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ABSTRACT. The graph braid group of a complete bipartite graph is the
fundamental group of a configuration space of points on the graph, which
is a CAT(0) cube complex. We combine an analysis of the topology of
links of vertices in this complex, the description of a hidden symmetry
among the parameters, and known results from the literature to explic-
itly compute the exact degree to which these complexes and groups are
connected at infinity.

1. INTRODUCTION

The classical braid group B, is the fundamental group of the configura-
tion space of r disjoint indistinguishable points in a disk. There is a similar
combinatorial construction that begins with a fixed natural number r and a
finite, simple graph I' and then produces an associated cell complex corre-
sponding to r points moving on I where the points stay reasonably far apart.
(See for example [AG02] and [FS05].) Following Abrams and Ghrist, we refer
to the r points on the graph I' as robots. The fundamental group of this cell
complex is called a graph braid group, and in this article we describe the
connectivity at infinity of graph braid groups when the graph I' is a complete
bipartite graph. The case of a complete graph is settled in [MZ13].

In order to determine connectivity at infinity for the graph braid group we
describe the connectivity at infinity of the universal cover of the configura-
tion space mentioned above. Recall that a cell complex K is n-connected if
its homotopy groups m;(K) are trivial for 0 < i < n. Thus being 0-connected
is equivalent to being path connected, and being 1-connected is often referred
to as being simply connected. Roughly speaking, a contractible complex is
said to be n-connected at infinity if the complements of finite subcomplexes
are n-connected. (A rigorous definition is given in Section 2.) The property
of being 0-connected at infinity is often referred to as being one-ended, as
there is essentially one connected component in the complement of finite sub-
complexes. The property of being 1-connected at infinity is often described
as being simply connected at infinity. If K is a finite, aspherical complex
then the connectivity at infinity of the universal cover K is a quasi-isometry
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invariant of K, and it is directly related to the group cohomology of 71 (K)
and duality properties of groups.
We begin by stating our main result.

Main Theorem. Consider r robots on a complete bipartite graph K, .
Let R be the number of open wvertices on K, N so that r + R = n + N
is the total number of vertices. Moreover, to avoid trivial cases, assume
that v, n, N and R are all at least 2. Let {y = min{r,R,n,N}, {; =
min{r, R} + min{n, N} +1, and b =r+ R=n+ N. If

=mfu 2] 4]}

then the universal cover of the combinatorial configuration space of r robots
on K, n is ({ —2)-connected at infinity but not (£ — 1)-connected at infinity.

For example, if we have two robots moving on a K, y with n and N each
greater or equal to 3, then £ = 2 and we see that the universal cover of the
configuration space is one-ended.

Remark 1.1. The universal cover of a configuration space can be thought of
as the space of all possible robot motions on the graph, and so determining
the connectivity at infinity is essentially a result about robot motion planning
when certain motions are blocked for some finite period of time.

In order to prove our Main Theorem, we use a known result that relates
the connectivity at infinity to the connectivity of vertex links. The following
theorem, which is a combination of results proved in [BMO01] and [BMMO3],
states this close connection.

Theorem 1.2 (Vertex links and infinity). Let X be a finite, locally CAT(0)
cube-complex with universal cover )}, and fix an integer n > —1. Assume
the link of every vertex in X is n-connected, and remains n-connected when
any closed simplex is removed. Further, assume that the link of some vertex
v has Hy41(Lk(v)) # 0. Then X is n-connected at infinity but not (n + 1)-
connected at infinity.

In [Abr02|, Abrams and Ghrist establish the fact that a combinatorial
configuration space for r robots on any finite simple graph is a finite, locally
CAT(0) cube-complex. Hence, in order to prove the Main Theorem we
need to determine the maximum connectivity shared by every vertex link
in the configuration space of r robots on K, y, which is determined by
the minimum non-connectivity of some vertex link. We show that these
links are chessboard complexes or joins of chessboard complexes, which are
well studied combinatorial objects. Moreover, we establish some surprising
isomorphisms between finite covers of these configuration spaces that allow
us to reduce our analysis to the case where r < n < N < R, and then
successfully compute the minimum non-connectivity in this context.

The paper is organized as follows. Section 2 describes the configuration
spaces and connectivity at infinity. Section 3 discusses hidden symmetries
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that give isomorphisms that allow us to reduce to the case where the param-
eters are ordered as follows: r <n < N < R. We then describe the structure
of the vertex links and show that they are joins of chessboard complexes in
Section 4, and finally we prove the Main Theorem in Section 5.

2. CONFIGURATION SPACES

Throughout this paper we consider r robots moving on a complete bipar-
tite graph K,, n. In order for it to be possible for the robots to simultaneously
occupy distinct vertices of K, y, it must be the case that » < n+ N and we
assume this condition on the parameters always holds.

We think of the complete bipartite graph K, y as a simplicial complex
whose non-empty simplices o are its vertices and edges. If we have r robots
moving on K, y then each robot is on a vertex or an edge. In order to pro-
hibit collisions, we assume that not only are no two robots allowed on any
one vertex or edge, but also that if a robot is on an edge then both bound-
ing vertices are robot-free. Since we will not distinguish between different
locations on a single edge, every position of r robots is then determined by
a collection of r disjoint vertices and edges.

Definition 2.1 (Discrete configuration spaces). For each complete bipartite
graph K = K,, v we define the discrete configuration space CONF,(n,N) to
be the subcomplex of

Kx...xK
r copies
consisting of products of vertices and edges 01 X - - - X g, where for each pair
of distinct, closed simplices ; N o = (.

Remark 2.2 (Vertex versus 0-cell). Because we build configuration spaces
based on graphs, the terms “vertex” and “edge” are potentially ambiguous.
Do they refer to a piece of the graph or a piece of the configuration space? In
this article, we describe the graph K, x as having “vertices” and “edges” while
the configuration spaces have “i-cells” instead. We make this distinction so
that it is always clear to the reader which of the two types of cell complexes
we are referring to. The only exception we make to this convention is the
standard terminology “vertex link” (see Remark 4.2).

Remark 2.3 (Really small parameters). The cases where min{r,n, N} =
1 are elementary to resolve, and we remove them from the statements of
our main results. When r = 1, the configuration space is the same as the
underlying graph

CoNFi(n,N) ~ K, n

and the graph braid group is its fundamental group, a free group. The
symmetries described in Section 3 show that these graph braid groups are
also free groups when n = 1 or N = 1. For the remainder of the article we
assume that min{r,n, N} > 2.



4 MAZUR, MCCAMMOND, MEIER, AND ROHATGI

Example 2.4 (Small parameters). One of the classic examples is the con-
figuration space CONF2(3,3) for 2 robots on a K33. Because it is a sub-
set of K33 x K33, CONF3(3,3) is a 2-dimensional complex. The O-cells of
CONF3(3,3) correspond to having both robots on vertices of K3 3; 1-cells
correspond to one robot sitting on a vertex while the other moves along an
edge between two vertices; and the 2-cells, which are squares, correspond
to both robots moving along two distinct edges with four distinct vertices.
The neighborhood of a 0O-cell v € CONF2(3,3) is determined by whether
the associated configuration has two robots on vertices from a single side of
K33 or on different sides. If both robots are on the same side, then there
are 6 squares joined in a cycle about v. If the robots are on opposite sides
then there are 4 squares joined in a cycle about v. Once this local structure
has been determined it is not too difficult to establish that CONF2(3,3) is
a closed hyperbolic surface. For the details, see [Abr02]. We note that it
is uncommon to have configuration space CONF,(n, N) be a manifold. See
Example 4.6.

In general, since the configuration space CONF,(n,N) is a subcomplex
of a product of graphs, it has a natural cell structure where each cell is a
product of vertices and edges.

FIGURE 1. An example of three robots moving on a Ky 5.

Example 2.5 (A loop). The robot motion depicted in Figure 1 shows a
loop in the cubical complex CONF3(4,5) associated to three robots on the
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complete bipartite graph K45. The four configurations depicted, with the
three black dots representing the locations of the robots, correspond to 0-
cells in CONF3(4,5). The edges with arrows indicate how some subset of the
robots are about to move as we transition to the next figure.

If we start at the 0-cell corresponding to the configuration shown on the
lower right, one robot is moving and this means this portion of the loop
traverses an edge in the configuration space to the 0-cell corresponding to the
configuration shown on the lower left. From here, three robots are moving.
This means that this portion of the loop traverses a diagonal of a 3-cube
in the configuration space to the 0-cell corresponding to the configuration
shown on the upper left. The next robot motion corresponds to a portion of
the loop which traverses the diagonal of a square (since exactly two robots
are moving), as does the final motion.

Because the cells are products of vertices and edges, the configuration
space CONF,(n,N) is a cubical cell complex, and assigning the metric of
unit Euclidean cubes to each cell gives CONF,(n, N) a piecewise Euclidean
metric. A well-known result of Gromov can be applied to prove that the
universal cover of CONF,(n, N) is non-positively curved. (See [BH99| for
background information about CAT(0) complexes and Gromov’s Theorem.)
See also Theorem 3.3 and Corollary 3.4 in [Abr02].

Theorem 2.6 (CAT(0) cube complex). The space CONF,(n, N) is a locally
CAT(0) cube complex, which makes X = CONF,(n,N) a classifying space,
e. it is a K(G,1) where G = m1(X) is its fundamental group.

Knowing that CONF,.(n, N) is a K (G, 1) has a number of consequences, as
topological features of classifying spaces are invariants of the fundamental
group. In particular, the connectivity at infinity of the universal cover of
CONF,(n, N) is an invariant of the fundamental group of CONF,.(n, N). (See
[Bro94] and |Geo08] for results along these lines.)

We conclude this section by recalling the definition of connectivity at
infinity. Let K be the universal cover of a finite, aspherical cell complex
K. The topology at infinity of K consists of those topological features that
are persistently present in the complements of finite subcomplexes of K. In
particular, we have the following definition.

Definition 2.7 (Connectivity at infinity). The universal cover K is n-
connected at infinity if given any compact C' C K there is a compact D C K

such that any map ¢ : S* — K \ D extends to a map ¢ : B'*1 — K\ C for
all -1 <3< n.

Euclidean space, R", is (n — 2)-connected at infinity but not (n — 1)-
connected at infinity. We note that the usual definition of being (—1)-
connected is that the space is non-empty, which implies that being (—1)-
connected at infinity is equivalent to the statement that K is infinite. As we
remarked in the introduction, the property of being 0-connected at infinity
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is commonly referred to as having one-end, and being 1-connected at infinity
is usually termed simply connected at infinity.

Remark 2.8 (Other topological invariants). Other topological invariants
of graph braid groups have been studied. The work in [KP12| highlights
just how complicated it is to determine even the first homology group for
graph braid groups in terms of the structure of the underlying graph. Almost
all results about homology and cohomology occur only in specific contexts,
for example, when the underlying graph is a tree (see for example [FS05|,
[Far06], [Far07], [Sch18], and [Ram18]).

3. HIDDEN SYMMETRIES

In this section we describe three symmetries among the parameters used
to define CONF,.(n, N). The first two are relatively obvious, while the third
is somewhat more surprising. The main purpose of introducing these three
symmetries is to be able to reduce to the case where the parameters satisfy
the inequalities 7 < n < N. In other words we can restrict our attention to
those cases where all robots fit on the smaller side of the bipartite graph.
These inequalities are crucial to the explicit computations carried out in
Section 5.

The first symmetry is a result of the obvious left-right symmetry of K, v.

Lemma 3.1 (Left and right). The configuration spaces CONF.(n,N) and
CONF,(N,n) are isomorphic.

The second symmetry follows from the introduction of ghosts whose mo-
tions mirror those of the robots.

Definition 3.2 (Ghosts). In the configuration space of r robots on a K, y,
we view every unoccupied vertex as being occupied by a ghost. If we let
R denote the number of ghosts, then »r + R = n+ N = T where T is the
total number of vertices of K, y. In addition, when a robot moves from
one vertex to an “unoccupied” vertex we view the ghost at the unoccupied
vertex as moving in the opposite direction so that it exchanges places with
the robot.

Once ghosts are introduced so that they move in conjunction with and
opposite to the motion of the robots, it becomes clear that the robot config-
uration space corresponds in a natural way to another configuration space
where the old ghosts are viewed as the new robots and the old robots are
viewed as the new ghosts. This proves the following lemma.

Lemma 3.3 (Robots and ghosts). Let n+ N =T and let R=T —r. Then
CONF,.(n, N) is isomorphic to CONFg(n, N).

The third symmetry is both more complicated to state accurately and
a bit more difficult to prove. The idea can best be illustrated by coarsely
viewing robot configurations as a non-negative integer solution to a 2 by 2
row-column sum problem.
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FIGURE 2. The robots are positioned at the black spots and
the ghosts are at the white spots. The circles and squares
denotes the two parts of the bipartite graph.

Definition 3.4 (Solutions). Let r, R, n, N be positive integers with r + R =
n+N and let (a, b, ¢, d) be a 4-tuple of non-negative integers. When a+b = r,
c+d=R,a+c=nand b+d = N we say that (a,b,c,d) is a solution to the
(r,R,n,N) row and column sum problem or, more simply, that (a,b, c,d) is
an (r, R,n, N)-solution. The terminology comes from the fact that the 2 x 2
matrix with entries a, b, ¢ and d has row sums equal to r and R and column
sums equal to n and N. The common value T =r4+R =n+N = a+b+c+d
is the total of all four entries. See the array below.

s

d

N
Remark 3.5 (Robot configurations as solutions). Notice that every config-
uration of 7 robots on the vertices of a K, y yields an (r, R, n, N)-solution.
Let a be the number of robots on the n-side of K, y, let b be the number of
robots on the N-side, and let ¢ and d be the number of ghosts on each side.
Then the 4-tuple (a,b,c,d) is an (r, R, n, N)-solution. (See Figure 2.)

IS o 8

Definition 3.6 (Configuration type). The type of a configuration of r robots
on the vertices of K, n is the associated (r, R,n, N)-solution. If (a,b,c,d)
is the (r, R,n, N)-solution of a configuration of r robots on the vertices of
K, n then we say that such a configuration is type (a,b, c,d).

Remark 3.7 (Symmetries reinterpreted). The eight symmetries of a square
can be applied to a row and column sum problem and to its set of solutions.
Notice that the symmetry listed in Lemma 3.1 corresponds to exchanging
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the two columns. In other words, we can identify solutions of

|:. . :| r [ . :| r
R with solutions of R
n N T N n T

Similarly, the symmetry listed in Lemma 3.3 corresponds to exchanging
the two rows. In other words, we can identify solutions of

[. . :l r [ . ] R
- R with solutions of R A
n N T n N T

Remark 3.8 (The third symmetry). The third symmetry that we introduce
can be interpreted as transposing solutions; it identifies solutions of

¥ N
- R with solutions of - N
n N T r R T

This symmetry leads to a local isomorphism between a neighborhood of a 0-
cell in CONF,.(n, N) and a neighborhood of some 0-cell in CONF,,(r, R). This
is somewhat surprising since these two configuration spaces are not identical.
They do not even have the same number of 0-cells (see Example 3.16).

In the remainder of this section we introduce additional features that help
us to prove that while not identical, CONF,(n, N) and CONF,(r, R) have a
common, finite cover. This implies the local isomorphism alluded to above
and ultimately allows us to assume r < n < N. We develop a common
covering space of CONF,(n, N) and CONF,(r, R) by making both robots
and ghosts distinguishable rather than indistinguishable. To formalize this
we introduce a more precise label for each 0-cell in the configuration space.
The 0-cells in the version with distinguishable robots and distinguishable
ghosts can be placed in bijection with 7" x T permutation matrices where
T =r+ R =n+ N is the total number of vertices in the bipartite graph
K, n. We note that the vertices of K,, ; are distinguished, one from another,
and the usual convention for this distinction comes from vertically ordering
the vertices on the left and right. Consider the following example.

Example 3.9 (A fully labelled configuration). Consider the fully labelled
configuration shown in Figure 3 and the corresponding permutation matrix
shown in Figure 4. The labels next to the vertices are the names of the
vertices (g; or ;). The label inside the circle is the name of the robot or
ghost that occupies this vertex. If we view pi1, po and p3 as robot names,
this is a configuration of 3 robots on a Ky 5. If we remove the subscripts on
the p;’s and the P;’s, to make the robots and the ghosts indistinguishable,
this becomes a vertex in the configuration space CONF3(4,5). The fully
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FI1GURE 3. A fully labelled configuration of three robots and
six ghosts moving on a Ky 5.

q Q
1.0 0000 00O0][1 0]
p 000001000 01
001000000 10
0000:000T1O0]||0T1
010000000 10
P|l0OO0O0O0:00100 01
000100000 10
000000001 01
000010000 0 1
(101001 000][21]
|01 01:1 0111 2 4 |

FIGURE 4. The four matrices associated with the configura-
tion shown in Figure 3.

labelled configuration is encoded in the 9 x 9 matrix in the upper lefthand
corner of Figure 4. Once the subscripts on the p;’s and P;’s are removed, this
configuration is encoded in the 2 x 9 matrix in the lower lefthand corner. The
top row indicates the locations of the robots and the bottom row indicates
the locations of the ghosts.

It is possible to construct a configuration space from these fully labelled
configurations.

Definition 3.10 (Fully labelled configuration spaces). Consider a cell com-
plex whose 0-cells are indexed by the fully labelled configurations of r dis-
tinguished robots and R distinguished ghosts on a K, y and whose 1-cells



10 MAZUR, MCCAMMOND, MEIER, AND ROHATGI

correspond to a named robot switching places with a named ghost along
an edge of the graph. In terms of the associated permutation matrix, this
type of movement corresponds to replacing a 2 X 2 minor (with one entry
in each of the four blocks). If this minor is a 2 x 2 identity matrix it is
replaced with a matrix with ones on the anti-diagonal, and if it has ones
on the anti-diagonal, it is replaced with an identity matrix. Cubes in this
complex correspond to a set of robot-ghost exchanges where the associated
edges are pairwise disjoint. We write CONF(r, R,n, N) to denote this cell
complex.

Another approach to describing the cubical structure of CONF(r, R,n, N)
is via partitions. Let A be the set of vertices on the left of K, n, let B be
the set of vertices on the right, let C' be the set of robots and let D be the
set of ghosts. A cubical cell of CONF(r, R,n, N) can be identified with a
partition of the set AU B U C U D into blocks of size 2 and 4. Each block
of size 2 must contain one vertex from AU B and one occupant from C' U D
and these represent the robots and ghosts that are stationary throughout
this cell. Each block of size 4 must contain exactly one element from each
of A, B, C and D, and this represents a particular robot and a particular
ghost moving along a specific edge in K, y. The dimension of the cube is
equal to the number of blocks of size 4.

Proposition 3.11 (Covering space). The natural map from the configuration
space CONF(r, R,n, N) to the configuration space CONF,(n, N) is a covering
map whose index is r!R!.

Proof. The group S, x Sg acts on CONF(r, R,n, N) by permuting the la-
bels on the robots and ghosts. Let o be a cubical cell in CONF(r, R,n, N)
with corresponding partition into blocks of size 2 and 4. If we non-trivially
permute the labels on the robots and/or the ghosts without changing the
labels on the vertices, then the resulting partition is distinct from the orig-
inal partition, and the resulting cube is distinct from the original cube. In
particular, the action on the complex is free. O

Remark 3.12 (Distinguishing robots and ghosts). In the literature, it is
common to consider the (r!)-fold cover of CONF,(n, N) obtained by distin-
guishing the robots. In the analogous situation for the classical braid group,
this corresponds to the difference between the braid group and the pure
braid group. What we have described goes one step further by distinguish-
ing the ghosts as well. If we use a bar to indicate situations where robots
and/or ghosts are not distinguishable then the standard configuration space
described in §2 is:

CoNF,(n,N) = CoNF(r, R,n, N)

The situation from the literature where robots (but not ghosts) are distin-
guished is CONF(r, R,n, N).

We note that the process of introducing ghosts, and distinguishing ghosts
and robots, applies to graph braid groups on any graph.
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Remark 3.13 (Transposing fully labelled configurations). Given a fully la-
belled configuration of r robots and R ghosts on a K, n, one can switch
the roles of the partitioned vertices and the occupying robots and ghosts, to
yield a fully labelled configuration of n robots and N ghosts on a K. . This
corresponds to transposing the associated permutation matrix, or merely
switching how robots/ghosts and left /right vertices are identified with the
rows and columns of the matrix.

FIGURE 5. The fully labelled configuration of four robots and
five ghosts moving on a K3 g which is the transpose of the fully
labelled configuration shown in Figure 3.

Example 3.14 (Transposing fully labelled configurations). We return to
the situation discussed in Example 3.9, with three distinguished robots and
six distinguished ghosts on a Kj45. At the level of the permutation matrix
shown in Figure 4, one simply transposes the 9 x 9 matrix in the upper left-
hand corner to produce a new matrix that describes 4 distinguished robots
and 5 distinguished ghosts on a K3¢ or, simply change how the matrix is
being interpreted. In Example 3.9 we removed the subscripts on the rows to
describe a 0-cell in the configuration space CONF3(4, 5). Here we remove the
subscripts on the columns to produce a 9 x 2 matrix shown in the upper right-
hand corner which describes a 0-cell in the configuration space CONF4(3,6).
Returning to the graphical interpretation in Figure 3, the ‘transposed’ ver-
sion shown in Figure 5 has the three p’s and six P’s now interpreted as left
and right vertices of a K3, the four ¢’s are the robots, and the five )’s are
the ghosts.

Moving from one configuration to the other essentially corresponds to
switching the roles of two 2-colorings on T'=r + R = n + N vertices. The
first 2-coloring describes the split between left and right and the second 2-
coloring describes the split between robots and ghosts. Note that this type
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of switch is only possible because we are working with a complete bipartite
graph. We are unaware of any similar type of operation for other graphs.

Proposition 3.15 (Common universal cover). Let r, R,n, and N be positive
integers where v + R =n + N. The eight configuration spaces:

CONF,(n, N), CONF,(N,n), CONFg(n, N), CONFg(N,n),
CONFy,(r, R), CONF,, (R, 1), CONFN(7, R), CONFN (R, 1)
all share the same universal cover.

Proof. First note that the four configuration spaces
CONF,(n, N) ~ CONF,(N,n) ~ CONFg(n, N) ~ CONFgr(N,n)

are naturally identifiable via the swapping of left and right vertices and/or
the swapping of robots and ghosts. Similarly, the four configuration spaces

CONF,(r, R) ~ CONF,(R,r) ~ CONFx(r, R) ~ CONFyN(R, 1)

are also naturally identifiable. And finally, by Proposition 3.11, both families
of identified configuration spaces have a common cover. The cover of the first
family is of index r!R! and the cover of the second family is of index n!N!.
As a consequence, all eight have the same universal cover. ([l

Example 3.16 (Common universal cover). Consider the eight examples
where {{r, R},{n, N}} = {{3,6},{4,5}}. The four configuration spaces with
{r,R} = {3,6} and {n, N} = {4,5} all have exactly (g) = (g) = 84 vertices.
Similarly, the four configuration spaces with {r, R} = {4,5} and {n, N} =
{3,6} have exactly (Z) = (g) = 126 vertices. The common cover of both
of these spaces, in which everything is fully distinguished, would have 9! =
84 - (316]) = 126 - (415!) = 362, 880 vertices.

The following corollary allows us to assume that r < n < N < R when
computing the degree of connectivity at infinity.

Corollary 3.17 (Ordering parameters). Let v, R,n, N be positive integers
with r+ R =n + N. Among the eight configuration spaces with a common
universal cover, there is at least one in which there are at least as many
vertices on the right as on the left and all of the robots can fit on the lefthand
side.

4. VERTEX LINKS

According to Theorem 1.2 in the introduction, the connectivity at infinity
of the universal cover of CONF,(n,N) is determined by the minimal con-
nectivity of certain links in CONF,(n, N). In this section, we establish this
minimal link connectivity in the special case where the parameters are or-
dered r < n < N < R which, by Corollary 3.17, is not a serious restriction.
We begin by recalling the definition of a vertex link in a piecewise Euclidean
complex built out of unit cubes and then acknowledge that this terminology
breaks with our earlier conventions.
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Definition 4.1 (Vertex links). The link of a 0-cell v in a piecewise Euclidean
cube complex is the metric sphere based at v of radius ¢ < 1. For 0-cells
in CONF,(n, N), the link admits a natural simplicial structure where the
O-simplices in Lk(v) correspond to 1-cells of CONF,(n, N) that contain v,
and more generally, k-simplices in Lk(v) correspond to (k 4 1)-cubes that
contain v. This simplicial complex is what is commonly known as a verter

link.

Remark 4.2 (Vertex links). Definition 4.1 is the one exception that we make
to the convention described in Remark 2.2. We use the standard terminology
“vertex link” to denote the link of a 0-cell in a configuration space, even
though we continue to refrain from calling these 0-cells “vertices”.

Vertex links in CONF,.(n, N) can also be described combinatorially.

Remark 4.3 (Combinatorial description of vertex links). A O-cell v in
CONF,(n, N) corresponds to selecting r vertices in a K, y and designat-
ing them as being the vertices occupied by robots. One can then define a
poset whose elements are subsets o of the closed edges of K,, n, where the
edges in ¢ are disjoint and each edge has one vertex that is occupied and the
other is unoccupied. The order relation is given by containment. This poset
is the face poset of Lk(v) and the geometric realization of the poset is the
barycentric subdivision of Lk(v). Because we are interested primarily in the
topology of vertex links, we do not distinguish between the link of a vertex
and its barycentric subdivision.

Note that a 0-cell of CONF,(n, N) corresponds to a given arrangement of
robots on K, y and the link of this 0-cell records the possible robot motions
that start from this particular arrangement. Vertex links in CONF,(n, N)
also have a nice combinatorial representation in terms of chessboard com-
plexes.

Definition 4.4 (Chessboard complexes). To define a chessboard complex
consider placements of rooks on an m X n chessboard so that no two rooks
are in the same row or column. We call such placements permissible. The
collection of permissible placements can be viewed as a poset by considering
one placement to be below another if the set of occupied squares in the first
one are also occupied in the second. The chessboard complex A, , is the
simplicial realization of the poset of all permissible placements, on an m x n
chessboard.

In [MZ13], Meier and Zhang showed that the vertex links in the configu-
ration spaces of r robots on the complete graph K,y are homeomorphic to
A, n. If a O-cell v of CONF,.(n, N) corresponds to a configuration in which all
robots are on the side of K, y with n vertices, then the link of this O-cell is
the same as A, y as well. To see this, first note that the description of vertex
links given in Remark 4.3 shows that the vertices occupied by ghosts on the
same side as the robots, and the edges that emanate from these vertices, do
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not contribute anything to the link of v. Intuitively, this is because no robot
is able to enter one of these edges or end at one of this vertices from this
starting configuration of robots and ghosts. So the link is the same as the
link associated with a configuration of r robots in a K, y with all the robots
on the left. Similarly, in the complete graph K, y, the robots are unable
to use the edges where both endpoints are occupied by robots, so here too
would be the same as the link of v in the complete bipartite graph K, x.

In general, when v is a 0-cell in CONF,(n, N) corresponding to a configu-
ration where there are robots on both sides, the robots on the left and the
ghosts on the right determine one chessboard complex, and the robots on
the right and the ghosts on the left determine a second chessboard complex.
More specifically, let a be the number of robots on the n-side of K, ;y and
let b be the number of robots on the N-side. Then subsets of the a robots
may move to the (N — b) vertices occupied by ghosts on the opposite side,
giving a copy of A, y_p. Similarly subsets of the b vertices may move to the
(n — a) vertices occupied by ghosts on their opposite side, yielding a copy of
Apn—q- As these collections of motions are independent of each other, the
resulting complex is the join of two chessboard complexes.

Lemma 4.5 (Vertex links are joins). Let v be a 0-cell in CONF,(n, N) cor-
responding to a configuration where a robots are on the n-side of K, Ny and
b robots are on the N-side. Then the link of v is

Lk(v) ~ Aa,N—b * Ab,n—a
with the convention that the join of a complex K with an empty set is just K.

Example 4.6 (Not a manifold). Consider the case of two robots on a K3 4.
If v is a O-cell corresponding to having one robot on each side of the graph,
then the link of v is the join of two points with three points, often called a
theta-graph. We note that in this case, as is typical, the link of a vertex is
not a sphere and the configuration space is not a manifold.

Determining the connectivity of chessboard complexes proved to be rather
difficult and the final result is stated below. See [BLVZ94|, |Zie94], [Wac03],
[AthO4], [SWO07], and the many references cited in these papers for more
detail.

Theorem 4.7 (Chessboard connectivity). The chessboard complex A, ,, is
(Um.n — 2)-connected and not (v, , — 1)-connected, where

) { {m%—n—li}
Vpm,p = Min § m,n, — 3 .

When considering the join of two chessboard complexes, we can at least
determine a lower bound on the connectivity. The following lemma is stated
explicitly as Corollary 3.12 in [Jon08] and follows from Exercise 4.1.17 in
[Hat02].

Lemma 4.8 (Connectivity of joins). If X is a p-connected simplicial complex
and Y is a q-connected simplicial complex, then X *Y is (p+q+2)-connected.
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Theorem 4.7 and Lemma 4.8 go a long way towards establishing much
of our argument, particularly once we show that connectivity results about
vertex links quickly lead to connectivity results about punctured vertex links,
as is required by Theorem 1.2. A key fact about chessboard complexes is
that they are vertex decomposible, and in Section 4 of [MZ13] this fact is used
to prove that connectivity is preserved when any closed simplex is removed

(Theorem 4.7 of [MZ13]).

Theorem 4.9 (Punctured chessboard links). Let 2 < m < n and let o be
a closed simplex (possibly empty). Then Ay, , with o removed is an (m —
1)-dimensional, vertex decomposable simplicial complex. Thus Ay, ,, with o
removed is (Vpm n — 2)-connected, just like Ay, p,.

The same argument applies in the case of robots on complete bipartite
graphs, because the links of vertices are either chessboard complexes or the
joins of chessboard complexes, and vertex decomposibility is preserved by
the join operation (Theorem 3.30 in [Jon08]).

Corollary 4.10 (Punctured joins). Let o be a closed simplex in the join
T = A *Dp g, including the possibility that o is the empty simplex. Then
J with o removed is (Vp, n + Vpq — 2)-connected.

Proof. Let 09 =0 N Ay, and 01 =0 NA,,. Then
TN = (Bmn\00) * (Apg \01) -

By Theorem 4.9, J \ o is the join of a (v, , — 2)-connected complex and a
(Vp,q — 2)-connected complex. The formula follows by Lemma 4.8. ([

Remark 4.11 (Exact bounds). We apply these results to CONF3(4,5) and
determine the connectivity of vertex links in Table 1. The reader should
note, however, that at the moment, we have only proved that these values are
lower bounds on the connectivities of these joins. Some of these joins might
conceivably be more highly connected. We address the issue of exactness
of the minimum value in the proof of Theorem 5.1. In general, the lower
bound given in Lemma 4.8 is usually sufficient for determining the minimal
non-connectivity of links but there is one case where we need to analyze a
non-trivial join (Lemma 5.9).

5. COMPUTATIONS

Building from the results in the previous section, we are now able to
complete the computation of the minimum connectivity of all the vertex links
and the minimum non-connectivity of some vertex link, minimized over the
O-cells of the configuration space CONF,(n, N). The goal of this section is
to prove the following result.
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TABLE 1. We compute lower bounds on the connectivity of
the links (and punctured links) of vertices in CONF3(4,5)
using Theorem 4.7, Lemmas 4.5 and 4.8, and Corollary 4.10.

Robot configuration

corresponding to a Lk(v) Connectivity of Lk(v)
vertex v in CONF3(4,5)

A375 * A071 = A375 min{3, 5, {

wl©o

J}-2=1

(min{2,4, 2]} —2)+
Ao g *Aq (min{1.2, L%J}g— 2)4+2=1

(min{1,3, |2|} —2)+
ANER FACE: (min{2, 3, LgJ}S— 2)+2=1

A072 * A374 = A374 min{3, 4, L%J} —2=0

Theorem 5.1 (Link connectivity). Let 2 <r <n < N < R be integers such
thatr + R=n+ N and let

1751 52

Then the link of every 0-cell in CONF.(n, N) is at least (¢ — 2)-connected.
Moreover, there exists a 0-cell whose link is not (¢ — 1)-connected.
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We first determine the minimum connectivity of the vertex links only
among those 0-cells of a particular type (a,b,c,d) (Definition 3.6). Recall
that this means a +b =1, a+c=n,b+d = N and c+d = R. And
note that for fixed values of r, n, N and R, these equations allow one to
solve for the other three once one of a, b, ¢ or d is known. Since the link of
a 0-cell of type (a,b,c,d) is isomorphic to the join of chessboard complexes
Ag a*Ap e, the connectivity of the link of a 0-cell of type (a, b, ¢, d) is at least
(Va,da — 2) + (Ve — 2) + 2, which is equal to

min{a,d7 {a—’_g—i_lJ}—i—min{b,c, {b%—;—’_lJ}—Q.

So, in order to find the minimum connectivity, we need to compute

(1) min < min< a,d, atdtl 4+ min < b, ¢, btotl )
(a,b,c,d) 3 3

where the outside minimum is taken over all possible (a, b, ¢, d) types which
are (r, R,n, N') solutions.

We analyze this minimum of a sum of minimums in Equation 1 by in-
terchanging the order in which the minimums are taken. We first look at
the values that can occur for all nine possible summations arising from the
formula above (a choice of a, d or L%‘MJ in the first summand followed by
a choice of b, ¢ or L%J in the second summand), and then determine the
minimum of each one over all possible (a, b, ¢, d).

b c |5
a a+b a+c a+[b+§+1j
d d+b d+c d+ |t
La-i—gH—lJ La-i—gH—lJ 4 b La-i-g-&-lJ +e La+g+1J 4 Lb-i-:c))-i-lJ

FIGURE 6. The nine possible summations.

Remark 5.2 (Nine cases). The nine possible sums are displayed in Figure 6.
Since a is the number of robots on the side of K, ;y with n vertices, r is the
total number of robots, and we are assuming r < n < N < R, there are
r+ 1 possibilities for a, and hence for (a, b, ¢,d). In particular there are r + 1
different sums that need to be checked for each entry in Figure 6.

The nine possibilities are grouped according to the number of floor func-
tions they contain and we analyze each group one at a time. We proceed by
first finding the minimum value of the 4(r + 1) values corresponding to the
entries of Figure 6 with no floor functions.

Claim 5.3 (No floor minimum). The minimum of the (red) entries with no
floor function, over all possible values of (a,b,c,d), is .
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Proof. Since (a,b,c,d) is an (r,n, N, R)-solution, the entries in the above
table that do not involve the floor function are constant across all possible
values of (a,b,c,d). Regardless of the configuration, a +b =r, a + ¢ = n,
b+d= N and c+d = R. Since we are assuming r < n < N < R, the
minimum of these four possible values is r. O

Next we find the minimum value of the 4(r + 1) values corresponding to
the entries with a single floor function.

Claim 5.4 (One floor minimum). The minimum of the (blue) entries with
exactly one floor function, over all possible values of (a,b,c,d), is L%J

Proof. Each of the four one floor summations simplify to a single floor func-
tion involving r, R, n, or N with the all summations inside the floor function.
For example,

b+c+1 Ja+b+c+1
3 L 3
_|(@+b)+(a+c)+a+1
L 3
_|r+n+ta+1
==/ |

Similarly, the other three one floor summations simplify to

{R+N+d+1J {R+n+c+1J and V+N+b+1J
3 ’ 3 ’ 3 '

By our assumption that » < n < N < R we know that » + n is minimal
among r +n, r+ N, R+n, and R+ N. Moreover, the minimum of these
four terms will occur when a = 0. So among these four terms the minimum

will be

V—i—n+a+1J

{r—{—n—%O—l—lJ B V+n+1J
3 = )

3 3
]

Finally, we determine the minimum of the r + 1 values arising from the
entry with two floor functions.

Claim 5.5 (Two floor minimum). The minimum of the (black) entries of
the form L“Jrg“J + LbJrgHJ, over all possible values of (a,b,c,d), is L%J

The statement and proof of this result is more delicate than the other
two. In fact, Claim 5.5 is only true because of our standing assumption that
min{r, R,n, N} > 2. Before giving the proof of this claim, we first show how
to rewrite the sum of two floor functions as a single floor function.

Lemma 5.6 (Adding floors). Let p and q be integers. If i = q mod 3 is the
remainder of ¢ mod 3 with i € {0,1,2}, then

5+ 1) - [
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Proof. For any integer k,

51+ 18- (B9 (2)-9 - [252] 5]

In particular, when k is chosen so that ¢ = 3k 4 ¢ with ¢ € {0, 1, 2},
P+ |2 = pra—iy i _|pta—t
LS + 3 { 3 + 3 3 '

Since the single floor function of Lemma 5.6 depends on the value of ¢
mod 3, this lemma enables us to compute the value of the sum listed in
Claim 5.5, but at the cost of splitting the answer into three cases.

Corollary 5.7 (Three cases). If (a,b,c,d) is an (r,n, N, R)-solution, then
L%MJ ifb+c=2 mod3
L"+N+1J ifb+c=0 mod3
L#J ifb+c=1 mod3

In particular, if there is a configuration with b+ c¢ = 1 mod 3, then the

minimum of the sum of the two floor functions over all configurations is
[ 257
=

O

a+d+1 N b+c+1]
3 3 N

Proof. Let i be the remainder of b+ ¢+ 1 mod 3, with i € {0,1,2}. By
Lemma 5.6, L‘”gHJ + Lb+§+1J = L”"'N;Q_iJ, which simplifies as shown for
the three possible values of 7. Since L#J is the smallest of the three values
it is the minimum if it occurs. [l

From this Corollary it is easy to complete the proof of Claim 5.5.

Proof of Claim 5.5. Moving a robot from one side of a K, y to the other
changes the sum b+ c by 2. Since r,n > 2 by our standing assumption, there
are at least three configurations with the associated sum b+ ¢ yielding three
different remainders modulo 3. Thus Corollary 5.7 implies Claim 5.5. (]

Together, Claims 5.3, 5.4 and 5.5 establish the following lower bound.

Proposition 5.8 (Lower Bound). Let 2 <r <n < N < R be integers such
thatr + R=n+ N and let

ol 75 52

The link of every vertex in CONF,(n, N) is at least (¢ — 2)-connected.

This connectivity bound is actually sharp as we now show. In particular,
by Theorem 4.7 we know the exact connectivity when the vertex link itself
is a single chessboard complex, i.e. when it corresponds to a configuration
with all of the robots on one side. It turns out that such configurations
almost always yield the minimum connectivity. In the proof of the one floor
minimum, Claim 5.4, the minimum is realized when a = 0, which means
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that all of the robots are on one side of the graph, and we know the exact
connectivity of this vertex link by Theorem 4.7. In the proof of the no
floor minimum, Claim 5.3, the minimum of r is realized regardless of the
configuration, so we can elect to use a configuration where all of the robots
are on one side, so that the vertex link is a single chessboard complex and
we know its exact connectivity.

The third possible value L"JgN J , however, might only be produced in situ-
ations where there are robots on both sides, making the vertex link a join of
two chessboard complexes, and in this case all we have is a lower bound on
the connectivity (Remark 4.11). Luckily, the types of situations where the
third entry is strictly necessary are very rare and their exact connectivity
can be handled explicitly.

Lemma 5.9 (Exceptional case). If the minimum value for the connectivity
of the link of a 0-cell in CONF,(n, N) is determined by a non-trivial join of
two chessboard complexes then 2 <r=n=N =R andr =1 mod 3.

Proof. The only situation where we need to consider the connectivity of
n+N

a non-trivial join of two chessboard complexes is when L 5 J is strictly
less than both r and L%J If L%J is strictly less than L%J, then
n+N < r+n+1. This inequality simplifies to N < r which forcesr =n = N
since Theorem 5.1 assumes r < n < N < R. Since r + R = n + N we also
have R = n, and thus all four values are equal. Eliminating n and N,
the three values being minimized simplify to r, L%J and L%TJ and it is
clear that L%TJ < r for all positive integers r. If r = 0 or 2 mod 3, then
L%J = L%; lJ, the third entry is not the unique minimum value, and the
minimum connectivity is realized by a link corresponding to a configuration
where all of the robots are on one side. If, however, r = 1 mod 3 then

2r+1 =0 mod 3 while 2r =2 mod 3 so that L%TJ < L@J as desired. O

We can now complete the proof of the main result of this section.

Proof of Theorem 5.1. Proposition 5.8 shows that the link of every vertex in
CONF,(n, N) is at least (¢ — 2)-connected. Thus, it remains to show there is
a vertex whose link is not (¢ — 1)-connected. When / is either r or L#J
this minimum can be realized by a configuration with all of the robots on
one side. This means that the link of this vertex is a chessboard complex,
not a join of chessboard complexes, and by Theorem 4.7 this link is not
(¢ — 1)-connected.

If £ is solely achieved by the expression L"'EN J, then by Lemma 5.9, r =
n =N = R and r = 1 mod 3, which implies that a = d and b = ¢. If we
choose b=c=2and a =d =1r—2, then b+ ¢ = 1 mod 3 as required
by Corollary 5.7. In this special case, the link of the associated vertex is
Ap_9,—2%Aga. Since Ay is just two points, the full link is the suspension
of Ay_o,_o, which means the connectivity has increased by exactly one. [J

I
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Given any positive integers r, R, n and N where r + R = n 4+ N, the
universal cover of the associated configuration space CONF,(n, N) is isomor-
phic to the universal cover of a configuration space where these variables are
permuted so that they are in increasing order (see Corollary 3.17). Thus
we can remove the assumption that the parameters are ordered. Further,
we can apply Theorem 1.2 to convert the connectivity of vertex links to the
connectivity at infinity of the universal cover. These modifications transform
Theorem 5.1 into our Main Theorem.

Main Theorem. Consider r robots on a complete bipartite graph K, .
Let R be the number of open wvertices on K, n so that r + R = n + N
is the total mumber of vertices. Moreover, to avoid trivial cases, assume
that v, n, N and R are all at least 2. Let {y = min{r,R,n,N}, {; =
min{r, R} + min{n, N} +1, and lo =r+ R=n+ N. If

= 3] 3]}

then the universal cover of the combinatorial configuration space of v robots
on K, n is (£ —2)-connected at infinity but not (¢ — 1)-connected at infinity.

Although the space CONF,.(n, N) is rarely a manifold (Example 4.6), it is
much more common for it to be a finite duality complex, which is a gener-
alization of a compact manifold. Recall that when X is a finite, aspherical
cell complex with dimension d, and X is (d — 2)-connected at infinity, then
X is said to be d-dimensional duality complex (see [Geo08|). In our con-
text, we are able to give a precise description of the conditions necessary for
CoNF,(n, N) to be a duality complex.

Corollary 5.10 (Duality complex). Assume 2 <r <n < N. The configu-
ration space CONF,.(n, N) is an r-dimensional duality complex if and only if
n>2r—1.

Proof. Given our ordered parameters, the dimension of CONF,.(n, N) is r. So
we need to show that the universal cover of CONF,.(n, N) is (r —2)-connected
at infinity. Thus by Theorem 5.1 we need

¢ — min r+n-+1 n+ N _
=min\ 7, 3 , 3 =7

In particular we need
r+n+1 >
—3 |2

or equivalently

> 0.

r+n+1-3r
3

Therefore it is necessary that n > 2r — 1.
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Since we are assuming N > n, if n > 2r — 1 then N > 2r — 1, and so
n+ N >4r —2. But 4r — 2 > 3r when r > 2, so

252 2] 3]

which shows that n + 1 > 2r is also sufficient. O

Remark 5.11 (Multipartite graphs). The reader should note that our argu-
ment relies heavily on the symmetry described in Corollary 3.17 in order to
simplify our analysis. This symmetry, however, does not immediately extend
to complete multipartite graphs. It is also the case that links of O-cells in the
configuration spaces for robots on a multipartite graph are more complicated
than what occurs in the complete and complete bipartite cases. Hence an
analysis of the multipartite graph case will require different ideas.
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