
Latin Squares Instructor: Padraic Bartlett

Lecture 3: Latin Squares and Groups

Week 2 Mathcamp 2012

In our last lecture, we came up with some fairly surprising connections between finite fields
and Latin squares. This, in a sense, leads us to wonder whether other algebraic objects
can be used to study Latin squares: i.e. can we use the concept of groups to study Latin
squares?

Perhaps unsurprisingly by this point, the answer is yes! In this lecture, we will study
the deeply strange ways in which we can make this connection.

1 Turning Groups into Latin Squares

We start by restating the definition of a group, for people who haven’t seen them before:

Definition. Take a set G, along with an operation · that gives you some way to “combine”
two elements in your group into a new element. Suppose that this operation + satisfies the
following four properties that the integers, Z, also did with respect to +: namely,

• Closure(+): ∀a, b ∈ G, we have a + b ∈ G.

• Identity(+): ∃0 ∈ G such that ∀a ∈ G, 0 + a = a.

• Associativity(+): ∀a, b, c ∈ G, (a + b) + c = a + (b + c).

• Inverses(+): ∀a ∈ G, ∃ a unique (−a) ∈ G such that a + (−a) = 0 = (−a) + a.

We call this kind of thing a group.

There are many groups that you already know and love: Z, Q, R with respect to
addition, and Q and R with respect to multiplication if you remove 0. More interestingly
for our purposes, there are many types of finite groups: i.e. groups with finitely many
elements. For example, we have Z/nZ, the integers modulo n, which forms a group with
respect to addition mod n:

+ 0 1 2 . . . n− 1

0 0 1 2 . . . n− 1
1 1 2 3 . . . 0
...

...
...

...
. . .

...
n− 1 n− 1 0 1 . . . 2

Another common example of a finite group is the dihedral group of order 2n, the
group made by taking all of the rotations or flips that send a regular n-gon to itself, and
combining two group elements via composition (i.e. a ◦ b is the symmetry that first does b
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and then a to the n-gon.) For n = 3, this is the set of symmetries of a triangle ABC, which
we present below:

◦ id rot120CW rot240CW flipA flipB flipC

id id rot120CW rot240CW flipA flipB flipC

rot120CW rot120CW rot240CW id flipB flipC flipA

rot240CW rot240CW id rot240CW flipC flipA flipB

flipA flipA flipC flipB id rot240CW rot120CW

flipB flipB flipA flipC rot120CW id rot240CW

flipC flipC flipB flipA rot240CW rot120CW id

Why do we mention groups in a Latin squares class? Well: if you look at the group
tables above, it’s not too hard to see that in both cases, the n× n squares made by taking
the results from each of these group tables are themselves Latin squares! This is relatively
easy to prove:

Proposition. Any group table is a Latin square.

Proof. Take a row indexed by the group element a. Suppose that two elements in this row
are equal: in other words, that there are two columns c, d such that ac = ad. If we multiply
by a−1 on the left, this gives us c = d; i.e. that these were in fact the same columns, and
therefore that there are no repetitions in this row. The same logic tells us that there are
also no repetitions in any column; therefore, this is a Latin square.

Given this, you might hope that we can possibly “go backwards” with this reasoning: i.e.
if we can turn groups into Latin squares, maybe we can also turn Latin squares into groups!
To omit somewhat dumb counterexamples and simplify matters, suppose that our Latin
squares have their first row and column equal to (0, g1, . . . gn−1), where 0 is the identity in
our group and the gi’s are the other elements. Can we always turn a Latin square into a
group?

As a quick test, examine the following two Latin squares of order 4. One of these turns
out to be a Latin square that we can get from a group, while the other does not. Which is
which? 

I a b c
c I a b
b c I a
a b c I

 ,


I a b c d
a d c I b
b I a d c
c b d a I
d c 0 b a

 .

By examination, we can see that the first square is actually the group Z/4Z in disguise: let
I = 0, b = 1, c = 2, and d = 3.

The second square is weirder. Suppose that it was a group table: then for some ordering
[f, g, h, i, j] of our group elements and another ordering [v, w, x, y, z], we have
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+ v w x y z

f 0 a b c d
g a d c 0 b
h b 0 a d c
i c b d a 0
j d c 0 b a

.

One of f, g, h, i, j is the identity: therefore, one of the five rows of our Latin square must be
[v, w, x, y, z]! In particular, we can actually assume that our top row is formed by taking
f−1 and adding it to every element of [0, a, b, c, d], because the row [0, a, b, c, d] is just adding
f to [v, w, x, y, z].

If we do this, we can now notice the following useful observation: take any two rows of
our table. Think of these as permutations of the row [0, a, b, c, d]: i.e. for example, the row

corresponding to g, [a, d, c, 0, b], can be though of as the map

 0 a b c d
↓ ↓ ↓ ↓ ↓
a d c 0 b

. Using

this idea, we can now define an operation to compose two rows, by simply composing their
permutations: i.e. the composition of the rows

h =

 0 a b c d
↓ ↓ ↓ ↓ ↓
b 0 a d c

 , g =

 0 a b c d
↓ ↓ ↓ ↓ ↓
a d c 0 b


is the permutation

h ◦ g =


0 a b c d
↓ ↓ ↓ ↓ ↓
a d c 0 b
↓ ↓ ↓ ↓ ↓
0 c d b a

 .

What does this correspond to? Well: h corresponds to adding h + f−1 to the elements
of the row [0, a, b, c, d], while i corresponds to adding i+ f−1 to the elements of [0, a, b, c, d].
The composition of h and i, then, is just adding h + f−1 + i + f−1 to each element of the
row [0, a, b, c, d]! But h+ f−1 + i+ f−1 is some element of our group: therefore, there must
be some row that corresponds to this resulting composition!

Furthermore, simply saying that the composition of any two rows is a third row is
equivalent to asking that our group is associative, because (if we pick the “base” row, i.e.
the row that we picked [0, a, b, c, d] as above, to be the row corresponding to adding the
identity element) this is just claiming that composing rows a and b is the same as the row
a + b: i.e. that for every c in our base row, a + (b + c) = (a + b) + c.

So, we’ve actually proven the following:

Theorem. A Latin square is a group table if and only if the composition of any two rows
is another row (with composition defined via the “base row” idea above.)
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In particular, this tells us that the 5 × 5 square we were studying above cannot have
resulted from a group table: as we calculated, the composition h ◦ g of the rows g and h
yielded [0, c, d, b, a], which is not a row in our Latin square (even though we’d expect it to
correspond to whatever element h + f−1 + i + f−1 is, if commutativity held.)

So, surprisingly enough, associativity fails! This is kinda surprising; if you’ve gone
through the introductory group theory courses, you may be used to things like inverses
being the difficult part of insuring something’s a group, while associativity is the “boring
detail that always works.” For Latin squares, the opposite is true! In fact, Latin squares
correspond precisely to the tables of quasigroups: an algebraic structure that consists of
the group axioms, minus the associativity part.

Because they’re not associative, they’re pretty horrible to work with, so let’s not do
that. Instead, let’s try something perhaps even sillier: we tried making Latin squares out
of groups. Why not make groups out of Latin squares?

2 Making Groups out of Latin Squares

To do this, we’re going to need to generalize a bit:

Definition. A row-Latin square is a n× n grid filled with the symbols 1 . . . n, so that no
symbol is repeated in any row. Column repeats are fine.

These are far easier to count than Latin squares:

Proposition. There are (n!)n-many row-Latin squares of order n.

Proof. You have n rows, and n! many choices of a permutation of (1, . . . n) to put in each
row.

Surprisingly, it turns out that we can turn these into a group! To explain precisely how,
we need to introduce the symmetric group, which we do here:

Definition. The symmetric group Sn is the collection of all bijections from {1, . . . n} to
itself, with the group operation of composition. Often, people will write an element of Sn

as a permutation: i.e. as some ordered subset of the numbers {1, . . . n}, like (2, 4, 3) or some
such thing. When they do this, they are denoting by shorthand some map f : {1, 2, 3, 4} →
{1, 2, 3, 4}, such that 2→ 4→ 3→ 2: i.e.

f = (2, 4, 3) =

 1 2 3 4
↓ ↓ ↓ ↓
1 4 2 4


In other words, writing (a, b, c) denotes the permutation that sends a to b, b to c, and c to
a, while leaving everything else unchanged.

In this notation, the composition of two such maps is just the function that you get by
combining these two maps. For example, if f = (2, 4, 3, 1) and g = (4, 3), we have that f ◦ g
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is

f ◦ g = (2, 4, 3, 1) ◦ (4, 3) =


1 2 3 4
↓ ↓ ↓ ↓
2 4 1 3
↓ ↓ ↓ ↓
2 3 1 4

 ,

i.e. the map that sends 1 to 2, 2 to 3 , 3 to 1, and leaves 4 alone. You can write this in this
permutation notation as (1, 2, 3)

The identity map i(x) = x is clearly the identity under this group operation; as well,
we clearly have inverses (just take the map that undoes whatever bijection you’re trying
to find an inverse for) and associativity (because function composition doesn’t care about
associativity.) So it’s a group!

So, with this idea defined, we can now turn row-Latin squares into a group in the
following way:

Proposition. Take the collection of all n×n row-Latin squares Rn, and define the following
group operation on Rn: given any two elements A,B of Rn, write

A =

 a1
. . .
an

 , B =

 b1
. . .
bn


where the elements ai, bi are all permutations of (1, . . . n): i.e. elements of Sn.

Then, we can define

A ◦B =

 a1 ◦ b1
. . .

an ◦ bn

 ,

where by each ai ◦ bi we mean the permutation in Sn given by ai ◦ bi.
We have an identity: specifically, the matrix

I =


1 2 . . . n
1 2 . . . n
...

...
. . .

...
1 2 . . . n

 .

We have inverses: given a row-Latin square

A =

 a1
. . .
an

 ,

let

A =

 (a1)
−1

. . .
(an)−1

 ,
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where these (ai)
−1’s come from taking inverses in Sn. We also have associativity, because

we’re basically doing things over in Sn, which we claimed was associative.

We can define a pair A, B of row-Latin squares to be orthogonal in the exact same
way that Latin squares are orthogonal: if every possible ordered pair of symbols occurs in
the cells of A superimposed upon B. Usefully, this concept of orthogonality gives us a way
of telling when a row-Latin square is a Latin square:

Proposition. If A is a row-Latin square that is orthogonal to the identity row-Latin square

I =


1 2 . . . n
1 2 . . . n
...

...
. . .

...
1 2 . . . n

, then A is a Latin square.

Proof. If A is orthogonal to the identity, this is just saying that in any column i of A, we
get all possible pairs of the form (i, k): in other words, that we cannot repeat any symbol
k in this column. We already know by definition that there are no repeats in A’s rows;
therefore, it’s a Latin square.

Using this, we can prove the following useful lemma:

Proposition. If A1, . . . An is a set of of mutually orthogonal row-Latin squares, then given
any other row-Latin square X, the set X◦A1, . . . X◦An is another set of mutually orthogonal
Latin squares.

Proof. Take any two squares X ◦ Ab, X ◦ Ac. Suppose that there are two distinct cells
(i, j), (k, l) such that when we superimpose these two squares, we see the same pairs of
symbols: i.e. suppose that

• X ◦Ab’s cell (i, j) is the same as X ◦Ab’s cell (k, l) , and

• X ◦Ac’s cell (i, j) is the same as X ◦Ac’s cell (k, l).

If xi, xk are the ith and kth rows of X, while bi, bk and ci, ck the ith and kth rows of Ab, Ac

respectively, this is specifically saying that

• The jth entry of xi ◦ bi is equal to the lth entry of xk ◦ bk, and

• The jth entry of xi ◦ ci is equal to the lth entry of xk ◦ ck.

But, if we multiply by (xi)
−1, (xj)

−1 respectively, this tells us that

• The jth entry of (xi)
−1 ◦ xi ◦ bi is equal to the lth entry of (xk)−1 ◦ xk ◦ bk, and

• The jth entry of (xi)
−1 ◦ xi ◦ ci is equal to the lth entry of (xk)−1 ◦ xk ◦ ck;

in other words, if we simplify, we have

• The jth entry of bi is equal to the lth entry of bk, and
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• The jth entry of ci is equal to the lth entry of ck.

But this is impossible if Ab, Ac are orthogonal: therefore, we must have that X ◦Ab, X ◦Ac

are orthogonal as well. Because we have shown this for any pair Ab, Ac, we’ve in fact shown
that the whole set X ◦A1, . . . X ◦An is a collection of mutually orthogonal Latin squares.

Proposition. Two row-Latin squares A, B are orthogonal if and only if there is a proper
Latin square L such that AL = B.

Proof. If L is a Latin square, L is orthogonal to I, the identity row-Latin square. Therefore,
the set {I, L} is a pair of mutually orthogonal row-Latin squares; by the above result we
have that {A ◦ I, A ◦ L} = {A,B} is a pair of orthogonal row-Latin squares.

Conversely: if A, B are orthogonal, then (because the set of row-Latin squares is a
group) there is a row-Latin square L such that AL = B. Let B−1 be the inverse of B: then,
we have

B−1A = L,B−1B = I;

as well, by our earlier proposition, we know that this set {L, I} is also an orthogonal set.
Therefore, L is orthogonal to I; i.e. L is a Latin square!

A quick corollary of this property is the following:

Proposition. Given a row-Latin square A, suppose that m is the smallest positive integer
such that Am is not latin. Then the set A,A2, . . . Am−1 is a collection of MOLS.

The reason we care about this is the following:

Proposition. For any n, expand n using its unique factorization into primes: i.e. write
n = pn1

1 · p
n2
2 · . . . p

nk
k , such that p1 < . . . pn.

Let G = Z/nZ, and L be the Latin square associated to G. Then L,L2, . . . Lp−1 is a set
of MOLS.

Proof. So, first notice that any integer ≤ p1 − 1 is relatively prime to n; as well, notice
that Lk, because it’s formed by simply multiplying L by itself k times, is just the following
group table:

+ 0 k 2k . . . (n− 1)k

0 0 k 2k . . . (n− 1)(k)
k k 2k 3k . . . (n− 1)(2k)
...

...
...

. . .
...

(n− 1)k (n− 1)k (n− 1)(2k) (n− 1)(3k) . . . (n− 1)(n− 1)(k)

Take any row. I claim that there are no repeats within this row. To see why, simply notice
that if you did, say in row i in columns x, y, this is saying that

ixk ≡ iyk mod n.
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Because k is relatively prime to n, we know that we can divide by it without affecting the
validity of the above equation; therefore, we have

ix ≡ iy mod n.

But this only happens when x = y, because our original group table has ix and iy in row
i, columns x, y. So there are no repetitions in this row; nor are there any repetitions in any
column.

This gives us tons of lower bounds on numbers of MOLS: i.e. we can use this to deduce
that there is a pair of MOLS of order 15. Which is pretty neat!

Latin Squares Instructor: Padraic Bartlett

Homework 4: Groups and Graph Theory

Week 2 Mathcamp 2012

Attempt all of the problems that seem interesting, and let me know if you see any typos!
(+) problems are harder than the others. (++) problems are currently open.

1. For what values of n can you find a Latin square that does not come from a group
table?

2. Using the finite field methods we described today, make 7 MOLS of order 8. (Don’t
explicitly write them out; rather, write out their general form, and write out two to
test that they’re actually orthogonal.)

3. Using the groups and graph theory methods we described today (if we finished them!),
create 2 MOLS of order 15.

4. Which of the following Latin squares are multiplication tables of groups?

[
1 0
0 1

]
,


1 2 3 4
2 1 4 3
4 3 2 1
3 4 1 2

 ,



1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
5 6 4 1 2 3
6 4 5 3 1 2
4 5 6 2 3 1

 .
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