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Abstract. We prove the Tits Alternative for groups with a bound
on the order of finite subgroups, acting properly on 2-dimensional “re-
current” complexes. This class of complexes includes, among others:
2-dimensional buildings, 2-dimensional systolic complexes, B(6)-small
cancellation complexes, and standard Cayley complexes for Artin groups
of extra-large type.

In the appendix written jointly with Jon McCammond we extend the
result to a class of 2-dimensional Artin groups containing all large-type
Artin groups.

1. Introduction

Tits proved that every finitely generated linear group is either virtually
solvable or contains a nonabelian free group [Tit72]. In other words, each
linear group GLn(k) satisfies the Tits Alternative, saying that each of its
finitely generated subgroups is virtually solvable or contains a nonabelian
free group. It is believed that the Tits Alternative is common among ‘non-
positively curved’ groups. However, up to now it has been shown only for few
particular classes of groups. Most notably, for: Gromov-hyperbolic groups
[Gro87], mapping class groups [Iva84, McC85], Out(Fn) [BFH00, BFH05],
fundamental groups of closed 3-manifolds (by geometrisation, cf. [KZ07]),
fundamental groups of some nonpositively curved real-analytic 4-manifolds
[Xie04], CAT(0) cubical groups [SW05]. Whether CAT(0) groups satisfy the
Tits Alternative remains an open question, even in the case of groups acting
properly and cocompactly on 2-dimensional CAT(0) complexes.

In this article we prove the Tits Alternative for groups with a bound on
the order of finite subgroups, acting properly on triangle complexes that
are “recurrent”. Here a triangle complex is a 2-dimensional simplicial com-
plex X built of geodesic Euclidean triangles, see [BH99, I.7.2]. We postpone
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the general definition of “recurrent” till Section 2, and here we discuss ex-
amples instead. All the group actions that we consider are by combinatorial
isometries.

Main Theorem. Let X be a simply connected triangle complex that is re-
current w.r.t. G acting properly and without inversions. Moreover, suppose
that G is finitely generated and there is a bound on the order of its finite sub-
groups. Then G is virtually cyclic, or virtually Z2, or contains a nonabelian
free group.

In particular, by Remark 2.2 the same conclusion will hold for any finitely
generated subgroup of G. In other words, G satisfies the Tits Alternative.

For example, let X be a 2-dimensional building or a 2-dimensional systolic
complex, which is a CAT(0) triangle complex with all edges of length 1 and
all triangles equilateral. We will show in Corollaries 2.6 and 2.7 that X has
a subdivision recurrent with respect to any automorphism group of X. This
implies the following for finitely generated subgroups of G.

Theorem A. Let X be a 2-dimensional building or a 2-dimensional systolic
complex. Suppose that G acts on X properly and there is a bound on the
order of its finite subgroups (e.g. G acts on X properly and cocompactly).
Then any subgroup of G is virtually cyclic, or virtually Z2, or contains a
nonabelian free group.

Ballmann and Brin proved that if X is any 2-dimensional CAT(0) com-
plex, and G acts on X properly and cocompactly, then G itself is virtually
cyclic, or virtually Z2, or contains a nonabelian free group [BB95]. However,
it was only very recently that we were able to perform with Norin a first step
to understand the subgroups of G, by proving that each of them is finite or
contains Z [NOP19].

Note that in Theorem A, as in many other applications of the Main The-
orem, we will be able to remove the assumption that the group is finitely
generated. However, we cannot remove simultaneously the assumption on
the bound on the order of finite subgroups, as the following example from
[BH99, II.7.11] shows. For a finite nonabelian group H, the infinitely gener-
ated torsion group

⊕
NH acts properly on a simplicial tree, and at the same

time it neither contains a nonabelian free group nor is virtually abelian.
Other classes of recurrent complexes arise from complexes with vari-

ous combinatorial nonpositive-curvature-like features. This includes Cayley
complexes for the standard presentations of Artin groups of extra-large type
(see Subsection 4.2 for the definition).

Theorem B. Let X be the Cayley complex for the standard presentation of
an Artin group AΓ of extra-large type. Suppose that G acts on X properly
and there is a bound on the order of its finite subgroups (e.g. G = AΓ).
Then any subgroup of G is virtually cyclic, or virtually Z2, or contains a
nonabelian free group.
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In Appendix A written jointly with Jon McCammond we extend The-
orem B to a class of 2-dimensional Artin groups containing all large-type
Artin groups. In the case where G = AΓ we will extend Theorem B to all
2-dimensional AΓ with WΓ hyperbolic in a forthcoming article [MP19]. We
will give there an account on the current state of affairs concerning the Tits
Alternative for other classes of Artin groups.

Another class of recurrent complexes arises from simply connected B(6)-
small cancellation complexes (see Subsection 4.1 for the definition and de-
tails).

Theorem C. Let X be a simply connected B(6)-small cancellation complex.
Suppose that G acts on X properly and there is a bound on the order of
its finite subgroups. Then any finitely generated subgroup of G is virtually
cyclic, or virtually Z2, or contains a nonabelian free group.

Let us note that Wise [Wis04] associated to each simply connected B(6)
complex X a CAT(0) cube complex C. Furthermore, in [SW05] the Tits Al-
ternative is shown for groups with a bound on the order of finite subgroups,
acting properly on finite dimensional CAT(0) cube complexes. However,
the complex C associated to a simply connected B(6) complex X might not
be finitely dimensional — this happens e.g. when there is no bound on the
size of the 2-cells in X. Therefore, the results from [SW05] do not imply
Theorem C.

The method of proving the Tits Alternative presented in this paper raises
the following natural questions.

Questions. Simplicial subdivisions of which 2-dimensional combinatorial
complexes can be metrised as recurrent complexes? Can it be done for C(6)-
small cancellation complexes? What about Cayley complexes for standard
presentations of 2-dimensional Artin groups?

Idea of proof of the Main Theorem. For simplicity we assume that the
action of G is free and that X is systolic. Supposing additionally that X is
countable, we exhaust the quotient X = X/G with compact subcomplexes
X1 ⊂ X2 ⊂ · · · . The fundamental groups Gi of Xi have direct limit G.

Collapsing we remove the free edges from Xi. We focus first on the
case where some Xi is thick meaning that it has an edge e of degree ≥ 3.
Consider the space of all local geodesics in Xi that are concatenations of
segments . . . , a−1a0, a0a1, a1a2, . . . indicated in Figure 1 on the right. Fol-
lowing [BB95], we equip that space with a finite measure µ∗ assigning to
each ‘cylinder’ of geodesics passing through prescribed consecutive segments
a0a1, a1a2, . . . , an−1an the value

∏n−1
i=1

1
deg ai−1 , where deg ai is the degree of

the edge containing ai. Using Poincaré recurrence à la [BB95] we can find a
local isometric embedding f of the dumbbell graph Γ (see Figure 1 on the
left) into Xi with the following properties. Namely, f sends the vertices of
Γ into e and the edges of Γ into concatenations of the segments in Figure 1
on the right, terminating perpendicularly to e. In particular, f(Γ) avoids
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the vertices of Xi and hence the stabiliser in G of the lift of Γ to X contains
a nonabelian free group.

C C ′

C ′′

Γ

Figure 1.

In the case where Xi is not thick, it is a union of a graph and a dimension 2
pseudomanifold. The components of the pseudomanifold are π1-injective
in X, since otherwise attaching compressing discs puts us back in the thick
case. If one such component is a hyperbolic surface Σ, we find a nonabelian
free group in π1(Σ) < G. Otherwise, each Gi is a free product of some copies
of Z,Z2 and the Klein bottle group, which satisfies the Tits Alternative. One
can arrange that the number of factors is bounded by a constant independent
of i, and then use the Hopfian property to deduce that the sequence G1 →
G2 → · · · stabilises. This shows that G coincides with some Gi.

Organisation. In Section 2 we define the main object of our interest, the
recurrent complexes. We provide main examples and basic properties, and
we show how to find nonabelian free subgroups given thick subcomplexes.
In Section 3 we treat the case where there are no thick subcomplexes and
we prove the Main Theorem. In Section 4 we provide applications to B(6)-
small cancellation complexes and Artin groups of extra-large type, proving
Theorem C and the finitely generated case of Theorem B. We discuss the case
of infinitely generated subgroups and we complete the proofs of Theorems A
and B in Section 5.

Acknowledgements. We thank Pierre-Emmanuel Caprace for valuable
comments. This paper was written while D.O. was visiting McGill Univer-
sity. We would like to thank the Department of Mathematics and Statistics
of McGill University for its hospitality during that stay.

2. Recurrent complexes

In this section we present a variant of the constructions introduced in
[BB95].

Definition 2.1. Let X be a triangle complex with an action of a group G.
Let x ∈ X1 − X0, let e be the edge containing x and let T be a triangle
containing e. Then lkxT denotes the open half-circle of directions at x in T
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that are transverse to e. By deg x we denote the degree of e, i.e. the number
of triangles containing x.

For v ∈ lkxT , let H(v) be the union of the directions v′ ∈ lkxT
′ with

T ′ 6= T such that there is a geodesic through x in T ∪ T ′ with directions v
and v′. Note that for each triangle T ′ containing x with T ′ 6= T there exists
a unique such v′. Thus |H(v)| = deg x − 1. We have v′ ∈ H(v) if and only
if v ∈ H(v′)

Furthermore, for v ∈ lkxT suppose that the geodesic in T with the starting
direction v terminates at a point x′ ∈ X1 −X0. Then we denote its ending
direction by I(v) ∈ lkx′T . Note that I(I(v)) = v.

We say that X is recurrent with respect to G if there is a G-invariant
subset A of the union of all lkxT such that all the following hold:

(i) for each triangle T the set of a ∈ A with a in some lkxT is finite,
(ii) for each a ∈ A we have H(a) ⊂ A,
(iii) for each a ∈ A we have that I(a) is defined and belongs to A,
(iv) for each edge e of degree ≥ 3 there exists x ∈ e such that for some

(hence any by (ii)) triangle T containing e the direction in lkxT per-
pendicular to e belongs to A,

(v) there is no finite sequence a0, a1, . . . , an, such that for all 0 ≤ i < n we
have ai+1 ∈ H(I(ai)), and a0 = an or a0 = I(an).

Remark 2.2. If a triangle complex X is recurrent w.r.t. G and X ′ ⊆ X is
a G′-invariant subcomplex, for some G′ < G, then X ′ is recurrent w.r.t. G′.

Remark 2.3. If X is CAT(0), then its local geodesics are global geodesics
and hence embed, and consequently Definition 2.1(v) holds automatically
for any A.

Example 2.4. Suppose that X admits a simplicial map ρ to a simplicial
complex consisting of only one triangle with angles π

2 ,
π
4 ,

π
4 such that ρ re-

stricted to each triangle of X is an isometry. Then X has A satisfying
Definition 2.1(i)-(iv) w.r.t. any automorphism group of X. Indeed, it suf-
fices to define A ∩ lkxT with x in an edge e to be

• the vector perpendicular to e, for e the long edge and x dividing e
in the ratio 1: 3,
• the vectors at angles π

4 to e, for e the long edge and x the midpoint
of e,
• the vectors at angles π

4 and π
2 to e, for e the short edge and x the

midpoint of e,
• empty otherwise.

In other words, A is the union of the directions at the boundary of the two
billiard trajectories in Figure 2.

Example 2.5. Suppose that X admits a simplicial map ρ to a simplicial
complex consisting of only one triangle with angles π

2 ,
π
3 ,

π
6 such that ρ re-

stricted to each triangle of X is an isometry. Then X has A satisfying Defi-
nition 2.1(i)-(iv) w.r.t. any automorphism group of X. Indeed, it suffices to
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Figure 2.

define A in each triangle as the union of the directions at the boundary of
the two billiard trajectories in Figure 3, where y is, say, the edge midpoint.

y y

Figure 3.

We have the following immediate consequence of Example 2.5 and Re-
mark 2.3.

Corollary 2.6. Let X be a 2-dimensional systolic complex. Then the barycen-
tric subdivision of X is recurrent with respect to any automorphism group.

Corollary 2.7. Let X be a 2-dimensional Euclidean building of type W with
its usual geometric realisation, where each chamber is realised as a Euclidean

triangle of angles π
mst

in the cases W = Ã2, C̃2, G̃2 or a square in the case

W = (Ĩ2)2 = D∞ × D∞. Then X has a subdivision X∗ that is recurrent
with respect to any automorphism group G of X, and such that G acts on
X∗ without inversions.

Proof. Since X is CAT(0), by Remark 2.3 we have that Definition 2.1(v)

holds automatically. If W = G̃2, it suffices to take X∗ = X and use Ex-

ample 2.5. If W = Ã2, we take X∗ to be the barycentric subdivision of X

and we use Example 2.5 as well. If W = C̃2, let X∗ be obtained from X by
subdividing each triangle into two similar triangles along the altitude from

the right angle. We then use Example 2.4. Finally, if W = (Ĩ2)2, let X∗ be
the barycentric subdivision of X and use Example 2.4. �

Remark 2.8. In fact, if X is a triangle complex with finitely many isometry
types of ‘simplices with specified directions in A’, recurrent w.r.t. G, then
its barycentric subdivision X ′ is also recurrent w.r.t. G, and consequently
in the Main Theorem one can remove the assumption that G acts without
inversions.
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Indeed, first note that for ε sufficiently small, we can replace A by A′

whose geodesic segments with starting direction a′ ∈ A′ and ending direction
I(a′) constitute the boundary of the ε-neighbourhood of analogous segments
from a ∈ A to I(a). Secondly, except for finitely many of such ε, these
segments from a′ ∈ A′ to I(a′) do not pass through the vertices of X ′, and
hence they show the recurrence of X ′ w.r.t. G.

Recurrent complexes are designed to satisfy the following lemma.

Definition 2.9. A 2-dimensional simplicial complex is essential if its every
edge has degree at least 2, and none of its connected components is a single
vertex. An essential triangle complex is thick if it has an edge of degree at
least 3.

Lemma 2.10. Suppose that a triangle complex X has all edges of finite
degree, is thick, and is recurrent with A/G finite. Then G contains a non-
abelian free group.

To prove Lemma 2.10 we will use the following method of [BB95].

Definition 2.11. Suppose that a triangle complex X has all edges of finite
degree, and is recurrent with A/G finite. Consider the Markov chain with
states A and the following transition function. Let b ∈ A ∩ lkxT . The
transition probability p(a, b) from a ∈ A to b equals 1

deg x−1 if b ∈ H(I(a))

and 0 otherwise.

Remark 2.12. A uniform measure µ on A is stationary for that Markov
chain. Thus the space AZ can be equipped with Markov measure µ∗ invariant
under the shift (see e.g. [Wal82, Ex (8), page 21]). Since A/G is finite, the
measure of the quotient AZ/G by the diagonal action of G is finite, w.l.o.g.
a probability measure. Note that the shift map descends to AZ/G and is
still measure preserving.

Lemma 2.13. Suppose that a triangle complex X has all edges of finite
degree, and is recurrent with A/G finite. Let a ∈ A and b ∈ H(a). Then
there is a local geodesic f : [0, l] → X with the directions at 0, l mapping to
b, ga for some g ∈ G.

Proof. We have p(I(a), b) 6= 0. Thus by the Poincaré recurrence (see e.g.
[Wal82, Thm 1.4]) applied to AZ/G we have a finite sequence a0 = I(a), a1 =
b, . . . , an = ga0, for some g ∈ G, such that for all 0 ≤ i < n we have
ai+1 ∈ H(I(ai)). Define f as the concatenation of the geodesics from ai to
I(ai) for 1 ≤ i < n and from an = ga0 to gI(a0) = ga. �

Proof of Lemma 2.10. Let Γ (see Figure 1 left) be the graph obtained from

joining the basepoints of two closed paths C,C
′

by a path C
′′

(their lengths
will be determined later). Let Γ be the universal cover of Γ with the action of
the deck transformation group F2. The main idea of the proof is to construct
a homomorphism ϕ : F2 → G and ϕ-equivariant local isometry Γ→ X−X0

that is injective on the set of directions at the vertices of Γ.
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Let C ′′ be a lift to Γ of C
′′

with endpoints c, c′. Let C,C ′ be some lifts of

the paths C,C
′

starting at c, c′. Let h, h′ ∈ F2 be the elements mapping c
to the other endpoint of C, and c′ to the other endpoint of C ′, respectively.
Observe that C ∪ C ′ ∪ C ′′ is a fundamental domain for the action of F2

on Γ. Thus to define an equivariant map Γ → X −X0 it suffices to define
a homomorphism ϕ : F2 → G and a map f : C ∪ C ′ ∪ C ′′ → X − X0 with
the property that ϕ(h) maps f(c) to the other endpoint of f(C) and ϕ(h′)
maps f(c′) to the other endpoint of f(C ′).

Let e be an edge of X of degree ≥ 3. Then for i = 1, 2, 3, there are distinct
triangles Ti containing e. Since Y is recurrent, by Definition 2.1(iv) we have
x ∈ e such that for any T containing e the direction in lkxT perpendicular
to e belongs to A. Let vi be that direction in lkxTi.

Apply Lemma 2.13 to a = v1, b = v2, to obtain a local geodesic f : [0, l]→
X−X0 with ending directions v2, gv1, for some g ∈ G. Identify C with [0, l].
Analogously, apply Lemma 2.13 to a = v1, b = v3 to obtain f : C ′′ → X−X0

with ending directions v3, g
′′v1, for some g′′ ∈ G. Finally, apply Lemma 2.13

to a = v2, b = g′′v3, to obtain f : C ′ → X − X0 with ending directions
g′′v3, g

′g′′v2, for some g′ ∈ G. Define ϕ : F2 → G by ϕ(h) = g and ϕ(h′) = g′.
By the observation above, we can extend f : C ∪C ′ ∪C ′′ → X −X0 to a ϕ-
equivariant map Γ→ X −X0 for which we keep the same notation f . Note
that for each vertex w of Γ the three directions at w are mapped under f
to a G-translate of the triple {v1, v2, v3}.

Let E be the set of directed edges of Γ. Consider the map f∗ : E → A that
maps each directed edge wu ∈ E to the direction of f(wu) at f(w). We will
prove that ϕ is injective by showing that f∗ is injective. Suppose that there
are two edges wu,w′u′ ∈ E with f∗(wu) = f∗(w

′u′). Then we also have
f∗(uw) = f∗(u

′w′), so without loss of generality we can assume that the
embedded edge-path γ in Γ from w to w′ passes through u. For i = 0, . . . , n,
let ai be the images under f∗ of consecutive edges of γ. In particular,
a0 = f∗(wu) and in the case where u′ lies on γ we have an = f∗(u

′w′).
If γ does not contain u′, then we add an+1 = f∗(w

′u′). Note that for
i = 0, 1, . . . we have ai+1 ∈ H(I(ai)), and so f∗(wu) = f∗(w

′u′) contradicts
Definition 2.1(v). �

3. Invariant cocompact subcomplexes

Definition 3.1. Let X be a simplicial complex with a simplicial action of
a group G. We say that a subcomplex Z ⊆ X is an invariant cocompact
subcomplex with respect to G (shortly G-c.s.) if Z is G-invariant, and the
quotient Z/G is compact. Note that a G-c.s. is not required to be connected.

A simplicial complex homeomorphic to the plane R2 (resp. to the 2-
sphere S2) is called a simplicial plane (resp. simplicial 2-sphere). A sim-
plicial plane whose 1-skeleton is Gromov-hyperbolic (w.r.t. to the metric
where each edge has length 1) is called hyperbolic. By the classification of



TITS ALTERNATIVE FOR 2-DIMENSIONAL RECURRENT COMPLEXES 9

2-dimensional orbifolds, if E is a non-hyperbolic simplicial plane with co-
compact automorphism group H, then H is virtually Z2. We call such E a
flat.

Lemma 3.2. Let X be a simply connected 2-dimensional simplicial complex
with a finitely generated group G acting properly and without inversions.
Suppose that there is a bound on the order of finite subgroups of G. If each
essential G-c.s. in X is a disjoint union of flats, then G is virtually a free
product of some number of Z and Z2.

Proof. Suppose first that X is countable. We may find an increasing se-
quence X1 ⊂ X2 ⊂ · · · of connected G-c.s.’s exhausting X. (Start with a
G-orbit of a vertex, connect it equivariantly by edge-paths, then at each step
add equivariantly remaining cells.) The action of G on Xi lifts to an action

of a group Gi on the universal cover X̃i of Xi. The corresponding maps

X̃1 → X̃2 → · · · and X̃i → X̃ = X induce homomorphisms G1 → G2 → · · ·
and epimorphisms Gi � G. Note that the vertex stabilisers of the action of

Gi on X̃i coincide with the vertex stabilisers of the action of G on Xi and
thus have uniformly bounded order.

Since G is finitely generated, there is a finitely generated subgroup H1 <
G1 such that H1 → G is an epimorphism. For each i > 1, let Hi be the
image of H1 under the the homomorphism G1 → Gi. We obtain an infinite
sequence of epimorphisms

H1 � H2 � · · ·(1)

The epimorphism from the direct limit lim−→Hi to G is in fact an isomorphism.

Indeed, let hi ∈ ker(Hi → G) and let α be a path joining a basepoint

x̃i ∈ X̃i to hix̃i. The projection of α to Xi is a closed path and it becomes
contractible in some Xj , since Xj exhaust X, and X is simply connected.

Consequently the image hj ∈ Hj of hi fixes the image of x̃i in X̃j and thus
hj ∈ ker(Hj → G) implies hj = 0.

Since each essential G-c.s. in X is a disjoint union of flats and G acts
without inversions, every Xi can be equivariantly collapsed (by removing
triangles with free edges) to a space Yi that is a union of a graph and a

disjoint union of flats. The preimage Ỹi ⊂ X̃i of Yi under the covering map
is thus a simply connected union of a graph and a disjoint union of flats,
with a proper and cocompact action of Gi. Let Γi be the tree obtained

from Ỹi by quotienting each flat to a vertex. The quotient Γi/Gi is a finite
graph of groups Gi with π1Gi = Gi and edge groups of uniformly bounded
order. Its vertex groups Gv are also finite of uniformly bounded order, or
have the following description for a vertex v obtained from quotienting a
flat Z to v. Namely, let G′v be the image of Gv in the isometry group of
Z. We then have a short exact sequence 0 → K → Gv → G′v → 0, with
K finite of uniformly bounded order. By the classification of 2-dimensional
Euclidean orbifolds, there are only finitely many possible isomorphism types
for G′v. Consequently, there are only finitely many possible isomorphism
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types for Gv. Analogously, there are only finitely many possible isomorphism
types for the subgroups of Gv.

If H1 is generated by d elements, then so is each Hi for i > 1. Since each
Hi is a subgroup of Gi, it is also the fundamental group of a finite graph
of groups Hi with edge groups of uniformly bounded order. It follows,
by a result of Linnell [Lin83, Thm 2], that there is a uniform bound on
the number of edges in a minimal such graph with fundamental group Hi.
(This is because the augmentation ideal in [Lin83, Thm 2] is generated
by at most d elements.) Edge and vertex groups of Hi have only finitely
many isomorphism types. Furthermore, there are finitely many possible
injections from edge groups to vertex groups, up to conjugations in vertex
groups. However, such conjugations do not change π1Hi. Hence there are
only finitely many isomorphism types in {Hi}∞i=1.

Let H be isomorphic to Hi for infinitely many i. Note that H is virtually
a free product of some number of Z and Z2, and thus it is residually finite.
Moreover, H is finitely generated, so it is Hopfian. It follows that if H ∼=
Hi, Hi+k, then Hi � Hi+k is an isomorphism, and hence, for every j =
i, i + 1, . . . , i + k − 1, the map Hj � Hj+1 is an isomorphism. Therefore,
the sequence (1) stabilises and G = H is as required.

If X is not countable, we consider the collection Xλ of all connected
G-c.s. containing a given connected G-c.s. X1, which form a directed set
under inclusion. We define appropriate Gλ, Hλ as before, and we have again
G = lim−→Hλ. There is still H such that for every Xλ there is Xλ′ ⊃ Xλ with
Hλ′ = H, and then replacing X1 by such Xλ′ we obtain that all maps in our
directed system are isomorphisms and consequently G = H. �

Lemma 3.3. Let Z ⊆ X be a connected essential subcomplex in a connected
simplicial complex X. If π1Z → π1X is not injective, then Z is contained
in a thick subcomplex Z ′ ⊆ X with Z ′ − Z finite.

Before we give the proof, we record the following consequences.

Corollary 3.4. Let Z ⊆ X be a connected essential G-c.s. in a connected
simplicial complex X. If π1Z → π1X is not injective, then Z is contained
in a thick G-c.s.

Proof. Apply Lemma 3.3 to Z. Then GZ ′ is a thick G-c.s. �

For a subcomplex Z ⊆ X and a triangle T of Z let galZ(T ) denote the
gallery connected component of Z containing T . That is, galZ(T ) is the
subcomplex of Z consisting of T and all the triangles in Z that can be
reached from T by passing from a triangle to a triangle adjacent along an
edge.

Corollary 3.5. Let X be a simply connected simplicial complex that does
not contain simplicial 2-spheres. Let Z ⊆ X be an essential G-c.s. that is
not contained in a thick G-c.s. Then for each triangle T of Z, galZ(T ) is a
simplicial plane.
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Proof. Since Z is essential and not thick, galZ(T ) is a 2-dimensional pseu-
domanifold. Thus galZ(T ) is homeomorphic with a connected surface with
possibly some identifications on a discrete set of points. By Corollary 3.4,
galZ(T ) is simply connected, so it is homeomorphic with S2 or R2. �

We now pass to the proof of Lemma 3.3. A disc diagram D is a compact
contractible simplicial complex with a fixed embedding in R2. Its boundary
path is the attaching map of the cell at ∞. If X is a simplicial complex, a
disc diagram in X is a nondegenerate simplicial map ϕ : D → X, and its
boundary path is the composition of the boundary path of D and ϕ. We
say that ϕ is reduced if it maps triangles sharing an edge to two distinct
triangles. The area of ϕ is the number of triangles of D.

Remark 3.6. Let γ be a closed edge-path in a simplicial complex X. If γ is
contractible in X, then there is a reduced disc diagram in X with boundary
path γ. For γ embedded, this is [JŚ06, Lem 1.6]. For γ not embedded, attach
a triangulated annulus A to X along γ to obtain X ′. Applying the embedded
case to the second boundary component γ′ of A we obtain a reduced disc
diagram ϕ′ : D′ → X ′. Then ϕ′−1(X ′ −X) is the open combinatorial 1-ball
around ∂D′. Consequently, ϕ′ restricted to D = D′ − ϕ′−1(X ′ − X) is a
reduced disc diagram with boundary path γ.

Proof of Lemma 3.3. Let ϕ : D → X be a minimal area reduced disc dia-
gram with boundary path in Z representing a nontrivial element of π1(Z).
Note that D cannot have area 0. Let Z ′ = Z ∪ ϕ(D). Observe that Z ′ is
essential, since Z is essential and ϕ is reduced. Furthermore, let T be a
triangle of D adjacent to a boundary edge e. By the minimality of area,
ϕ(e) has degree ≥ 3 in Z ′. �

Proof of the Main Theorem. If X contains a simplicial 2-sphere Σ, then
there is no triangle T0 in Σ with an a0 ∈ A in some lkx0T0. Indeed, oth-
erwise using Definition 2.1(ii) and (iii) we could construct in A an infinite
sequence a0, a1, . . . such that for all i ≥ 0 we have ai+1 ∈ H(I(ai)), with ai
in some lkxiTi and Ti ⊂ Σ. This would contradict Definition 2.1(i) or (v).
Consequently, by Definition 2.1(iv) each edge of Σ has degree 2 in X. We
can thus remove all triangles and edges of each Σ and replace them by a
cone over the vertex set Σ0. After this operation X is still simply connected.
We can thus assume that X does not contain simplicial 2-spheres.

If X contains a thick G-c.s. Z, then by Remark 2.2 the triangle complex
Z is recurrent with respect to G. Since G acts cocompactly on Z, we have
that A/G is finite. Moreover, since G acts properly on Z, all edges of Z
have finite degree in Z. Thus by Lemma 2.10 we have that G contains F2.

Let us assume then that X does not contain a thick G-c.s. Consider
possible essential G-c.s. Z ⊆ X. By Corollary 3.5, for each triangle T of Z
the gallery connected component Y = galZ(T ) is a simplicial plane. If any
such Y is not a flat, then it is a hyperbolic simplicial plane. Consequently,
the stabilizer StabG(Y ), which acts geometrically on Y , contains F2 (by e.g.
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[GdlH90, Thm 8.37]). If Y 6= Y ′ are two such intersecting flats, then by
Corollary 3.4 the connected component W of Z containing Y ∪ Y ′ is an
infinite valence tree of flats and thus StabG(W ) contains F2. It remains
to consider the case where each Z is a disjoint union of flats. Then by
Lemma 3.2, G contains F2, is virtually Z2, or virtually cyclic. �

4. More applications

Example 4.1. Let X be a 2-dimensional combinatorial complex with all
edges of length 1 and all 2-cells regular Euclidean 2n-gons, where n might
vary. Suppose that all cells embed in X. Then the barycentric subdivi-
sion X ′ of X is a triangle complex satisfying Definition 2.1(i)-(iv) w.r.t. any
automorphism group of X. Indeed, we define A in the triangles forming
a given polygon as the directions coming from the union of line segments
perpendicular to opposite edge pairs and dividing them in the ratio 1 : 3, see
Figure 4.

Here we study two classes of complexes, where we have also Defini-
tion 2.1(v), and consequently X ′ is recurrent w.r.t. any automorphism group
of X.

Figure 4.

4.1. B(6) complexes. The following notion was introduced by Wise [Wis04].
LetX be a 2-dimensional combinatorial complex. X satisfies theB(6) (small
cancellation) condition if for each 2-cell R, and for each path S → ∂R which
is the concatenation of at most 3 pieces, we have |S| ≤ |∂R|/2, where | · |
denotes the number of edges in a path. (See [Wis04] for definitions of paths,
pieces, and further details.) In particular, B(6) complexes satisfy the com-
binatorial C(6) small cancellation condition [Wis04, Prop 2.11].
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Example 4.2. Suppose that X is simply connected and satisfies B(6). By
subdividing each edge into two, we can assume that for every 2-cell R of X
the length |∂R| is even. A hypergraph in X is then a connected compo-
nent Λ of a graph whose vertices correspond to edges of X and whose edges
correspond to pairs of antipodal edges in R, with the obvious map Λ → X
[Wis04, Def 3.2 and Rem 3.4]. Equip the barycentric subdivision X ′ of X
with the metric and A of Example 4.1. Note that all the 2-cells of X embed
by [Wis04, Cor 2.9].

Observe that any sequence a0, a1, . . . , an of elements of A, with ai+1 ∈
H(I(ai)) for 0 ≤ i < n extends to such a sequence with a0 ∈ lkxT, an ∈
lkx′T

′ with x, x′ in the edges of X (and dividing them in the ratio 1: 3). Join-
ing consecutive ai by geodesics we obtain a local geodesic segment γ → X,
which factors (up to a distance 1

4 translation) through a hypergraph Λ→ X.
Since Λ→ X is an embedding [Wis04, Cor 3.12] we have Definition 2.1(v),
and thus X ′ is recurrent with respect to any automorphism group of X.
Consequently the Main Theorem applies to X ′, implying Theorem C.

Our arguments do not extend directly to C(6)-small cancellation com-
plexes because, as shown in [Wis04, §3.5], in that case a hypergraph might
not embed. It is an open question (see e.g. [Wis04, Prob 1.4]) whether one
can define any reasonable ‘walls’ in that case.

4.2. Artin groups of extra-large type. Let Γ be a finite simple graph
with each of its edges labeled by an integer ≥ 2. Let V Γ be the vertex
set of Γ. The Artin group AΓ is given by the following presentation, where
pm(a, b) denotes the word aba · · ·︸ ︷︷ ︸

m

:

〈V Γ | pm(a, b) = pm(b, a) for each edge ab labelled by m〉.
We call the presentation above the standard presentation for AΓ. The

Artin group AΓ is of extra-large type if all the labels satisfy m ≥ 4. The
Coxeter group WΓ is obtained from AΓ by adding the relations a2 = 1 for
all a ∈ V Γ.

Let X be the Cayley complex of AΓ for the standard presentation. It
consists of cells that are 2m-gons with m the labels of Γ. A hypergraph
Λ → X is defined as in Example 4.2. Note that Λ → X is an embedding,
since it projects to a hypergraph in the Cayley complex of WΓ, which is
embedded. Similarly, X − Λ has two connected components.

Proposition 4.3. Suppose that AΓ is of extra-large type. Then each hyper-
graph Λ in X is a tree.

By Example 4.1 and Proposition 4.3, the Main Theorem applies to X ′

implying Theorem B for finitely generated subgroups of G.

The remaining part of the section is devoted to the proof of Proposi-
tion 4.3.
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Lemma 4.4. Let Γ be a single edge ab with label m ≥ 3, and let Λ ⊂ X be
a hypergraph. Suppose that we have an edge-path γ in X with only the first
and the last edge corresponding to vertices of Λ. Then γ is not labelled by a
word of the form akbal, bkabl or akbl with k, l ∈ Z− {0}.

Proof. Let w ∈ WΓ denote the element represented by the longest word
pm(a, b). Consider an edge of Λ. Its vertices correspond to opposite edges
e, e′ in a 2-cell D of X. Thus e and e′ are labelled by the same (resp.
distinct) letters for m even (resp. odd) and oriented towards the same side
of Λ. A path in ∂D starting with e and ending with (e′)−1 is labelled by a
word projecting to wa or wb in WΓ. If we consider another edge of Λ with
vertices corresponding to e′, e′′, a path starting with e and ending with (e′′)−1

is labelled by a word projecting to 1 ∈WΓ. Consequently, a concatenation of
such paths that is starting with (an edge labelled by) a and ending with a−1

is labelled by a word projecting to 1 or possibly to wa for m even, which is
distinct from the possible projections aba, ab, ba, b of akbal. Similarly, if such
a concatenation of paths is starting with a and ending with b−1, then m is
odd, and the path is labelled by a word projecting to wb, which is distinct
from the possible projections ab, a, b, 1 of akbl. �

Lemma 4.5. Let Γ be a single edge ab with label m ≥ 3. Let u be a cyclically
reduced word representing 1 ∈ AΓ. Then, possibly after a cyclic permutation
of u, there are two subwords w1, w2 of u of forms pm(a, b), pm(a, b)−1, pm(b, a),
or pm(b, a)−1, none of whose letters lie in the same syllable of u, nor any of
the cyclic permutations of u.

In the proof we will use the small cancellation techniques of [AS83]. Here
we recall only the notions that are less standard and we refer the reader to
[AS83] for more details. An R-diagram M is a van Kampen diagram, with
the boundary path of each 2-cell (called a region) labelled by a word in a
set of relators R. If we ignore the labelling, M is just called a diagram. A
spike of M is a boundary vertex of valence 1. The interior degree i(D) of a
region D is the number of interior edges of ∂D (after forgetting vertices of
valence 2). D is a simple boundary region if its outside boundary ∂D∩∂M is
nonempty, and M −D is connected. A singleton strip is a simple boundary
region with i(D) ≤ 1. A compound strip is a subdiagram R of M consisting
of regions D1, . . . , Dn, with n ≥ 2 with Dk−1∩Dk a single interior edge of R
(after forgetting vertices of valence 2), satisfying i(D1) = i(Dn) = 2, i(Dk) =
3 for 1 < k < n and M −R connected.

We will use the following [AS83, Lem 2], where case (ii) needs to be added
to account for a minor error in the third paragraph of their proof where the
singleton strip D might be glued to a region contained in two distinct strips
of M ′.

Lemma 4.6. Let M be a simply connected diagram with no spikes and more
than one region. If M satisfies C(4) and T (4), then

(i) M contains two singleton strips, or
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(ii) M contains one singleton strip and two compound strips, or
(iii) M contains four compound strips.

Proof of Lemma 4.5. Let M be a minimal R̂ab-diagram for u, where R̂ab is
the symmetrised set obtained from the relator pm(a, b)(pm(b, a))−1. Each
region of M has two separating vertices separating the paths in its boundary
labelled pm(a, b) and (pm(b, a))−1. We prove inductively on the number
of regions of M a slight strengthening of Lemma 4.5 where we add the
requirement that each wi labels a path in the outside boundary of a region
of M (which joins its separating vertices).

If M has a single region, then (after possibly a cyclic permutation and/or
an inversion) we have u = pm(a, b)(pm(b, a))−1 and we are done. Otherwise
we can apply Lemma 4.6, since by [AS83, Lem 3], M satisfies C(4) and T (4).

In cases (ii) and (iii) we claim that there are regions D1, D2 in the strips
of M with both of their separating vertices on their outside boundaries
(we will call such regions exposed), and such that the outside boundaries of
D1, D2 are separated in ∂M by outside boundaries of other simple boundary
regions of interior degree at most 2.

To justify the claim, by [AS83, Lem 5] each strip S has an exposed re-
gion D. Consequently, in case (ii), if we denote by Ds the singleton strip and
by S, S′ its consecutive (clockwise and counterclockwise) compound strips,
there are exposed regions D in S and D′ in S′. We can take D1 = Ds and
D2 to be D or D′ unless D and D′ are the regions consecutive to Ds among
the interior degree 2 regions of M lying in S and S′. But then we can take
D1 = D,D2 = D′ instead. Finally, in case (iii), if we call any exposed region
Ds, we have two strips S, S′ disjoint from Ds and the same procedure as in
case (ii) yields the required D1, D2. This justifies the claim.

Choose w1, w2 labelling the paths in the outside boundaries of D1, D2

between their separating vertices. Note that each simple boundary region
of interior degree at most 2 has outside boundary of length at least 2, and
hence witnesses a syllable change in u. Thus by the claim the letters of
w1, w2 do not lie in the same syllable.

It remains to consider case (i). Let D be a singleton strip and let M ′

be the diagram obtained from M by removing D and possibly a spike or
a sequence of spikes, so that M ′ has cyclically reduced boundary word u′.
By induction hypothesis, u′ has appropriate subwords w′1, w

′
2 in the outside

boundaries of single regions. We can choose w1 = w′1, w2 = w′2 for u, unless
the intersection β of D or the final spike with M ′ contains an interior vertex
of the path α labelled by one of the w′i, say w′1. There is an endpoint x of β
that is not an endpoint of α. Let w2 = w′2. For the choice of w1, suppose
first that β is not a single vertex. Then x is a separating vertex of D. Thus
we can take w1 to be the word labelling the length m subpath of ∂D − β
starting at x. It remains to consider β = x. In that case we can take w1 to
be the word labelling any path (there might be two) in the outside boundary
of D joining its separating vertices. �
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We are finally ready for the following.

Proof of Proposition 4.3. We first focus on the case where Γ is a single edge.
The proof works independent of its label m. Suppose that there is a cycle γ
in Λ with edges corresponding to 2-cells D0, D1, . . . , Dk = D0 and vertices
corresponding to edges e0, e1, . . . , ek = e0 of X with ei−1, ei opposite in Di

for i = 1, . . . , k. Let ui be the labels on the length m − 1 paths joining in
∂Di either the initial vertices or the terminal vertices of the directed edges
ei−1, ei. Then u = u1u2 · · ·uk represents the trivial element in AΓ and hence

there is an R̂ab-reduced diagram M for u. Suppose that M has minimal
possible number n of regions among all cycles γ of Λ.

Attach to M along its boundary all the Di, and glue Di to Di+1 along ei,
to form a diagram M ′. Note that M ′ is still reduced, since if Di would cancel
with a region D of M , we would have (using the observation that Λ does not
self-intersect) a cycle γ′ of Λ inside M , contradicting the minimality of n.
Furthermore, Di cannot cancel with Dj , since this would also contradict the
minimality of n. By Lemma 4.6 and [AS83, Lem 5], there is Di with its
outside boundary of length at least m, which contradicts the definition of a
hypergraph. This finishes the case where Γ is a single edge.

Now we consider arbitrary Γ. By [vdL83] for each edge ab of Γ the group
Aab embeds in AΓ. Thus we have in X copies of the Cayley complex Xab of
Aab, which we call blocks, corresponding to the cosets of Aab in AΓ. Given
a cycle γ in Λ, define ei, Di as before. Let B0, B1, B2, . . . , Bm = B0 be the
consecutive blocks visited by (Di). Note that m > 0 by the case of Γ a
single edge. For j = 1, . . . ,m, let Dij ⊂ Bj−1, Dij+1 ⊂ Bj be the cells where
we transition from Bj−1 to Bj . Let Lj be the line that is the connected
component of Bj−1 ∩ Bj containing eij (in fact Lj = Bj−1 ∩ Bj but we do
not need that). Consider closed immersed edge-paths δ = δ1δ2 · · · δm in X
such that each δj is a path in Bj from Lj to Lj+1 (where Lm+1 = L1). Note
that each δj is nontrivial since otherwise a path in Lj ∪ Lj+1 labelled by

akbl would contradict Lemma 4.4. The word v = v1v2 · · · vm, with vj the
label of δj , represents the trivial element in AΓ and hence there is an R-
reduced diagram M for v, where R is the symmetrised set obtained from the
standard presentation of AΓ. Choose δ so that M has the minimal possible
number of regions.

By [AS83, Lem 8] M satisfies C(6), and so if M has more than one region,
it has a simple boundary region D with degree at most 3. Suppose w.l.o.g.
that ∂D is labelled by a word in a and b. Since the words labelling the
intersections of ∂D with its adjacent regions cannot exceed one syllable, by
Lemma 4.5 there is an occurrence of pm−1(a, b) or pm−1(b, a) in the outside
boundary of D. Since m ≥ 4, this shows that v has a syllable consisting
of a single letter a or b, say b. Suppose that this b occurs in vj . By the
minimality of M , we have that Bj is not a copy of Xab and so δj consists of
a single edge. This contradicts Lemma 4.4 applied to Bj . If M is a single
region, the proof is analogous. �
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5. Infinitely generated groups

In this section we explain when we can extend the Main Theorem to
infinitely generated G.

The following lemma is an immediate consequence of [BH99, II.7.5 and
II.7.7(2)].

Lemma 5.1. Let G be a group acting properly on a CAT(0) triangle complex
with finitely many isometry types of simplices. Suppose that there is a bound
on the order of finite subgroups of G. Then every sequence G1 < G2 < · · ·
of virtually abelian subgroups of G stabilises, that is, there is n such that for
all i ≥ n the inclusion Gi < Gi+1 is an isomorphism.

In view of Corollaries 2.6 and 2.7, the following completes the proof of
Theorem A.

Corollary 5.2. If X is a CAT(0) triangle complex with finitely many isom-
etry types of simplices, then the Main Theorem holds also for infinitely gen-
erated G.

Proof. Consider the family of finitely generated subgroups Gλ of G. If any
Gλ contains F2, then we are done. Otherwise, by the Main Theorem every
Gλ is virtually Z2 or virtually cyclic. It remains to observe that for some λ
we have Gλ = G. Indeed, otherwise we can inductively define a sequence
Gλ1 � Gλ2 � · · · contradicting Lemma 5.1. �

In [Wis03] Wise presents a procedure of constructing a systolic complex
associated to every simply connected B(6) complex (in fact, to every simply
connected C(6) complex). This construction is described in details in [OP18]
and we follow the notation from there. Without loss of generality we may
assume that X is the union of its 2-cells: otherwise we attach equivariantly
a 2-cell to every edge of degree 0. Then, the Wise complex W (X) of X is
defined as the nerve of the covering of X by closed 2-cells. The Wise complex
of a simply connected C(6) complex is systolic, see [Wis03, Thm 6.7] and
[OP18, Thm 7.10].

Lemma 5.3 ([Pry18, Lem 2.2]). Let G be a group acting properly on a
uniformly locally finite systolic complex. Suppose that there is a bound on
the order of finite subgroups of G. Then every sequence G1 < G2 < · · · of
virtually abelian subgroups of G stabilises.

Corollary 5.4. If X is a simply connected B(6) complex with uniformly
locally finite W (X), then Theorem C holds also for infinitely generated sub-
groups of G.

We believe that Theorem C holds for infinitely generated subgroups of G
without the assumption of the uniform local finiteness of W (X). The reason
for that assumption in Lemma 5.3 is that it is deduced from the systolic
Flat Torus Theorem proved at the moment only for uniformly locally finite
systolic complexes [Els09, Thm 6.1].
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Finally, we complete the proof of Theorem B. By [HO19, Thm 5.6], a
group acting properly on the Cayley complex for the standard presentation
of an Artin group of extra-large type acts properly on a uniformly locally
finite systolic complex. Therefore, we can also apply Lemma 5.3 to extend
the proof from Section 4.2 to infinitely generated subgroups.

Appendix A. When hypergraphs are trees for 2-dimensional
Artin groups

by Jon McCammond, Damian Osajda, and Piotr Przytycki

In this appendix, we generalise Proposition 4.3 to the following. Here X
is the Cayley complex for the standard presentation of an Artin group AΓ.

Proposition A.1. Suppose that AΓ is a 2-dimensional Artin group. Then
each hypergraph Λ in X is a tree if and only if Γ has no triangle with an
edge labelled by 2.

By Example 4.1 and Proposition A.1, the Main Theorem applies to X ′

implying the following.

Theorem A.2. Let AΓ be a 2-dimensional Artin group such that Γ has
no triangle with an edge labelled by 2. Suppose that G acts on X properly
and there is a bound on the order of its finite subgroups. Then any finitely
generated subgroup of G is virtually cyclic, or virtually Z2, or contains a
nonabelian free group.

Note that if additionally Γ has no square with at least three edges labelled
by 2, then by [HO19, Thm 5.6] G acts properly on a uniformly locally
finite systolic complex and therefore we can apply Lemma 5.3 to show that
Theorem A.2 holds also for G infinitely generated.

We first justify the ‘only if’ part of Proposition A.1.

Example A.3. Suppose that Γ has a triangle abc with the edge ab labelled
by 2. Consider the following R-reduced diagram M consisting of 12 regions.
The 4 central regions have boundaries labelled by aba−1b−1. The 4 top and
bottom regions have boundaries labelled by a and c, and the 4 left and right
regions have boundaries labelled by b and c (see Figure 5). M contains a
cycle of Λ, which is thus not a tree.

For the ‘if’ part of Proposition A.1, we need the following.

Lemma A.4. Let Σ be the Cayley complex of the Coxeter group WΓ such
that Γ has no triangle with an edge labelled by 2. Then for any 2-cells
σ, τ of Σ sharing an edge, and a hypergraph Λσ intersecting σ, there is a
hypergraph Λτ intersecting τ that is disjoint from or equal to Λσ.

Proof. Denote e = σ∩τ . Note that we can assume that Λσ is disjoint from e,
since otherwise we can take Λτ = Λσ.

Suppose first that τ is a square. Then take Λτ to be the hypergraph
intersecting τ but not e. Let f be an edge of σ sharing a vertex v with e.



TITS ALTERNATIVE FOR 2-DIMENSIONAL RECURRENT COMPLEXES 19

aa

a a

a a

a
a

a

a a
a

bb

b b b

b

b

b

b

b

b

b

c

c

c c

c

ccc

c

cc

c

a b

c

2

m n

m− 1

n− 1

Γ

M

Figure 5. Example A.3. A cycle in Λ is marked by the
dashed line.

If Λσ intersects f , then let α be the path obtained by concatenating at v a
half-edge of f and a half-edge in τ ending at Λτ . Note that α is a geodesic
in the Moussong metric on Σ, by the assumption that Γ has no triangle
with an edge labelled by 2. Moreover, the Alexandrov angle between the
endpoints of α and Λσ and Λτ are π

2 . Consequently Λσ and Λτ are disjoint.
Analogously, for the hyperplane Λ′σ intersecting the other edge of σ sharing
a vertex with e, we have that Λ′σ and Λτ are disjoint. Consequently, Λτ
is contained in the same component of Σ − Λσ ∪ Λ′σ as e. Then Λτ is also
disjoint from all other hyperplanes intersecting σ but not e.

If σ is a square, then the same argument shows that we can take Λτ to
be any hyperplane intersecting τ but not e.

It remains to consider the case where neither of σ, τ are squares. We mod-
ify the Moussong metric on Σ in the following way. Every square remains a
Euclidean square of side length 1. Every 2-cell that is not a square is subdi-
vided into triangles by (Moussong) geodesic segments joining vertices with
the centre and we turn each triangle into the Euclidean equilateral triangle
of side length 1. Note that because Γ has no triangle with an edge labelled
by 2, this metric is still CAT(0). As before, let f be an edge of σ sharing
a vertex v with e. Let g be the edge of τ sharing a vertex with e distinct
from v, and let α be the path obtained by concatenating at v a half-edge
of f and the geodesic segment from v to the centre of τ . If Λσ intersects f ,
then take Λτ to be the hypergraph intersecting g. Again α is a geodesic
meeting Λσ and (since we modified the metric) Λτ at Alexandrov angle π

2 .
Consequently Λσ and Λτ are disjoint.
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Finally, consider a hyperplane Λ′σ intersecting σ but none of its edges shar-
ing vertices with e. Let w be the centre of σ, and let λσ be the component
of Λσ−w intersecting f . Let λ′σ be the component of Λ′σ−w intersecting ∂σ
earlier if we traverse it starting from e and ending with f . Since we modified
the metric, Λ′′ = λσ ∪w∪λ′σ is convex. Using the path α we obtain that Λ′′

is disjoint from Λτ . Since Λ′σ is contained in the closure of the component
of Σ−Λ′′ that does not contain e, we have that Λ′σ and Λτ are disjoint. �

Proof of Proposition A.1. The ‘only if’ part follows from Example A.3. For
the ‘if’ part, given a cycle γ in Λ, define Di, Bj , δj and M as in the proof of
Proposition 4.3. Note that δj are still nontrivial, since Lemma 4.4 obviously

holds for m = 2 and the word akbl.
We claim that M has no 2-cells. Indeed, otherwise let τX be a 2-cell

of X in the image of M containing an edge e of some δj , and let σX be a
2-cell of Bj containing e. Let σ, τ be the projections of σX , τX to the Cayley
complex Σ of WΓ. Let Λσ be the projection to Σ of Λ, which intersects σ
since Dij+1 lies in the same block as σX , and hence projects also to σ. By
Lemma A.4 there is a hypergraph Λτ intersecting τ that is disjoint from or
equal to Λσ. Let M ′ be a diagram obtained from M by attaching along δj
diagrams in Bj and such that γ traverses consecutively its boundary 2-cells.
The component of the preimage of Λτ in M ′ intersecting τX forms a cycle
contradicting the minimality of M . This justifies the claim.

Thus M is a tree. Each leaf of that tree is a trivial δj , which is a contra-
diction. �
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