
THE EXCEPTIONAL SYMMETRY
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Abstract. This note gives an elementary proof that the symmetric
groups possess only one exceptional symmetry. I am referring to the
fact that the outer automorphism group of the symmetric group Symn

is trivial unless n = 6 and the outer automorphism group of Sym6 has
a unique nontrivial element.

When we study symmetric groups, we often invoke their natural faithful
representation as permutations of a set without a second thought, but to
what extent is this representation intrinsic to the structure of the group and
to what extend is it one of several possible choices available? Concretely,
suppose I am studying the permutations SymX of a set X = {1, 2, 3, 4, 5, 6}
and you are studying the permutations SymA of a set A = {a, b, c, d, e, f}
and suppose further that we know an explicit isomophism φ between my
group SymX and your group SymA. Does this means that there is a way to
identify my set X with your set A which gives rise to the isomorphism φ?
In other words, must my transpositions correspond to your transpositions?
Must my 3-cycles correspond to your 3-cycles? Or might it be possible that
the transposition (1, 2) in my group is sent by the isomorphism φ to the
element (a, b)(c, d)(e, f) in your group? The goal of this note is to give an
elementary proof of the fact that yes there is an isomorphism φ between
these two specific groups sending (1, 2) to (a, b)(c, d)(e, f), but that this is
essentially the only unexpected isomorphism among all of the symmetric
groups. In the language of outer automorphism groups (which we recall
below) we give a proof of the following well-known and remarkable fact.

Theorem. Out(Symn) is trivial for n 6= 6 and Z/2Z when n = 6.

Recall that the set of all isomorphisms from a group G to itself form a
group Aut(G) under composition called its automorphism group. More-
over, in any group we can create an automorphism by conjugating by a
fixed element of G. Such automorphisms are called inner automorphisms
and they form a subgroup Inn(G) which is normal in Aut(G). These
are what one might call the “expected” automorphisms. Note that in the
case of the symmetric groups, conjugating by a permutation corresponds
to relabeling the elements of the set on which it acts. The quotient group
Out(G) := Aut(G)/Inn(G) is the group of outer automorphisms. When
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the outer automorphism group is trivial it means that there are no unex-
pected automorphisms. When it is non-trivial, each non-trivial element rep-
resents an equivalence class of unexpected automorphisms which differ from
each other by composition with an inner automorphism. It is in this sense
that the unique non-trivial element in Out(Sym6) represents the only un-
expected symmetry that the symmetric groups possess. Our proof naturally
splits into two parts: restrictions and a construction. Following the proof we
make a few remarks about the structure of these exceptional automorphisms
and we conclude with pointers to the literature that the interested reader
can pursue.

1. Restrictions

The restrictions follow from two easy lemmas about involutions in sym-
metric groups. Recall that the conjugacy classes of elements in the sym-
metric group are determined by their cycle type and that the order of a
permutation is the least common multiple of the lengths of the disjoint cy-
cles used to represent it. In particular, if we let Cj denote the elements of
Symn with cycle structure 1i2j (with, of course, i+ 2j = n), then these are
precisely the conjugacy classes of order 2 elements in Symn. The set C1 is
the conjugacy class of transpositions. Because automorphisms must preserve
order and conjugacy, they end up permuting the conjugacy classes of each
fixed order. Thus the image of C1 under an automorphism of Symn must be
one of the classes Cj . Our first lemma is already an enormous restriction.

Lemma 1. Any automorphism that sends C1 to C1 is inner.

Proof. When x and y are noncommuting elements in C1 and z = xyx = yxy
we call {x, y, z} a dependent set of transpositions. Consider the maximal
independent noncommuting subsets of C1. In other words, consider the
maximal subsets S ⊂ C1 such that for all distinct elements x, y ∈ S: (1)
x and y do not commute, and (2) xyx is not in S. The key observation is
that the set Si = {(i, j)|j 6= i} has these properties for each i and there
are no others. To see this note that noncommuting transpositions must
share exactly one number, say x = (i, j) and y = (i, k), and that the only
transpositions that do not commute with either x or y are those of the form
(i, l) with l 6= j, k or the exceptional case (j, k)—which is ruled out since
(j, k) = xyx. Since the subsets Si are the only subsets satisfying these
algebraic conditions, an automorphism φ sending C1 to C1 must permute
the subsets Si among themselves, say φ(Si) = Sπ(i). Conjugating φ by
the permutation π produces a conjugate automorphism ψ that fixes each
Si setwise. In fact, ψ must fix each Si pointwise since (i, j) is the unique
element in the intersection Si ∩Sj . Finally, since it fixes a generating set, ψ
is the identity and φ is inner. �

One consequence of Lemma 1 is that any two automorphisms φ and ψ
that send C1 to Cj differ by an inner automorphism since φ−1 ◦ψ sends C1 to



THE EXCEPTIONAL SYMMETRY 3

Figure 1. The example on the left shows that there are
elements in Cj whose product is two j-cycles. The example
on the right shows that when n > 2j, there are elements in
Cj whose product is a single (2j + 1)-cycle. Both examples
use j = 5 with 5 thick dark edges representing one element
of C5 and 5 thin light edges representing the other element.

C1. The converse also holds: if φ and ψ differ by an inner automorphism then
both send C1 to the same conjugacy class Cj since conjugation preserves cycle
type. This means that the size of Out(Symn) is completely determined by
the list of places that C1 can be sent. The next lemma shows that this list
is very short.

Lemma 2. If an automorphism sends C1 to Cj with j > 1 then n = 2j = 6.

Proof. The key observation is that for all x, y ∈ C1 the order of xy is either
1, 2, or 3 so that an automorphism sending C1 to Cj is only possible when Cj
also has this property. It is easy to find x, y ∈ Cj whose product has order
j (so j is at most 3), and when n > 2j it is also easy to find two elements
x, y ∈ Cj whose product has order 2j + 1 > 3 (thus n must equal 2j).
Examples of both types of products are shown in Figure 1. Finally, when
j = 2 and n = 4, there are elements in C1 whose product has order 3, but
the three elements in C2 pairwise commute. Therefore the only possibility
is j = 3 and n = 6. �

As a consequence of Lemma 2 we know that Out(Symn) is trivial for
n 6= 6 and that Out(Sym6) has at most two elements. The only remaining
question is whether or not an exceptional automorphism of Sym6 sending
C1 to C3 actually exists.

2. A Construction

An exceptional automorphism of Sym6 that sends C1 to C3 can be con-
structed using labeled icosahedra. A regular icosahedron has twelve vertices
that come in 6 antipodal pairs. Consider all 6! = 720 ways to label these
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Figure 2. The twelve antipodal labelings of an icosahedron
up to isometry grouped into six dual pairs. The six dual pairs
are labeled a through f .

antipodal pairs by the numbers 1 through 6. If we identify labelings that
differ by a rigid motion than the number of labelings drops to 12. See Fig-
ure 2. This is true whether we include reflection symmetries or we restrict
our attention to rigid motions that are possible in R3. Icosahedra have 120
symmetries but because we have restricted our attention to antipodal label-
ings, the antipodal map acts trivially on labelings. Thus only 60 distinct
labeled icosahedra arise under rigid motions. Moreover, the antipodal map,
being orientation-reversing, can be composed with any orientation-reversing
isometry to produce an orientation-preserving one that performs the same
modification.

Next, the 12 antipodal labelings of an icosahedron up to isometry can
be grouped into 6 pairs. To see this note that a single labeled icosahedron
contains 20 labeled triangles but since antipodal triangles receive the same
labels, exactly 10 out of the possible

(
6
3

)
= 20 labeled triangles actually oc-

cur. It turns out that the 10 unused labeled triangles glue together to form
one of the other labeled icosahedra. An alternative way to see that such a
pairing exists is to consider the complete graph on the 12 vertices of an icosa-
hedron with the edges color-coded based on combinatorial distance in the
1-skeleton. The edges representing vertices distance 1 apart are the original
1-skeleton of the icosahedron. The edges representing vertices distance 3
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apart are a perfect matching, i.e. 6 disjoint edges connecting antipodal ver-
tices. The remaining edges, representing vertices distance 2 apart form the
1-skeleton of what one might call the dual icosahedron. This is analogous to
the way that the diagonals of a regular pentagon form another (nonconvex)
regular pentagon whose side length has been multiplied by the golden ratio.
The diagonals of an icosahedron that connect non-adjacent non-antipodal
vertices are the 1-skeleton of another (nonconvex) icosahedron.

The 12 antipodally labeled icosahedra are shown in Figure 2 as 6 pairs of
labeled dual icosahedra that we identify by the letters a through f . Note
that every possible labeled triangle occurs in one of the two icosahedra in
the pair. We have colored the icosahedron yellow when it contains a triangle
labeled 456 and blue when it contains a triangle labeled 123.

The symmetry group of the set X = {1, 2, 3, 4, 5, 6} acts on this set of
labeled icosahedra by permuting the vertex labels. And since this action
of SymX respects rigid motions and the dual pairing, every permutation in
SymX induces a permutation in SymA where A = {a, b, c, d, e, f}. In par-
ticular we get a homomorphism φ from SymX to SymA. As an illustration,
consider the transposition (1, 2). It is easy to see from Figure 2 that switch-
ing 1 and 2 in the labeled icosahedra swaps the dual pair a and the dual
pair b, it swaps the dual pair c and the dual pair d and it swaps the dual
pair e and the dual pair f . In other words, the image of the transposition
(1, 2) under the map φ is the permutation (a, b)(c, d)(e, f) of the labeled
dual pairs.

To see that this homomorphism φ from SymX to SymA is an isomor-
phism, we note that Sym6 has very few normal subgroups. In fact, the only
non-trivial normal subgroup is Alt6 and the resulting quotient has size
2. Since φ sends the elements (1, 2), (1, 3) and (2, 3) to the permutations
(a, b)(c, d)(e, f), (a, e)(b, c)(d, f) and (a, d)(b, f)(c, e) respectively, the image
has size bigger than 2, the kernel must be trivial and, since both groups
have the same size, the map must be onto and therefore an isomorphism.
In short, this natural construction produces an isomorphism φ of Sym6 that
sends C1 in SymX to C3 in SymA. Moreover, its inverse, which is also an
isomorphism of Sym6 must send C1 in SymA to a conjugacy class other than
C1 in SymX . By Lemma 2 its image can only be C3. In other words, φ sends
the conjugacy classes C1 and C3 in SymX to the conjugacy classes C3 and C1
in SymA, respectively.

Finally, to turn this isomorphism into an automorphism we simply iden-
tify the letters a through f with the numbers 1 through 6 sending SymA
back to SymX in a more traditional fashion. Note that the various ways
of identifying A and X differ from each other by an inner automorphism
of SymX so as we run through the 6! possibilities this procedure actually
produces all of the outer automorphisms representing the unique nontrivial
element of Out(Sym6).
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Figure 3. The edge and factor versions of the doily. The
labels of the “points” are inscribed in the small discs and the
line segments and circular arcs represent the “lines”.

3. Structure

The exceptional symmetry of Sym6 has a lot of interesting structure.
Following Cameron and van Lint (among others) we describe the various
aspects of Sym6 using terminology from graph theory [CvL91, Chapter 6].
If we use X (or A) to label the 6 vertices of a complete graph K6, then
the transpositions in C1 are its edges. An involution in C3 corresponds to
three disjoint edges which graph theorists would call a perfect matching or
a 1-factor or simply a factor. The 6 sets Si of 5 edges with a common
endpoint that we used in the proof of Lemma 1 as an algebraic replacement
for points are called stars and the 6 ways to partition the 15 edges of K6 into
5 disjoint factors are called factorizations. An exceptional automorphism of
Sym6 swaps the 15 edges and the 15 factors and it swaps the 6 stars and
the 6 factorizations. Composing this automorphism with itself produces an
inner automorphism, but the result is not necessarily the identity map.

There are, however, some exceptional automorphisms whose square is the
identity (36 of them to be precise) and we demonstrate their existence with
the help of an auxillary graph. The edges and factors can be used to define
an example of a partial geometry known as a generalized quadrangle and this
particular example is called GQ(2, 2). It uses the edges as points and the
factors as lines (or the other way around). Both versions are shown in Fig-
ure 3 in a representation that Stan Payne dubbed “the doily”. The incidence
graph of this geometry is a bipartite graph with 15 white vertices represent-
ing edges and 15 black vertices representing factors known as Tutte’s 8-cage.
A white vertex is connected to a black vertex if and only if the corresponding
edge belongs to the corresponding factor. See Figure 4. The automorphism
group of the Tutte graph is precisely the group Aut(Sym6) of size 1440. In
particular, the outer automorphisms of Sym6 correspond to symmetries of
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Figure 4. The incidence graph of the doily is known as
Tutte’s 8-cage. A reflection across the vertical axis of sym-
metry illustrates the duality between edges and factors.

this graph that switch the white and black vertices. One such symmetry is
the reflection across the vertical axis of Figure 4 and this clearly corresponds
to an exceptional automorphism of Sym6 whose square is the identity. An
exceptional automorphism that is equal to its own inverse reminds one of a
polarity in projective geometry that establishes a bijection between points
and lines and there are ways to make this resemblance precise.

4. Connections

There is much more that can be said about the exceptional symmetry of
Sym6, but in this final section I merely make a few remarks about the con-
nections this symmetry has with other exceptional objects coupled with a
few pointers to some standard references in the literature. For those wishing
to read more about the exception symmetry of Sym6 at an accessible level,
I highly recommend Cameron and van Lint’s book “Designs, Graphs, Codes
and their Links” [CvL91], especially Chapter 6, which is called “A property
of the number six”. In that chapter, the authors construct the exceptional
symmetry of Sym6 and use these automorphisms to construct the unique
projective plane of order 4, the 50 vertex graph known as the Hoffman-
Singleton graph its with many remarkable properties, and the S(5, 6, 12)
Steiner system whose automorphism group is the Mathieu group M12, one
of the smallest and simplest of the sporadic finite simple groups. Another
good source for some of the same material is the book on “Algebraic Graph
Theory” by Godsil and Royle [GR01]. For explicit details of the automor-
phisms themselves and for many references to the early literature (going
back to Sylvester in 1844), I recommend two articles by H.S.M. Coxeter
that are collected as Chapters 6 and 7 in his book “The beauty of geometry:
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twelve essays” [Cox99]. Online there is a post written by John Baez in 1992
called “Some thoughts on the number 6” [Bae] which is similar in spirit to
the material presented here and the labeled icosahedra construction is one of
several constructions given in the recent article by Howard, Millson, Snow-
den and Vakil [HMSV08]. Finally, for the truly adventurous, I recommend
Conway and Sloane’s book on “Sphere packings lattices and groups” (partic-
ular Chapter 10 called “Three lectures on exceptional groups”) [CS99] and
the entry for Alt6 in the “Atlas of finite groups” [CCN+85]. Both contain
a wealth of material that place the outer automorphism of Sym6 in a much,
much larger context.
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