a number of general definitions about manipulating
terms in Tn which will be needed below. There are two major processes: expansions
and reconstructions.

Definition 10.1 (The Map φm). Let φm : Tn → X∗ be the map which sends xi

to xi, which sends the implicit operation ω : α 7→ (α) to the explicit operation
α 7→ αm, and which extends to the other elements in Tn by composition. The term
(x1(x2))x3 ∈ Tn, for example, will be sent by φm to the word (x1(x2)

m)mx3. Since
pairs of terms defining an identity of Fn are sent under φm to pairs of words which
are equivalent in the Burnside semigroups, there is an induced map, which we will
also call φm from Fn to Bn(m).

The following lemma is immediate.

Lemma 10.2. Let α be a term of rank i and let g(m) denote the length of φm(α).
The function g(m) is an i-th degree polynomial in m. In particular, if cj is the
number of variables in α of rank j, then g(m) is c0 + c1m+ c2m

2 + · · · + cim
i.

As a corollary we can immediately bound the eventual rank of φm(α) as m gets
large. Since this type of statement will occur frequently below, we will adopt the
following convention: whenever we state that something happens for sufficiently
large m, this means that there is a constant M such that for all m ≥ M , the
statement is true.

Corollary 10.3. If α is a term of rank i, then for sufficiently large m, the str-rank
of φm(α) is at most i. As a consequence, the cir-rank of φm(α) is also at most i.
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Proof. The result is immediate from the growth rates shown in Lemma 9.22 and
Lemma 10.2. Specifically, since g(m) is only a polynomial of degree i, it will even-
tually be overtaken by each of the polynomials fj(m) with j > i. This shows that
φm(α) cannot continue to be a word of str-rank greater than i as m gets large. The
second statement follows from the first by applying it to α3.

Lemma 10.4. If α and β are terms and α is a subexpression of β, then φm(α) will
be a subword of φm(β) and consequently, the str-rank of the word φm(α) in Bn(m)
(m ≥ 6) is at most the str-rank of φm(β).

Proof. The first part of the statement is immediate from the definition of φm. The
second part follows from Lemma 9.21.

In order to make this map easier to work with we will break it down into simpler
steps.

Definition 10.5 (Rank i Expansions). Let α = ε0(γ1)ε1(γ2) . . . (γN )εN be a rank
i + 1 term in normal form, where each εj is a term with rank at most i and each
(γj) is a simple rank i + 1 limit term in preferred cyclic normal form. Let β be
a rank i term formed by replacing the limit term (γj) with rj copies of γj . Thus
β = ε0γ

r1

1 ε1γ
r2

2 . . . γrN

N εN . If each rj is at least 1, then β is called a rank i expansion
of α. If all of the rj are the same, then the expansion will be called uniform. The
subexpressions of the form γ

rj

j will be called expanded limit terms .

Remark 10.6. Notice that if α has rank 1 and m ≥ 2, then φm(α) is an example
of a uniform rank 0 expansion of α. More generally, if α has rank i+ 1 and m ≥ 2,
then the word φm(α) can be formed by first performing a uniform rank i expansion
of α, followed by a uniform rank i − 1 expansion of the result, and continuing in
this way until in the final step a uniform rank 0 expansion is performed. These
expansions along the way will be the main objects under investigation below.

Lemma 10.7. If α is a rank i+1 term in normal form and β is a rank i expansion
of α, then β is a rank i term in normal form.

Proof. Let α = ε0(γ1)ε1 . . . (γN )εN where each (γj) is a rank i + 1 limit term in
normal form and each εj has rank at most i, and let β1 be the rank i expansion
of α which replaces each rank i + 1 limit term (γj) with γj . In other words β1 is
the term obtained from α by simply removing all of the parentheses of rank i+ 1.
Since by definition each subexpression γj contains a rank i limit term, each rank i
portion of β1 will be contained in one of the expressions ε0γ1, γNεN , or γjεjγj+1.
By the stipulations in Step 4 of the normal form algorithm, each of the expressions
in this list are in normal form. Thus by Lemma 5.1 all of the rank i portions of β1

are in normal form and hence, β1 itself is in normal form.
Next consider an arbitrary rank i expansion, β. Notice that all of the rank i

portions of β either occur already in β1, or else they are formed by concatenating
the final rank i portion of some γj with its initial rank i portion. Since by the
definition of normal form, the term γj is in cyclic normal form, this new crucial
portion is also in normal form. Thus, by Lemma 5.1 again, every rank i expansion
of α will be in normal form.

Definition 10.8 (Associated Limit Terms). Let α be a rank i+ 1 term in normal
form and let β be a rank i expansion of α. In particular, let β be the term ob-
tained from α by replacing each rank i+ 1 limit term (γj) with rj copies of γj . A
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subexpression of the form ηk, k ≥ 2, is said to be associated with the limit term
(γj) if η is a cyclic conjugate of γj and ηk is contained in the maximal γj-periodic
subexpression of β which contains the expanded limit term γ

rj

j . This maximal γj-

periodic subexpression of β will be called the domain of the limit term (γj), and it
will typically be denoted Γj . There is a rough correspondence between the domain
of a minimal support and the domain of a limit term, hence the similar terminology.

Definition 10.9 (Portion Length). Let α be a rank i+1 term in normal form and
let β be one of the portions of α (i.e. its initial portion, its final portion, or one of
its crucial portions). The portion length of β is defined as the i-length of β plus the
i + 1-length of β. Recall that the i-length of a term is the number of limit terms
of rank i which the normal form contains. The 0-length of a term is simply the
length of the word which remains once all of the parentheses of all ranks have been
removed. For example, the portion length of the rank 1 final portion (xy)z would
be 4.

Definition 10.10 (Portion Bound). Let α be a rank i + 1 term in normal form.
The least upper bound on the portion length of the portions of α will be called the
portion bound of α.

Example 10.11. Let α be the rank 1 term (xy)x in Tn. The image of α under
φ6 is (xy)6x and Figure 3 shows the loop automaton which accepts the language
of words equivalent in B2(6) to this particular word. Similarly, Figure 4 shows the
loop automaton which accepts the language of words equivalent in B2(6) to the
image of the term β = ((xy)xz) under the map φ6.

11. Recovery in rank 1

The philosophy of the proof is as follows: if W is the str-reduction of φm(α) for
some very large value of m, then starting in rank 1 and working up through the
ranks, the rank i portions of W will allow us to reconstruct the rank i parentheses
of α. In this section we begin by showing that these ideas can be carried out for
terms of rank 0 and rank 1. In the next section, we will provide an inductive step
which shows that this can be carried out for terms of higher rank.

Remark 11.1 (Rank 0 Terms). Let α be a rank 0 term. The effect of the maps
φm on α is particularly easy to describe since for m greater than the length of α
they leave it unchanged. In Fn the terms that are rank 0 are the sole members of
their equivalence classes and thus are in normal form. Similarly, for large m, φm(α)
will contain no m-th powers. Thus no identities can be applied and φm(α) will also
be the sole member of its equivalence class.

Lemma 11.2. If α and β are two distinct rank 0 terms such that φm(α) and φm(β)
are equivalent for all m, then α and β are identical.

Proof. Let m be any number larger than the length of α and the length of β. For
this m, α = φm(α) = φm(β) = β.

Lemma 11.3. If α is a rank 0 term in normal form, then for sufficiently large m,
φm(α) is not an idempotent in Bn(m), and φm(α) has str-rank 0 and cir-rank 0.
Moreover, if β is the simple root and j is the exponent of α, then for sufficiently
large m, φm(α) is a j-th power of the simple word φm(β).

Proof. Immediate.
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Lemma 11.4. If α = (γ) is a rank 1 limit term in normal form, then for suffi-
ciently large m, the word φm(γ) is a rank 0 base.

Proof. By Lemma 11.3, for sufficiently large m, γ is a simple word which has cir-
rank 0. Moreover, by applying Lemma 11.3 to γ3, we can conclude that for these
large values of m, φm(γ) is also cir-reduced, and thus has all three properties of a
rank 0 base.

Lemma 11.5. If α is a rank 1 term in normal form, then for sufficiently large m,
the str-rank of φm(α) in Bn(m) will be 1. Moreover, the same is true for all terms
β which are equivalent to α in Fn.

Proof. By Corollary 10.3, for sufficiently large m, the str-rank of φm(α) is at most
1. By Lemma 11.4, for sufficiently large m, φm(α) contains an m-th power of a
rank 0 base. This shows that φm(α) has str-rank at least 1 and completes the proof.
The final assertion merely reflects the fact that φm is a homomorphism from Fn to
Bn(m).

Lemma 11.6. If α is a rank 1 term in normal form which is not an idempotent,
then for sufficiently large m the cir-rank of φm(α) in Bn(m) will be 1. If α is a rank
1 idempotent in normal form then for sufficiently large m, the cir-rank of φm(α)
will be 0. Moreover, the same is true for all terms β which are equivalent to α in
Fn.

Proof. The first statement follows from applying Lemma 11.5 to α3. If α is a rank 1
term which is an idempotent then by Lemma 11.5, the str-rank of φm(α) in Bn(m)
will be 1 for all sufficiently large m. Since φm is a homomorphism, φm(α) is also an
idempotent and so by Lemma 9.13, the cir-rank of φ(α) will be 0 for these values
of m.

We can now show that rank 0 terms and rank 1 terms are eventually distinguished
by their images in various Burnside semigroups.

Lemma 11.7. If α and β are two terms in normal form of rank 0 and 1 respec-
tively, then there exists an m such that φm(α) and φm(β) are not equivalent in
Bn(m).

Proof. By Remark 11.1 and Lemma 11.5, for sufficiently large values of m, φm(α)
will be an element in Bn(m) of rank 0, and φm(β) will be an element in Bn(m) of
rank 1. Thus, the elements represented by φm(α) and by φm(β) cannot possibly
be equal in Bn(m).

Definition 11.8 (Rank 1 Structures). Let W be a word which represents an ele-
ment of Bn(m). If the str-rank of W is at least 1, then W will contain a minimal
support of an m-th power of a rank 0 base as a subword. Consider all of the sub-
words of W which are the domain of a minimal support of this type. Since they are
all domains of minimal supports of m-th powers of words of the same rank, none
of these subwords can properly contain any of the others. Thus it makes sense to
list them as they appear from left to right. Let Γ1, Γ2, etc., denote the domains in
the order they appear, and let γj be a rank 0 base word in which Γj is periodic.
The word γj may not uniquely defined, but by Lemma 2.9 and Lemma 2.10 it is at
least well-defined up to cyclic conjugate. For each Γj place one of the copies of γj

inside a pair of parentheses. The result is a term of rank 1 which we will call the
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intermediate step. Applying the normal form algorithm for Fn to this term results
in a new term which will be called the rank 1 structure for W .

Lemma 11.9. If W is any word in any Burnside semigroup Bn(m) with m ≥ 6,
then the rank 1 structure of W is well-defined.

Proof. The only ambiguous point in the definition is where to place the parentheses.
In the language of the earlier sections, all of the possibilities differ by rank 1 shifts.
Since terms which differ by shifts are equivalent, and since by Theorem 7.2 every
equivalence class of terms has a unique normal form, the final result will be uniquely
defined, even though the intermediate step is not.

Lemma 11.10. Let W be a word in Bn(m) with m ≥ 6. If W ′ is the str1-reduction
of W , then the rank 1 structure of W and of W ′ will be identical.

Proof. Without loss of generality assume that W ′ is obtained from W by the ap-
plication of a single reduction of rank 1. In other words, assume that there is a
rank 0 base word U and that W ′ is obtained from W by replacing a subword which
is the minimal support for Um+1 with a minimal support for Um. This operation
cannot change the list of domains of minimal supports of m-th powers of rank 0
base words since the one which contains the minimal support of Um certainly re-
mains and none of the others are affected. More specifically, by Lemma 2.9 and
Lemma 2.10 they overlap so little with the domain of MinSup(Um) as to have their
domains unchanged. Finally, note that by choosing the placement of the paren-
theses appropriately, the intermediate stage of W and of W ′ will differ by a single
contraction of type 4. That they are equivalent in Fn at this stage guarantees that
the final results will be identical. The full strength of the statement is obtained by
repeating this procedure.

Lemma 11.11. Let α = (γ)ε be a rank 1 final portion in normal form, let l be the
portion length of α, and let β be a rank 0 expansion of α. If j > l, then every j-th
power of a rank 0 term which is contained in β will be associated with the rank 1
limit term (γ). A similar result holds for initial portions.

Proof. Let Γ denote the domain of (γ) in β = γrε. If there were a subexpression ηj

in γrε which was not contained in Γ, then by Lemma 2.9 or Lemma 2.10, the overlap
between ηj and γr would be at most |γ| + |η|. In particular, the final segment γε
would contain ηj−1, but this is not possible given the choice of j. The proof of the
second statement is analogous.

Lemma 11.12. Let α = (γ)ε(δ) be a rank 1 crucial portion in normal form, let l
denote the portion length of α, and let β be a rank 0 expansion of α. If j > l, then
every j-th power of a rank 0 term which is contained in β will be associated with
one of the two limit terms of α.

Proof. Let Γ denote the domain of (γ) and let ∆ denote the domain of (δ) in
β = γrεδs. If there were a subexpression ηj in γrεδs which was not contained in Γ
or ∆, then by Lemma 2.9 or Lemma 2.10, the overlap between ηj and γr would be
at most |γ| + |η| and the overlap between ηj and δs would be at most |δ| + |η|. In
particular, the segment γεδ would contain ηj−2, but this is not possible given the
choice of j.
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Lemma 11.13. Let α be a rank 1 term in normal form, let l be a portion bound of
α, and let β be a rank 0 expansion of α. If j > l, then every j-th power in β which
does not strictly contain the domain of one of the limit terms will be associated with
one of the limit terms of α.

Proof. If there were a subexpression ηj in β which did not strictly contain the
domain of one of the limit terms, then ηj would be a subexpression of a rank 0
expansion of the initial portion, of the final portion, or of one of the crucial portions
of α. By Lemma 11.11 and Lemma 11.12 the proof is complete.

Lemma 11.14. If α is a rank 1 term in normal form, then for sufficiently large m,
α is the rank 1 structure for φm(α). Moreover, α will also be the rank 1 structure
for the str1-reduction of φm(α). In other words, for large values of m, α can be
reconstructed from its image in Bn(m).

Proof. Let βm be the rank 0 expansion of α formed by replacing each rank 1 limit
term with m copies of its contents. Since each βm has rank 0, it is automatically in
normal form when viewed as a rank 0 term in Tn. Let (γj) denote the the rank 1
limit term in α which is the j-th one from the left and let Γj be the domain of this
limit term in βm. By Lemma 11.4 for each γj , a sufficiently large m will guarantee
that φm(γj) is a rank 0 base word in Bn(m). Since there are only a finite number
of such limit terms, there are only a finite number of lower bounds on m. Thus for
sufficiently large m, each Γj in βm will contain an m-th power of a rank 0 base.

Let S be a subword of βm which is a minimal support for Um where U is a rank
0 base. By Lemma 9.9, S contains Um−2. Let l be the portion bound for α. If
M is also chosen so that M ≥ l + 2, then by Lemma 11.13 all of the subwords of
this form are associated with one of the limit terms (γj). Thus exactly one pair of
parentheses needs to be added to βm for each of the domains Γj .

Let α′ be the term which results when, starting from α, m−1 expansions of type
4 have been applied to each rank 1 limit term (γj). Notice that α′ is equivalent in
Fn to α, and that α′ is a possible intermediate step in the creation of the rank 1
structure for φm(α). Lemma 11.9 shows that all possible intermediate steps lead
to the same rank 1 structure which is in normal form. Since α′ is equivalent to α
and α is the unique normal form in this equivalence class, the rank 1 structure for
φm(α) must be α. This completes the proof of the first assertion. The second one
now follows from Lemma 11.10.

Lemma 11.15. If α and β are rank 1 terms in normal form, and for all m, φm(α)
and φm(β) are equivalent in Bn(m), then α and β are in fact identical.

Proof. By Lemma 11.5, for all sufficiently large m, the words φm(α) and φm(β)
have str-rank 1 in Bn(m). Similarly, by Lemma 11.14, for all sufficiently large
m, α is the rank 1 structure of the str1-reduction of φm(α) and β is the rank 1
structure of the str1-reduction of φm(β). Let m be chosen large enough to make
all four of these facts true. For this m, φm(α) and φm(β) have str-rank 1 and thus
their str1-reductions are in fact their normal forms. Moreover, since φm(α) and
φm(β) are equivalent in Bn(m), they have the same normal form. Finally, since the
rank 1 structure for this common normal form is both α and β, α and β must be
identical.
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12. Recovery in rank i+ 1

We will now begin the inductive step in the argument. Most of the lemmas in
this section parallel fairly closely those in the previous one. To begin we will assume
that we have shown that for every term α of rank i, there is an M such that the
element of Bn(m) represented by φm(α) has rank i for all m ≥M (Lemma 11.5 or
Lemma 12.3), and that for every pair of terms α and β of rank at most i, the words
φm(α) and φm(β) will be equivalent in Bn(m) for all m if and only if α and β are
equivalent in Fn (Lemma 11.7 and Lemma 11.15 or Lemma 12.5 and Lemma 12.16).
We will now show that these same assertions are true in rank i+ 1. The first time
through, i will have a value of 1 and the only results which will be needed either
were established in the previous section or are trivial.

Lemma 12.1. If α is an idempotent in rank i, then φm(α) is an idempotent in
Bn(m). Conversely, if α is a rank i term in normal form which is not an idempotent
in rank i, then for sufficiently large m, φm(α) is not an idempotent in Bn(m).

Proof. The first statement is true because φm : Fn → Bn(m) is a homomorphism,
so consider the converse. By Lemma 12.15 (in the previous rank), for sufficiently
large m, α is the rank i structure for φm(α) and the normal form of αα is the rank
i structure for φm(αα). Since α is not an idempotent in rank i, α and αα are not
equivalent in Fn. One way to see this is that their normal forms have different
i-lengths (Lemma 5.11). This shows that for these m, the normal forms of φm(α)
and of φm(α)2 cannot be identical. In particular, φm(α) is not an idempotent in
Bn(m).

Lemma 12.2. If α = (γ) is a rank i + 1 limit term in normal form, then for
sufficiently large m, φm(α) has str-rank i+ 1 in Bn(m).

Proof. By Corollary 10.3, for sufficiently large m, the str-rank of φm(α) in Bn(m)
is at most i+1. By applying Lemma 12.3 and Lemma 12.4 in the previous rank, we
also know that for sufficiently large m, the str-rank and the cir-rank of S = φm(γ)
are i. The word φm(α) = Sm is an m-th power of a word of cir-rank i. By
Lemma 9.20, there are words P , Q and T such that the stri reduction of Sm will be
PTmQ where the cir-rank of T is i and T is cir-reduced. If T is simple, then the str-
reduction of Sm contains an m-th power of a simple, cir-reduced, cir-rank i word.
If it represents a proper power in Bn(m), since T is cir-reduced, by Lemma 9.8, T
will be a proper power of a simple word representing a simple element of Bn(m).
In this case, the normal form for Sm contains an even higher power of a simple,
cir-reduced, cir-rank i word. In either case, φm(α) has rank at least i+ 1.

Lemma 12.3. If α is a rank j term in normal form where j ≤ i + 1, then for
sufficiently large m, φm(α) represents an element of Bn(m) whose str-rank is pre-
cisely j. More generally, if β is any term whose normal form is α and α is not an
idempotent, then φm(β) will also have cir-rank j.

Proof. If α has rank at most i, then the result has already been shown in previous
ranks, so assume that α has rank i + 1. By Corollary 10.3, for sufficiently large
m, the rank of φm(α) is at most i+ 1. On the other hand, since it is a rank i+ 1
term, it contains a rank i + 1 limit term (γ) in normal form as a subexpression.
By Lemma 12.2, for sufficiently large m, the str-rank of φm((γ)) is exactly i + 1.
Finally, by Lemma 10.4, the str-rank of φm(α) is also at least i + 1. The final
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statement merely reflects the fact that φm induces a homomorphism from Fn to
Bn(m).

Lemma 12.4. If α is a rank i+1 term in normal form which is not an idempotent
in rank i+ 1, then for sufficiently large m the cir-rank of φm(α) in Bn(m) will be
i+ 1. If α is a rank i+ 1 idempotent in normal form then for sufficiently large m,
the cir-rank of φm(α) will be i. Moreover, the same is true for all terms β which
are equivalent to α in Fn.

Proof. The first statement follows from applying Lemma 12.3 to α3. If α is a rank 1
term which is an idempotent then by Lemma 12.3, the str-rank of φm(α) in Bn(m)
will be i + 1 for all sufficiently large m. Since φm is a homomorphism, φm(α) is
also an idempotent and so by Lemma 9.13, the cir-rank of φ(α) will be i for these
values of m.

We can now show that terms of different ranks (bounded above by i) can be
distinguished by their images under the maps φm.

Lemma 12.5. Let α and β be two terms in normal form of rank i and j respec-
tively. If j < i then there exists an m such that φm(α) and φm(β) are not equivalent
in Bn(m).

Proof. By Lemma 12.3, for sufficiently large values of m, φm(α) will represent an
element in Bn(m) of rank i, and φm(β) will represent an element in Bn(m) of rank
j. Since they represent elements of different ranks in Bn(m), they cannot possibly
represent the same element.

Definition 12.6 (Rank i+ 1 Structures). Let W be a stri-reduced word which
represents an element of Bn(m) of str-rank at least i+ 1. By definition, the word
W will contain a minimal support for Um where U is a rank i base. Consider all of
the subwords of W which are the domain of a minimal support of this type. Since
they are all domains of minimal supports of m-th powers of words of the same rank,
none of these subwords can properly contain any of the others. Thus it makes sense
to list them in the order they appear from left to right. Let Υ1, Υ2, etc., denote the
domains as they appear, and let Uj be a rank i base word in which Υj is periodic.
The word Uj is not uniquely defined, but by Lemma 2.9 and Lemma 2.10 it is at
least well-defined up to cyclic conjugate.

Let α be the rank i structure for W . By Lemma 12.8, each Υj domain in W
corresponds to an (m− 3) power of a rank i term in α. Let γj be the rank i term
of which it is a power and let Γj be the maximal γj-periodic subexpression of α

which contains this γm−3
j . The domain Γj is well-defined, but the expression γj is

only defined up to cyclic conjugate. For each Γj place one of the copies of γj inside
a pair of parentheses. The result is a term α′ of rank i + 1. The normal form for
α′ will be called the rank i+ 1 structure for W .

A similar procedure can be attempted for stri-reduced words whose rank is less
than i+1. In that case, no such supports exist and no parentheses will be added to
the rank i structure for W . Moreover, since the rank i structure for W is already
in normal form, the final result will be the rank i structure for W . Thus, if the
str-rank of W is less than i + 1, the rank i + 1 structure for W and the rank i
structure for W will be identical.

Finally, this definition can be extended to arbitrary words W by defining the
rank i+ 1 structure for W to be the rank i+ 1 structure for its stri-reduction.
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Lemma 12.7. If W is any word in any Burnside semigroup Bn(m) with m ≥ 6,
then the rank i+ 1 structure of W is well-defined.

Proof. The only ambiguous point in the definition is where to place the parentheses.
In the language of the earlier sections, all of the possibilities differ by rank i + 1
shifts. Since terms which differ by shifts are equivalent, and since by Theorem 7.2
every equivalence class of terms has a unique normal form, the final result will be
uniquely defined.

Lemma 12.8. If S is an arbitrary word in Bn(m) of cir-rank i, then there exist
terms γ, ε and ε′ such that γ has rank i, ε and ε′ have rank at most i and the rank
i structure for Sj, j ≥ 4, is εγj−3ε′. Moreover, if Sj (j ≥ 4) is contained in a word
W , then the rank i structure for W will also contain γj−3 as a subexpression.

Proof. Since S has cir-rank i, Sj will contain a minimal support for Um where U
is a rank i − 1 base. Moreover, by Lemma 2.9, the length of Um will be at most
|S| + |U |. In particular, there will be at least j − 2 copies of this minimal support
in Sj . Consider only the subword T of Sj from the first copy to the last copy. This
subword T has a list of domains which form a repeating pattern. In particular, the
exact same pattern of domains is repeated j − 3 times. By Lemma 12.9, in the
previous rank, this repetition also occurs in the rank i structure. That is, it has the
same sequence of crucial portions repeated j−3 times. If the last rank i limit term
of this last crucial portion is ignored, the result is j − 3 copies of the same rank i
term γ. This proves the first result. The second statement is immediate once it is
realized that by Lemma 9.9 the subword T survives in the minimal support for Sj

and thus by Lemma 10.4 it survives in the stri-reduction of W .

Lemma 12.9. If W is a stri-reduced word of str-rank at least i+1, then the portions
of the rank i + 1 structure for W are in one-to-one correspondence with the rank
i+ 1 portions of W . Moreover, the former can be constructed, one at a time, from
the latter.

Proof. The first assertion is clear from the definition of the rank i+ 1 structure. It
only remains to show that rank i+ 1 portions of W are enough to reconstruct the
rank i+ 1 structure of W .

By applying this lemma in the previous rank we know that the rank i portions of
the rank i structure of W are in one-to-one correspondence with the rank i portions
of W and that they are enough to reconstruct the rank i structure.

Let S be one particular domain which begins with a minimal support for Um

and ends with an incompatible minimal support for V m. This particular domain
of W is enough to reconstruct a section of the rank i structure. Moreover, by
Lemma 12.8, the rank i structure of this domain contains m − 3 copies of some
rank i term γ at the beginning and m − 3 of some rank i term δ at the end. At
the intermediate stage, rank i + 1 parentheses are introduced around a copy of γ
at the beginning and a copy of δ at the end. This is true regardless of whether
the crucial portions of the rank i structure of S are viewed on their own or as part
of the rank i structure for the entire word. Thus the sole crucial portion of the
intermediate stage in the construction of the rank i+1 structure for S corresponds
to a possible crucial portion of the intermediate stage in the construction of the
rank i + 1 structure for W . Given the local nature of the normal form algorithm
(Lemma 5.1), the rank i+ 1 crucial portion which results will be the same in both
cases. A similar argument holds for the initial and final portions.
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Lemma 12.10. Let α be a rank i+1 term in normal form and let M be a number
such that for all m ≥ M , α is the rank i+ 1 structure for φm(α). If α′ is another
rank i + 1 term in normal form all of whose rank i + 1 portions occur in α, then
for all m ≥M , α′ is the rank i+ 1 structure for φm(α′). In other words, the lower
bound M only depends on the rank i + 1 portions which occur in α and not on α
itself.

Proof. This is an immediate consequence of Lemma 12.9.

Lemma 12.11. Let W be a word in Bn(m) with m ≥ 6. If W ′ is the stri+1-
reduction of W , then the rank i+ 1 structure of W and of W ′ will be identical.

Proof. Without loss of generality assume that both W and W ′ are stri-reduced
and that W ′ is obtained from W by the application of a single reduction of rank
i + 1. In other words, assume that there is a rank i base word U and that W ′ is
obtained from W by replacing a subword which is the minimal support for Um+1

with a minimal support for Um. This operation cannot change the list of domains of
minimal supports of m-th powers of rank i base word since the one which contains
the minimal support of Um certainly remains and none of the others are affected.
More specifically, by Lemma 2.9 and Lemma 2.10 they overlap so little with the
domain of MinSup(Um) as to have their domains unchanged. Next, notice that by
Lemma 10.4 and Lemma 12.8, there is a rank i term γ such that W will contain
γm−3 and by Lemma 12.9 the rank i structure for W ′ can be obtained from the
rank i structure for W by removing one of the copies of γ. Finally, note that if
the parentheses are placed appropriately, the intermediate stage of W and of W ′

will differ by a single contraction of type 4. That they are equivalent in Fn at this
stage guarantees that the final results will be identical. The full strength of the
statement is obtained by repeating this procedure.

Lemma 12.12. Let α be a rank i + 1 final portion in normal form. Specifically,
let α = (γ)ε, where ε has rank at most i and where (γ) is a rank i + 1 limit term
in preferred cyclic normal form. Moreover, let l be 1 more than the i-length of γε,
and let β be a rank i expansion of α. If j is any number greater than l, then every
j-th power of a rank i term which is contained in β will be associated with the rank
i+ 1 limit term (γ). A similar statement is true for rank i + 1 initial portions in
normal form.

Proof. Let Γ denote the maximal γ-periodic initial segment of β = γrε. If there
were a subexpression ηj in γrε which was not contained in Γ, then by Lemma 2.9
or Lemma 2.10, the overlap between ηj and γr would be at most |γ| + |η|. In
particular, the final segment γε would contain ηj−1, but this is not possible given
the choice of j. The proof of the second statement is analogous.

Lemma 12.13. Let α = (γ)ε(δ) be a rank i + 1 crucial portion in normal form,
let l denote the portion length of α, and let β be a rank i expansion of α. If j > l,
then every j-th power of a rank i term which is contained in β will be associated
with one of the two limit terms of α.

Proof. Let Γ denote the domain of (γ) and let ∆ denote the domain of (δ) in
β = γrεδs. If there were a subexpression ηj in γrεδs which was not contained in Γ
or ∆, then by Lemma 2.9 or Lemma 2.10, the overlap between ηj and γr would be
at most |γ| + |η| and the overlap between ηj and δs would be at most |δ| + |η|. In
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particular, the segment γεδ would contain ηj−2, but this is not possible given the
choice of j.

Lemma 12.14. Let α be a rank i+1 term in normal form, let l be a portion bound
of α, and let β be a rank i expansion of α. If j > l, then every j-th power in β which
does not strictly contain the domain of one of the limit terms will be associated with
one of the limit terms of α.

Proof. If there were a subexpression ηj in β which did not strictly contain the
domain of one of the limit terms, then ηj would be a subexpression of a rank
i expansion of the initial portion, of the final portion, or of one of the crucial
portions of α. By Lemma 12.12 and Lemma 12.13 the proof is complete.

Lemma 12.15. If α is a rank i+1 term in normal form, then for sufficiently large
m, α is the rank i+ 1 structure for φm(α). Moreover, α will also be the rank i+ 1
structure for the stri+1-reduction of φm(α). In other words, for large values of m,
α can be reconstructed from its image in Bn(m).

Proof. Let βm be the rank i expansion of α formed by replacing each rank i + 1
limit term with m copies of its contents. By Lemma 10.7, βm is in normal form
for all m ≥ 1. Next, by Lemma 12.3 (in the previous rank) there is a number M
such that for m ≥ M , β2 is the rank i structure for φm(β2). Since β2 and βm

have the same rank i portions for all m ≥ 2, it follows from Lemma 12.10 that for
all m ≥ M , βm is the rank i structure for φm(βm). Moreover, since φm(βm) and
φm(α) are identical words, βm is, in fact, the rank i structure for φm(α).

Let (γj) denote the the rank i + 1 limit term in α which is the j-th one from
the left and let Uj = φm(γj). By Lemma 12.2 and Lemma 10.4, the str-reduction
of φm(α) will contain a minimal support for V m

j where Vj is the cir-reduction of
Uj for each j. Thus each of the images of the rank i + 1 limit terms will produce
a pair of parentheses in the rank i+ 1 structure. Let Γj be the domain of (γj) in
βm. By Lemma 12.8, Γj will contain m− 3 copies of γj .

If the normal form for φm(α) contained a minimal support for any other m-th
powers of rank i base words, then by Lemma 12.8, βm would contain a subexpression
of the form ηm−3 where η was a rank i term, and ηm3 would not strictly contain
any of the Γj . For sufficiently large m, this is impossible by Lemma 12.14. Thus
exactly one pair of parentheses needs to be added to βm for each of the domains
Γj .

Finally, let α′ be the term which results when, starting from α, m−1 expansions
of type 4 have been applied to each rank 1 limit term (γj). Notice that α′ is
equivalent in Fn to α, and that α′ is a possible intermediate step in the creation of
the rank i + 1 structure for φm(α) from βm. Lemma 12.7 shows that all possible
intermediate steps lead to the same rank i+1 structure in normal form. Since α′ is
equivalent to α and α is the unique normal form in this equivalence class, the rank
i+1 structure for φm(α) must be α. This completes the proof of the first assertion.
The second one now follows from Lemma 12.11.

Lemma 12.16. If α and β are rank i + 1 terms in normal form, and for all m,
φm(α) and φm(β) are equivalent in Bn(m), then α and β are in fact identical.

Proof. By Lemma 12.3, for all sufficiently large m, the words φm(α) and φm(β)
have str-rank i + 1 in Bn(m). Similarly, by Lemma 12.15, for all sufficiently large
m, α is the rank i+ 1 structure of the stri+1-reduction of φm(α) and β is the rank
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i + 1 structure of the stri+1-reduction of φm(β). Let m be chosen large enough
to make all four of these facts true. For this m, φm(α) and φm(β) have str-rank
i + 1 and thus their stri+1-reductions are in fact their normal forms. Moreover,
since φm(α) and φm(β) are equivalent in Bn(m), they have the same normal form.
Finally since the rank i+ 1 structure for this common normal form is both α and
β, α and β must be identical.

This completes the induction.

13. Main Theorems about Ωκ
nA

Now that the induction is complete, we can quickly complete the proofs of the
main theorems.

Theorem 13.1. If α and β are the normal forms for distinct elements of Fn, then
there is an integer m such that φm(α) and φm(β) are distinct elements of Bn(m).

Proof. Let i and j be the ranks of α and β, respectively, and assume without loss
of generality that i ≥ j. If i > j then the result follows from Lemma 12.5. If i = j
it follows from Lemma 12.16.

Theorem 13.2. The map ψ from the κ-semigroup Fn to the κ-semigroup Ωκ
nA is

an isomorphism.

Proof. The map ψ is clearly onto, so we only need to show that it is one-to-one.
Suppose, on the contrary, that the map ψ is not injective. Then there would be
two distinct elements of Fn represented by their normal forms α and β which are
identified under the map ψ. By the definition of Ωκ

nA, this would imply that α
and β are identified under all κ-homomorphisms into finite aperiodic semigroups.
On the other hand, by Theorem 13.1, there is an m such that φm(α) and φm(β)
are distinct elements of Bn(m). Since by Theorem 8.11, Bn(m) is finite J -above,
there is a finite quotient of Bn(m) in which the images of α and β remain distinct.
This contradiction shows that ψ is injective and that Fn and Ωκ

nA are in fact
identical.

Corollary 13.3. The n-generated κ-semigroup Ωκ
nA can be defined by a finite list

of pseudoidentities and has a decidable term problem. Consequently the pseudova-
riety A is κ-recursive.

Proof. This follows immediately from Theorem 13.2, the definition of Fn, and The-
orem 7.2.
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