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Abstract. A Coxeter group is rigid if it cannot be defined by two
nonisomorphic diagrams. There have been a number of recent results
showing that various classes of Coxeter groups are rigid, and a particu-
larly interesting example of a nonrigid Coxeter group has been given in
[17]. We show that this example belongs to a general operation of “di-
agram twisting”. We show that the Coxeter groups defined by twisted
diagrams are isomorphic, and, moreover, that the Artin groups they de-
fine are also isomorphic, thus answering a question posed by Charney.
Finally, we show a number of Coxeter groups are reflection rigid once
twisting is taken into account.
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A Coxeter group W is rigid if it cannot be defined by two nonisomorphic
Coxeter diagrams and strongly rigid if any two Coxeter systems for the
group are conjugate. There have been a number of recent results showing
that various classes of Coxeter groups are strongly rigid or rigid ([9], [16],
[19]), and a particularly interesting example of a nonrigid Coxeter group has
been given in [17]. We show that Mühlherr’s example belongs to a general
operation of “diagram twisting”. We show that the Coxeter groups defined
by twisted diagrams are isomorphic, and, moreover, that the Artin groups
they define are also isomorphic, thus answering a question posed by Charney
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in [2]. Finally, we show a number of Coxeter groups are reflection rigid once
twisting is taken into account.

Section 1 contains the basic definitions and Section 2 reviews the recent
results on rigidity. In Section 3 we discuss the weaker notion of reflection
rigidity. Then in Section 4 we present our main construction. Section 5
shows how these modifications are the only ones possible for tree diagrams
and Section 6 gives an example where deciding what twisting is possible can
be difficult. Section 7 shows that reflection rigidity results always extend
from Coxeter groups to Artin groups. The final section, Section 8, presents
two natural conjectures about the extent to which general Coxeter groups
and Artin groups are rigid.

1. Basic definitions

Coxeter groups and Artin groups are defined by presentations which can
be concisely summarized in diagram form. The question of rigidity for these
groups in essence asks when these defining diagrams can be recovered from
the groups themselves. In this section we review the relations between the
Coxeter and Artin groups, their generating sets, and the diagrams used to
define them.

Definition 1.1 (Diagrams). A diagram is an undirected graph Γ without
loops or multiple edges with a map Edges(Γ) → {2, 3, 4, . . . } which assigns
an integer greater than 1 to each of its edges. Since such diagrams are
used to define Artin groups and Coxeter groups they are often called Artin

diagrams or Coxeter diagrams.

Remark 1.2 (Other conventions). The reader should note that the Dynkin
diagrams traditionally drawn to summarize the presentations of the finite
Coxeter groups use a different convention about which edges to include in
the diagram. For a finite Coxeter group every pair of generators satisfies a
nontrivial relation and the diagram defined above would always be a com-
plete graph. To simplify the picture, Dynkin diagrams do not draw the edges
labeled 2, i.e. the ones which indicate a commuting pairs of generators. We
will not use this convention.

Definition 1.3 (Artin groups). Let (a, b)j denote the alternating string of
a’s and b’s of length j, starting with a. Thus, (a, b)2 = ab, (a, b)3 = aba,
and (b, a)3 = bab. Let Γ be a diagram and let S be its vertex set. The
Artin group defined by Γ is the group AΓ generated by S subject to the
relations: (s, t)j = (t, s)j whenever s and t are vertices in Γ connected by an
edge labeled j. More generally, a group A with generating set S is called an
Artin group with Artin generators S if there exists a diagram Γ with vertex
set S such that A = AΓ. Example 1.5 shows that not every generating set of
an Artin group is a set of Artin generators. If S is a set of Artin generators
for A then the pair (A,S) is called an Artin system.
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Remark 1.4 (Recovering diagrams from Artin systems). The process of defin-
ing an Artin system from a diagram can be reversed. Let A be an arbitrary
group generated by a set S. A diagram Γ = ΓS can be defined from the pair
(A,S) as follows. Let the vertices of Γ correspond to the elements of S, and
draw an edge between distinct s and t in S if and only if there is an integer
j ≥ 1 such that (s, t)j = (t, s)j in A. The set of j for which this relation
holds is the set of multiples of the smallest such j; we label the edge by this
smallest j. There is clearly a natural map from the Artin group defined by
this diagram onto the original group A. This map is an isomorphism if and
only if the original group A was an Artin group with Artin generators S,
and in this case the construction recovers the diagram for the group. As a
result, the Artin system (A,S) and the diagram Γ contain essentially the
same information about the group A. In fact, the procedure recovers the
diagram even after adding the relations s2 = 1 for s ∈ S to turn A into a
Coxeter group. See Remark 1.7 below.

Example 1.5 (Non-Artin generating sets). Let Γ be the trivial graph with
a single vertex and no edges. The Artin group it defines is isomorphic to
the integers. The set S = {2, 3} is also a set of generators for the integers.
The diagram that S determines is a graph with two vertices connected by
an edge labeled 2 (since 2 and 3 commute in

�
), and the Artin group defined

by this diagram is isomorphic to
�
⊕

�
. Since

�
⊕

�
maps onto

�
but is not

isomorphic to it, the set S is a set of generators for
�

which is not a set of
Artin generators.

The situation for Coxeter groups is very similar.

Definition 1.6 (Coxeter groups). Let Γ be a diagram and let S be its ver-
tex set. The Coxeter group defined by Γ is the group WΓ obtained as a
quotient of AΓ by adding the relations s2 = 1 for each s ∈ S. Notice that
in the Coxeter group WΓ, the relation (s, t)j = (t, s)j can be rewritten as
(st)j = 1, but in the Artin group AΓ, it cannot.

The other definitions are similar. A group W is called a Coxeter group

with Coxeter generators S if there exists a diagram Γ with vertex set S such
that W = WΓ. As is the case for Artin groups, not every generating set is
a set of Coxeter generators. If S is a set of Coxeter generators for W then
the pair (W,S) is called an Coxeter system.

Remark 1.7 (Recovering diagrams from Coxeter systems). The procedure
for recovering diagrams from Coxeter systems is nearly identical to that de-
scribed in Remark 1.4. Let W be an arbitrary group generated by a set of
involutions S. A diagram Γ = ΓS can be defined from the pair (W,S) as
follows. Let the vertices of Γ correspond to the elements of S, and draw an
edge between distinct s and t in S if and only if the element st is of finite
order in W . The label of such an edge is the order of the element st. There
is clearly a natural map from the Coxeter group defined by this diagram
onto the original group W . This map is an isomorphism if and only if the
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original group W was a Coxeter group with Coxeter generators S, and in
this case the construction recovers the diagram for the group. The reason
for this is that the order of an element st in a Coxeter group WΓ is indeed
the label of the corresponding edge of Γ. More generally, the Coxeter group
defined by any full subdiagram of Γ is a subgroup of WΓ. See, e.g., [15,
Theorem 8.2].

We will need the following basic facts about a Coxeter system (W,S).
For each subset J ⊆ S, let WJ denote the subgroup of W generated by the
elements in J . If WJ is finite, then J is called a spherical subset of S.

Theorem 1.8. Let H be a finite subgroup of W . Then there is a spherical

subset J ⊆ S such that a conjugate of H is contained in WJ .

Proof. See, for instance, section 4 of [3].

Theorem 1.9. The conjugacy classes of the maximal finite subgroups of W
are in one-to-one correspondence with the maximal spherical subsets of S.

Proof. This theorem is probably well-known to the experts, since its proof is
implicit in the literature (see for instance [7], [11] and [20]). The conceptually
most insightful approach might be via the following observation.

Lemma 1.10. Suppose a group W acts properly discontinuously on a space

Σ. Let A and B be maximal finite subgroups of W . If the images in Σ/W
of the fixed point sets ΣA and ΣB are not disjoint then they are equal and A
is conjugate to B. Thus, if all finite subgroups have non-empty fixed point

sets then maximal finite subgroups are classified by the images of their fixed

sets in Σ/W .

Indeed, if there is some point x ∈ ΣA with a translate gx ∈ ΣB, then,
since A and B are maximal finite, A = Gx and B = Ggx so B = gAg−1 and
ΣB = gΣA.

This lemma can be applied to any one of several complexes that a Coxeter
group W acts on. For instance, the Vinberg-Davis complex Σ = Σ(W,S)
(defined in [10]) is a building-like complex built out of chambers, each of
which is a copy of the simplicial complex KS obtained by taking the geo-
metric realisation of the poset of spherical subsets of S. This KS is also the
quotient Σ/W . If T ⊂ S is a spherical subset then the image of the fixed
point set of WT is the subcomplex determined by spherical subsets contain-
ing T . In particular, if we have a maximal finite subgroup, it is a conjugate
of WJ for some maximal spherical J ⊂ S, and the image of its fixed set in
KS is the vertex determined by J .

2. Prior results on rigidity

A Coxeter group W is rigid if any two Coxeter generating sets S and S ′

determine the same diagram, that is, the diagrams ΓS and ΓS′ are isomor-
phic. Equivalently, for any two Coxeter generating sets S and S ′, there is an
automorphism ρ : W → W which carries S to S ′. The Coxeter group W is
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strongly rigid if any two Coxeter generating sets for W are conjugate, that
is, ρ can always be chosen inner. This implies that, up to inner automor-
phisms, any automorphism of W must come from an automorphism of the
diagram Γ. Hence the natural map Aut(Γ) → Aut(W ) induces a surjection
Aut(Γ) → Out(W ). Conversely, if W is rigid and the latter map is onto
then W is strongly rigid.

An Artin group A is rigid if any two Artin generating sets for A determine
the same diagram, and there is a similar reformulation in terms of automor-
phisms. The Artin group A is strongly rigid if for any two Artin generating
sets S and S ′ the set S′ is conjugate to either S or S−1 := {s−1|s ∈ S}.

The main open question is the following:

Problem 2.1. Which Coxeter groups and which Artin groups are rigid?

Which are strongly rigid?

There have been three recent positive results on the rigidity for Coxeter
groups.

Theorem 2.2 (Radcliffe [19]). Right-angled Coxeter groups are rigid.

An Artin group or Coxeter group is called right-angled when all of the
edges in the Coxeter diagram are labeled 2. Radcliffe has also extended his
results to include Coxeter diagrams in which each edge label is either 2 or
a multiple of 4. On the other hand, right-angled Coxeter groups in general
are not strongly rigid. See Theorem 4.10.

Theorem 2.3 (Kaul [16]). Let S and S ′ be Coxeter generating sets for a

Coxeter group W . If (W,S) is of type Kn, then (W,S ′) is also of type

Kn and the multiset of edge labels in the corresponding diagrams will be

preserved. In particular, if (W,S) is of type Kn and all but one of the edge

labels in ΓS are identical, then W is rigid.

A Coxeter system (W,S) is of type Kn if |S| = n, the diagram ΓS is a
complete graph on n vertices, and all of its edge labels are odd. A multiset
is a collection in which the order of the entries does not matter, but multi-
plicities do. Thus the multisets {1, 1, 2} and {1, 2, 2} are different. For an
extension of this result see Lemma 5.3.

Theorem 2.4 (Charney and Davis [9]). If a Coxeter group is capable of

acting effectively, properly, and cocompactly on some contractible manifold,

then it is strongly rigid.

The dihedral group of order 12, on the other hand, shows that not all
Coxeter groups are rigid.

Example 2.5 (D6). The group D6 can be presented as a Coxeter group in
two distinct ways as shown in Figure 1. The group D6 can also be viewed
as the group of symmetries of a regular hexagon. The generators on the left
in this view correspond to a pair of reflections. The generators on the right
include the element which acts on the hexagon by a half-rotation. A similar
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6 3

2 2

Figure 1. Two distinct Coxeter diagrams for D6

ambiguity in presentation exists for the dihedral groups Dk whenever k is
twice an odd number.

Remark 2.6. Even though the Coxeter groups defined by the diagrams
in Figure 1 are isomorphic, the Artin groups defined by these diagrams
are distinct since they have distinct geometric dimensions. The geometric
dimension of a group is the minimal dimension of an Eilenberg-MacLane
space for the group. The Artin group defined by the diagram on the left
has a 2-dimensional Eilenberg-MacLane space and it contains

�
⊕

�
(see,

for instance, [4]). Thus it has geometric dimension 2 (see [8]). Similarly,
the Artin group defined by the diagram on the right has a 3-dimensional
Eilenberg-MacLane space and it contains

�
⊕

�
⊕

�
([5]). Thus it has

geometric dimension 3.

3. Reflection rigidity

As a result of Example 2.5, the rigidity question for Coxeter groups is
sometimes modified to require that the members of the new generating set
are reflections.

Definition 3.1 (Reflections). In a Coxeter system (W,S) the conjugates of
elements of S will be called reflections and the set of all reflections will be
denoted RS . Notice that being a reflection depends on the set S and not
just on the group W . By analogy the conjugates of the elements S in an
Artin system (A,S) will be called “reflections”, even though these elements
are not even involutions. The set of all reflections in (A,S) will again be
denoted RS .

The reflection terminology is derived from the geometric representation of
W . More specifically, every Coxeter system (W,S) has a faithful represen-
tation as a set of linear transformations of a vector space V over � , having
a basis in one-to-one correspondence with S. The action of W on V will
preserve a nondegenerate symmetric bilinear form, and the elements of S
will act as reflections. A reflection in this context is an element of W which
fixes a hyperplane of V and sends some nonzero vector to its negative. An
element of W will act as a reflection in this sense if and only if it lies in RS .
See [15, Section 5.3] for details. The terminology for Artin groups is merely
by analogy.

Definition 3.2 (Reflection rigidity). Let (W,S) be a Coxeter system. If ev-
ery Coxeter generating set S ′ contained in RS determines the same diagram
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as (W,S), then the system (W,S) is called reflection rigid. Equivalently,
reflection rigidity means that the Coxeter group W and the set of reflections
RS uniquely determines the Coxeter diagram. The equivalence of these two
definitions will be shown in Lemma 3.7. As above, there is also the notion of
strong reflection rigidity. We call a Coxeter system (W,S) strongly reflection

rigid if for each set of Coxeter generators S ′ ⊆ RS there is an element of W
which conjugates S ′ to S. Analogous definitions apply to Artin systems.

This leads to the modified version of Problem 2.1.

Problem 3.3. Which Coxeter systems and which Artin systems are reflec-

tion rigid? Which are strongly reflection rigid?

Remark 3.4 (Types of rigidity). The relationships between the above con-
cepts are summarized in Figure 2. All four types of rigidity are distinct. In
Example 2.5, we noted that the dihedral group D6 is not rigid. With its
standard 2-generator Coxeter presentation it is, however, strongly reflection
rigid. The dihedral group D5, on the other hand, is rigid but not strongly
reflection rigid.

W is strongly rigid =⇒ (W,S) is strongly reflection rigid
⇓ ⇓

W is rigid =⇒ (W,S) is reflection rigid

Figure 2. Types of rigidity

The remainder of the section will be devoted to preliminary observations
on reflection rigidity. We begin by examining the conjugacy classes contained
in RS.

Definition 3.5 (Γodd). Let Γ be a diagram. The odd part of Γ is the subdi-
agram Γodd with the same vertex set but only containing those edges whose
label is odd. This subdiagram is intimately related to the conjugacy classes
of reflections. See Figure 3.

7

6

25
4

3 3

5
7

Figure 3. A diagram Γ and its odd part Γodd.

Lemma 3.6. Let Γ be diagram and let (W,S) be the corresponding Coxeter

system. The conjugacy classes in RS ⊂ W are in one-to-one correspon-

dence with the connected components of Γodd. Similarly, if (A,S) is the

corresponding Artin system, then the conjugacy classes in RS ⊂ A are also

in one-to-one correspondence with the connected components of Γodd.
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Proof. In a dihedral group Dm, m odd, the two standard generators are
conjugate to each other. Thus, any pair of vertices in Γ connected by a
path consisting of edges with odd labels will correspond to elements of W
which are in the same conjugacy class. On the other hand, consider the
presentation with generators S and relations of the form s2 = 1 for each
s ∈ S, s = t for all pairs s and t in the same connected component of Γodd,
and st = ts for all other pairs s and t in S. Note that all of these relations
must hold in the abelianization of W and that the original relations defining
W are derivable from these relations. Thus, this is a presentation of the
abelianization of W . Since elements from distinct connected components
of Γodd are sent to distinct elements in the abelianization, they are not
conjugate to each other in W . This completes the proof in the Coxeter case.
The proof in the Artin case is identical except that the relations s2 = 1 are
not used.

The next result uses Lemma 3.6 to show that the two definitions of re-
flection rigidity are equivalent.

Lemma 3.7. If S and S ′ are two Coxeter generating sets for a Coxeter

group W and S ′ ⊂ RS, then RS = R′

S. Similarly, if S and S ′ are two Artin

generating sets for an Artin group A and S ′ ⊂ RS, then RS = R′

S.

Proof. By Lemma 3.6 there is a one-to-one correspondence between the con-
jugacy classes in RS and the the connected components of Γodd. In partic-
ular, if S ′ generates the Coxeter group W (or the Artin group A), then the
image of S ′ must generate the abelianization of W (or A). In particular, S ′

must contain at least one reflection in each of the conjugacy classes which
correspond to the connected components of Γodd. But if S′ contains one
such reflection, then RS′ will contain the entire conjugacy class. This shows
that RS′ contains each of the conjugacy classes whose union is RS , and this
completes the proof.

Theorem 3.8. Let W be a Coxeter group and let S and S ′ be two Coxeter

generating sets for W . If RS = RS′, then |S| = |S ′|.

Proof. This is an immediate consequence of a result of Dyer [13]. In [13]
he proves that given a Coxeter system (W,S) and a subset S ′ of RS , the
subgroup generated by S ′ is a Coxeter group with a canonical generating
set whose size is at most that of S ′. Deodhar [12] also proved that such a
subgroup is a Coxeter group, but the size estimate is harder to derive from
his results. In the special case where S ′ generates all of W , Dyer’s canonical
generating set is simply S itself. Thus, |S| ≤ |S ′|. Since S ′ is also a Coxeter
generating set and RS = RS′ , the roles of S and S ′ can be reversed, thereby
proving the opposite inequality.

Theorem 3.9. If Γ is a diagram in which every edge label is even, then its

Coxeter system is reflection rigid.
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Proof. Let W be a Coxeter group, let S and S ′ be Coxeter generating sets
for W with RS = RS′ , and let Γ and Γ′ be the the corresponding dia-
grams. Suppose in addition that every label in Γ is even. By Lemma 3.6
the elements in S (and the connected components of Γ′

odd) are in one-to-one
correspondence with the conjugacy classes in RS . On the other hand, by
Theorem 3.8 |S| = |S ′|. Thus each connected component of Γ′

odd must con-
sist of a single vertex, every edge in Γ′ must be even, and the vertex set of
Γ′ can be recovered from W and RS alone.

Next, let s and t be vertices in S, let C and D be the conjugacy classes
of W containing s and t, and let s′ and t′ be the unique vertices in S ′ which
belong to C and D, respectively. If there are elements c ∈ C and d ∈ D
which generate a finite dihedral group H, then by Theorem 1.8, H can be
conjugated into one of the finite subgroups generated by a subset of S. Since
conjugating c and d will leave these generators inside C and D, H can be
conjugated inside the subgroup generated by s and t. Similarly, H can be
conjugated inside the subgroup generated by s′ and t′. This shows that s
and t are connected by an edge if and only if s′ and t′ are connected by an
edge and that when both edges exist the labels must be the same. Since
the entire diagram Γ′ can be recovered from W and RS alone, the system
(W,S) is reflection rigid.

Theorem 3.10. If Γ is the diagram of a finite Coxeter group, then Γ is

reflection rigid.

Proof. Let (W,S) Coxeter system and let RS denote the set of reflections
in W . Then the decomposition of W into irreducible (Coxeter)-factors can
be recovered from the set RS as follows: take the maximal partition of
RS such that any two reflections commute whenever they are contained in
different elements of the partition; the groups generated by the elements
of the partition are precisely the desired irreducible factors. It follows that
if S′ is another Coxeter generating set for W and RS = RS′ then there
are isomorphisms between the irreducible factors. Hence the problem of
reflection-rigidity is reduced to the irreducible case. So suppose (W,S) and
(W,S′) are both irreducible Coxeter systems for W , |W | is finite, and RS =
RS′ . We know |S| = |S ′| by Theorem 3.8, and the claim now follows from
the classification of the finite Coxeter groups.

4. Diagram twisting

This section contains our main result, Theorem 4.5. Before stating and
proving the theorem, we begin by illustrating its application.

Example 4.1. In [17] it is shown that the Coxeter groups defined by the
diagrams in Figure 4 are isomorphic even though the diagrams themselves
are not. Another example of the same phenomenon is given in Figure 5.
Again, the Coxeter groups are isomorphic but the Coxeter diagrams are
not. In each case, the top of the diagram has been “twisted” while the lower
portion remains fixed.
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3 3

3

3 3

3

Figure 4. Diagrams for isomorphic Coxeter groups

77 6

5 5

3443

6

Figure 5. Additional diagrams for isomorphic Coxeter
groups

In order to define twisting we will need a few more standard definitions.

Definition 4.2 (ΓU and WU ). Let Γ be a diagram with vertex set S. If U
is a subset of S, let ΓU be the full subdiagram on U , that is the diagram with
vertex set U and all edges with both ends in U . This subdiagram defines
a Coxeter group (actually a subgroup of the original Coxeter group) which
we will denote by WU .

Definition 4.3 (Longest element). Let ab denote the conjugation b−1ab.
Suppose (W,S) is a finite Coxeter system (that is, W is finite). Then there
is a unique element ∆W ∈ W , called its longest element, whose word length
with respect to S is maximal. When an element of S ⊆ W is conjugated by
∆W , the result is always another element of S. Moreover, the map s 7→ s∆W

is a permutation of S whose square is the identity (see, e.g., [15]). If (A,S)
is the Artin system corresponding to (W,S), then A is called an Artin group

of finite type and it also contains an element ∆A with properties similar to
those of the element ∆W . In particular, conjugation by ∆A gives the same
involutive permutation of S as the one described above ([14]).

Definition 4.4 (Twisting). Let Γ be a diagram with vertex set S and let
U and V be disjoint subsets of S such that

1. WV is a finite Coxeter group, and
2. every vertex in S \ (U ∪ V ) which is connected to a vertex of U by an

edge is also connected to each v ∈ V by an edge labeled 2.

These conditions are shown schematically in Figure 6. When U and V
satisfy these conditions, let ∆ be the longest element of WV . We define a
new diagram Γ′ by changing each edge of Γ that connects a vertex u ∈ U
to a vertex v ∈ V to connect instead from u to v∆ ∈ V , and leaving other
edges unchanged. We also define a new generating set S ′ of W by replacing
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V

U

W

T

V

U

W

T

Figure 6. Schematic picture of the effect of twisting. The
full diagram on V is finite type. The strips denote bundles
of edges. The vertical bundle includes every edge from V to
W and all are weighted 2.

each element s ∈ U by s∆ and leaving the rest of S unchanged. That is,
S′ = U∆ ∪ (S \ U). We call this operation twisting U by ∆ (or twisting U
around V if we want to stress V ). To stress the effect on the diagram we
sometimes say diagram twisting.

We make the same definitions for the Artin group defined by Γ, twisting
by the longest element ∆ of AV or its inverse.

Theorem 4.5. If S ′ and Γ′ are obtained as above by twisting by ∆, then

S′ is a Coxeter generating set for WΓ and its diagram is Γ′. The analogous

statement holds also for the Artin group AΓ.

Proof. We will prove the Artin version of the theorem. The Coxeter version
is identical. We must show that the generating set S ′ = U∆ ∪ (S \ U)
satisfies the Artin relations corresponding to Γ′. The only cases where there
is something to prove is if one or both of the generators in question is in
U∆. If they both are, then the desired relation (s∆, t∆)j = (t∆, s∆)j is
just the conjugate by ∆ of the relation (s, t)j = (t, s)j coming from Γ. If
s∆ ∈ U∆ and t ∈ S \ (U ∪ V ) then the desired relation (s∆, t)j = (t, s∆)j is
the conjugate by ∆ of the relation (s, t)j = (t, s)j , since t = t∆ by condition
2 of Definition 4.4. Finally, if s∆ ∈ U∆ and t ∈ V the desired relation
(s∆, t∆)j = (t∆, s∆)j for Γ′ is again the conjugate by ∆ of the relation
(s, t)j = (t, s)j for Γ.

Thus the Artin relations for S ′ given by Γ′ follow from the Artin relations
for S given by Γ. Since S results from S ′ by twisting by ∆−1, the same
argument shows that the relations for S follow from the ones for S ′. Thus
S′ is an Artin generating set with diagram Γ′.

Definition 4.6 (Twist equivalence of diagrams). Twisting can be used to
define an equivalence relations on diagrams. If Γ and Γ′ are diagrams and
Γ′ can be obtained from Γ by a finite sequence of diagram twists, then we
say Γ and Γ′ are twist equivalent and we will write Γ ∼ Γ′. If for every pair
of Coxeter generating sets S and S ′ of a Coxeter group W , the diagrams
ΓS and ΓS′ are twist equivalent, then we say that W is rigid up to diagram

twisting. If (W,S) is a Coxeter system and for every Coxeter generating set
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S′ ⊆ RS , the diagram ΓS is twist equivalent to ΓS′ , then we say that (W,S)
is reflection rigid up to diagram twisting.

Remark 4.7 (Nontrivial twists). If W is a finite Coxeter group in which
the element ∆ is central, then conjugating by ∆ will leave the generating
set unchanged, the permutation of V will be the identity, and Γ will equal
Γ′. Thus the only diagram twistings will can alter the diagram occur when
∆ is not central in WV .

The finite Coxeter groups in which the element ∆ is not central are those
of type An for n ≥ 2, Dn for n odd, E6, or I2(m) for m odd (see [6]). As a
result, all of the nontrivial diagram twistings described in Definition 4.4 can
be generated by twisting over a subdiagram of one of these types. There are
two important special cases to note: if all of the edge labels are even, then no
nontrivial diagram twisting is possible, and if all of the edge labels are odd,
then only dihedral twisting is involved, i.e. twisting around subdiagrams of
type I2(m) where m is odd.

The operation of twisting is still interesting even when it does not change
the diagram up to isomorphism, for instance when ∆ is central in WV . Ex-
cept in trivial cases the generating sets S and S ′ will then be non-conjugate,
the group W will not be strongly rigid, and the automorphism induced by
mapping S to S ′ will be an “exotic” automorphism of the Coxeter group.
We therefore make the following definitions.

Definition 4.8 (Automorphisms generated by twists). If a sequence of twists
takes the Coxeter generating set S to a set S ′ with ΓS isomorphic to ΓS′ then
a map S → S′ that realizes this isomorphism gives an automorphism of W
that we say is generated by twists. For fixed S, the set Auttwist(W ) of all such
automorphisms is an interesting subgroup of Aut(W ). It includes the group
of inner automorphisms (since conjugation by a generator v is the twist of
S \ {v} about {v}) as well as automorphisms induced by symmetries of ΓS.
It is a subgroup of the group Aut(W,RS) of reflection-preserving automor-
phisms. It depends up to conjugation in Aut(W ) only on the equivalence
class of the diagram ΓS.

The question as to whether Auttwist(W ) equals Aut(W ) or Aut(W,RS)
relates to rigidity concepts analogous to those of Definition 4.6, but based
on twisting Coxeter generating sets rather than diagrams. For example, for
a right-angled Coxeter group W (which is rigid by Theorem 2.2) the full
automorphism group is known in some detail, see [18] and [21].

Theorem 4.9 ([18]). Auttwist(W ) = Aut(W,RS) for any right-angled Cox-

eter group.

In fact, the main theorem of [18] gives a presentation in terms of twists
of the subgroup of Aut(W,RS) that fixes ΓS (Aut(W,RS) acts on ΓS by
Lemma 3.6). Combining this with a result of Patrick Bahls [1] gives:

Theorem 4.10. A right-angled Coxeter group is strongly reflection rigid if

and only if:



RIGIDITY OF COXETER GROUPS AND ARTIN GROUPS 13

• for each vertex v of the Coxeter graph Γ the full subgraph on the set of

vertices not connected to v by an edge is connected;

and is strongly rigid if and only if in addition

• each v is the intersection of all complete subgraphs of Γ containing v.

Proof. If the first condition fails the automorphism induced by twisting a
component of the full subgraph in question about {v} will take S to a non-
conjugate set S ′. Conversely, if the condition holds then the Corollary on
page 631 of [18] implies that any reflection preserving automorphism that
induces the identity automorphism of ΓS is inner, so (W,S) is strongly
reflection rigid. The second part follows because the condition is Bahls’
necessary and sufficient condition for the automorphism group of a right-
angled Coxeter group to preserve the set of reflections.

The analogous issues are interesting for Artin groups but need modifi-
cation since Artin groups have more automorphisms. For instance, there
is an automorphism of an Artin group that inverts all elements of a set of
Artin generators. This automorphism does not preserve reflections. A less
trivial example of an automorphism that does not preserve reflections is
the automorphism of the Artin group AI2(m) for m even given by a 7→ bab,

b 7→ b−1.

5. Rigidity of trees

In this section we use Theorem 4.5 to show that Coxeter groups defined by
diagrams which are trees are reflection rigid up to diagram twisting (The-
orem 5.7). We begin with some preliminary remarks about twisting and
trees.

Example 5.1 (Trees). Let Γ and Γ′ be trees, all of whose edge labels are
odd. If the multiset of edge labels for Γ is the same as the multiset of edge
labels for Γ′, then Γ ∼ Γ′. As a result the Coxeter groups defined by Γ and
Γ′ are isomorphic and the Artin groups defined by Γ and Γ′ are isomorphic.
More specifically, by repeatedly applying Theorem 4.5 to diagrams of this
type, it is possible to reduce the diameter of the tree until it has a single,
special vertex which is connected to every other vertex by an edge. When
both Γ and Γ′ are reduced in this way, the resulting diagrams will be the
identical if and only if the two trees use the same multiset of edge labels.
Thus the Coxeter group defined by Γ is determined by its multiset of edge
labels.

We will show below that, conversely, Γ also determines this multiset of
edge labels. But first, a quick general remark about odd-labeled diagrams.

Remark 5.2 (Odd labels). Let Γ be a diagram in which all of the edge
labels are odd and let (W,S) be the Coxeter system it defines. Reflection
rigidity for (W,S) and rigidity of W are equivalent in this case because the
set RS ⊆ W is precisely the collection of involutions in W . One way to see
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this is to note that every involution in W is conjugate to an involution in
one of the finite subgroups of W generated by a subset of S (Theorem 1.8).
When all of the edge labels are odd, the only finite subgroups of W are
dihedral groups I2(m) where m is odd. Finally, it is easy to check that
each of the involutions in these dihedral subgroups are themselves conjugate
to elements of S. As a result, every Coxeter generating set S ′ for W is
contained in RS .

Lemma 5.3. Let W be a Coxeter group, let S and S ′ be Coxeter generating

sets for W , and let Γ and Γ′ be the corresponding diagrams. If Γ is a finite

connected diagram and all of its edge labels are odd, then Γ′ is also a finite

connected diagram with the same number of vertices, the same number of

edges, and the same multiset of edge-labels.

Proof. By Remark 5.2, S ′ ⊆ RS and there is only one conjugacy class of
involutions in W . This shows that the diagram Γ′ must be connected
(Lemma 3.6). Moreover, by Theorem 3.8, |S| = |S ′| and Γ and Γ′ have
the same number of vertices.

To see that Γ and Γ′ have the same multiset of edge-labels (and hence the
same number of edges) we first note that by Theorem 1.9 there is a bijection
between the conjugacy classes of maximal finite subgroups in W and the
edges of Γ since dihedral groups are the only finite Coxeter groups in which
all edge-labels are odd.

Let H be a dihedral subgroup Dm′ of W corresponding to a particular
edge of Γ′. By Theorem 1.8, H can be conjugated into a maximal finite
subgroup of W generated by a subset of S. But the only subsets of S which
generate a finite subgroup are the dihedral groups corresponding to the edges
of Γ. Since dihedral groups Dm, m odd, do not contain any dihedral groups
Dm′ with m′ even, this shows that all of the edge-labels in Γ′ are odd. At
this point, the preceding argument shows that there is a bijection from the
edges of Γ′ to the conjugacy classes of finite subgroups in W . Combining
the two bijections shows that Γ and Γ′ have the same number of edges and
the same multiset of edge-labels.

Theorem 5.4. If Γ is a diagram whose graph is a finite tree and whose edge

labels are odd, then its Coxeter system is rigid up to diagram twisting.

Proof. Let (W,S) be the Coxeter system corresponding to Γ and let S ′ ⊆ W
be another Coxeter generating set for W with diagram Γ′. By Lemma 5.3
Γ and Γ′ have the same number of vertices, the same number of edges
and Γ′ is connected. Under these three restricts, Γ′ must be a tree. Since
Lemma 5.3 also shows that Γ and Γ′ have the same multiset of edge-labels,
by Example 5.1, Γ ∼ Γ′.

In the following we indicate how the theorem above can be generalized
to arbitrary trees. In order to do that we define the even derivation of a
Coxeter diagram which is a tree; this is an even labeled Coxeter diagram
which is a tree.
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Definition 5.5 (Γeven). Let Γ be a Coxeter diagram which is a tree. The
even part of Γ, denoted Γeven, is the tree which results when each of the edges
with an odd label is retracted to a point. See Figure 7 for an illustration.
Note that the even part of Γ is formed by contractions, whereas the odd part
of Γ is a subdiagram (Definition 3.5). The latter determines the conjugacy
classes in RS , while the former keeps track of the relationships between these
conjugacy classes. Notice in particular, that there is a natural bijection
between the connected components of Γ and the vertices of Γeven and a
group homomorphism φ : Γ → Γeven which sends each s ∈ S to the element
of Seven which is associated with the conjugacy class of s.

5
4

3

7

6

2
4

2

6

Figure 7. A tree diagram Γ and its even part Γeven.

Example 5.6. Let Γ and Γ′ be two finite tree diagrams, and suppose that
there is a diagram isomorphism φ : Γeven → Γ′

even such that for every vertex
v in Γeven the multiset of edge-labels in the connected component of Γodd

associated with v is the same as the multiset of edge-labels in the connected
component of Γ′

odd associated with φ(v). Under these conditions, Γ and
Γ′ are twist equivalent. To see this, note that both diagrams are twist
equivalent to a diagram Γ′′ in which Γ′′

even is a subdiagram of Γ′′. To do this,
use twisting to modify each connected component of Γodd as described in
Example 5.1. Then more twisting can be used so that each edge with an even
label has endpoints which are the special, central vertices in their respective
connected components of the odd part of the diagram. This process has
been illustrated in Figure 8.

5
4

3

7

6

2
4

2

65

7

3

Figure 8. A tree diagram Γ and its twisted counterpart.

Combining the ideas used in Theorems 3.9 and 5.4, we can now show that
all tree are reflection rigid up to diagram twisting.

Theorem 5.7. If Γ is a finite diagram which is a tree, then the correspond-

ing Coxeter group is reflection rigid up to diagram twisting.
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Proof. Let (W,S) be the Coxeter system corresponding to Γ, let S ′ ⊆ RS

be another Coxeter generating set for W , and let Γ′ be its Coxeter diagram.
By Theorem 3.8 |S| = |S ′|. By Lemma 3.6 Γodd and Γ′

odd and have the same
number of connected components. Moreover, there is a bijection between
these components and the conjugacy classes in RS = RS′ so that we have an
explicit bijection between the components of Γodd and components of Γ′

odd.
Since the edges in Γ are in bijection with the conjugacy classes of max-

imal finite subgroups (Theorem 1.8), and since each of these subgroups is
reflection rigid (Theorem 3.10), Γ and Γ′ has the same number of edges and
the same multiset of edge labels.

Moreover, such a dihedral subgroup will be generated by two reflections
in particular conjugacy classes of RS = RS′ , and all of the conjugates of this
subgroup will be generated by two reflections in exactly the same conjugacy
classes. This shows that we can also determine which connected component
of Γodd contains a particular odd labeled edge and which two connected
components are joined by a particular even labeled edge. Finally note that
Γ′ must be connected. The connectivity of Γ′, the number of vertices and
the number of edges combine to show that Γ′ is a tree. In addition, we have
been able to reconstruct enough of the tree to apply Example 5.6 to see that
Γ and Γ′ must be twist equivalent.

6. Additional examples

In this section we present an additional example of diagram twisting which
suggests that it may be computational difficulty to determine whether two
finite diagrams are equivalent up to diagram twisting.

Example 6.1. Let Γ′ be a complete graph on n vertices where the subdia-
gram Γ′

odd is connected and all of the edge labels of Γ′ are either 2 or 3. It
is easy to check that Γ′ admits no nontrivial diagram twists.

Next, let Γ be the disjoint union of Γ′ and a new vertex v with a few
additional edges connecting v to vertices in Γ′. For example, suppose that
there is only one additional edge e connecting v with Γ′ and that e has an
edge label of 4. Using diagram twisting, we can move the endpoint of e to
any vertex in Γ′. To see this, consider a geodesic in Γ′

odd from the current
endpoint of e to the desired endpoint. Since this is geodesic, the subdiagram
of Γ′ determined by the k vertices in the geodesic will be a subdiagram of
type Ak. Twisting v around this type Ak subdiagram will move the endpoint
as desired.

On the other hand, if there are several edges connecting v to Γ′, each
with distinct edge labels, then not all permutations of their endpoints are
possible since the additional edges may prevent certain types of twisting. For
example, if Γ′

odd is the tree shown in Figure 9 and there are edges connecting
v to each of the labeled vertices, then the connections to vertices a and b
are trapped where they are, but the remaining connections to vertices c, d,
e, and f can be permuted freely.
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b

c

f

e

d

a

Figure 9. The diagram Γodd described in Example 6.1.

There are a number of other problems which can arise making it difficult
to decide at a glance whether two diagrams are twist equivalent. There is
even a possibility that deciding whether two diagrams are twist equivalent
is an NP complete problem.

7. Artin groups

Although all of the recent rigidity results were proved for Coxeter groups
exclusively, these results can often be quickly extended to Artin groups. The
main tool for such an extension is the following technical lemma.

Lemma 7.1. Let (A,S) be an Artin system and let ΓS be the corresponding

diagram. If S ′ is another Artin generating set for A and RS = RS′, then ΓS

and ΓS′ define isomorphic Coxeter groups. Moreover, this Coxeter group W
contains copies of S and S ′ and RS = RS′ in W .

Proof. Let W and W ′ denote the Coxeter groups defined by ΓS and ΓS′ ,
respectively. Recall that W is obtained from the group A by adding a
relation of the form s2 = 1 for each s ∈ S, but since the elements of RS ⊆ A
are conjugates of the elements of S, it is equivalent to add a relation of the
form s2 = 1 for each s ∈ RS. Similarly, the group W ′ is the quotient of A
by adding a relation of the form s2 = 1 for each s ∈ RS′ . Since RS = RS′ ,
these quotients are identical and W is isomorphic to W ′. The final assertion
now follows immediately.

Theorem 7.2. Let Γ be a diagram, let (W,S) be the corresponding Coxeter

system and let (A,S) be the corresponding Artin system. If (W,S) is reflec-

tion rigid up to diagram twisting, then (A,S) will be reflection rigid up to

diagram twisting.

Proof. Let S ′ ⊆ RS be another Artin generating set for A. By Lemma 7.1,
the Coxeter group W defined by Γ is isomorphic to the one defined by
ΓS′ and RS = RS′ in W . Since (W,S) is reflection rigid up to diagram
twisting by assumption and since S ′ is another Coxeter generating set for
W with S′ ⊆ RS′ = RS , we can conclude that the diagrams ΓS and ΓS′

are equivalent up to diagram twisting. Since this is true for every Artin
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generating set S ′ ⊆ RS in A, the Artin system (A,S) is reflection rigid up
to diagram twisting.

As corollaries, we immediate produce Artin versions of Theorem 3.10,
Theorem 3.9 and Theorem 5.7. Note that an Artin group of finite type is
simply one defined by a diagram whose Coxeter group is finite.

Corollary 7.3. If Γ is the diagram of a finite type Artin group, then Γ is

reflection rigid.

Corollary 7.4. If Γ is a finite diagram and all of its edge labels are even,

then its Artin system is reflection rigid.

Corollary 7.5. If Γ is a finite diagram whose graph is a tree, then its Artin

system is reflection rigid up to diagram twisting.

8. Conjectures

The natural conjecture at this point is the following:

Conjecture 8.1. Let W be a Coxeter group with Coxeter generating sets S
and S′. If RS′ = RS, then ΓS ∼ ΓS′. In other words, Coxeter systems are

reflection rigid up to diagram twisting.

As evidence for this conjecture, we note that Theorem 3.10, Theorem 3.9
and Theorem 5.7 are special cases in which it is known to be true. A similar
conjecture can be made for Artin systems.

Conjecture 8.2. Let A be an Artin group with Artin generating sets S and

S′. If RS′ = RS, then ΓS ∼ ΓS′. In other words, Artin systems are reflection

rigid up to diagram twisting.

This time, the relevant special cases are Corollary 7.3, Corollary 7.4 and
Corollary 7.5. Since Example 2.5 fails to extend to the Artin case, it is quite
possible that Artin groups are actually rigid up to diagram twisting. This
would however be quite a strong result, and it is therefore probably false.
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