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Abstract. The possibility of finite-time, dispersive blow up for nonlinear

equations of Schrödinger type is revisited. This mathematical phenomena
is one of the possible explanations for oceanic and optical rogue waves. In

dimension one, the possibility of dispersive blow up for nonlinear Schrödinger

equations already appears in [9]. In the present work, the existing results are
extended in several ways. In one direction, the theory is broadened to include

the Davey-Stewartson and Gross-Pitaevskii equations. In another, dispersive

blow up is shown to obtain for nonlinear Schrödinger equations in spatial di-
mensions larger than one and for more general power-law nonlinearities. As a

by-product of our analysis, a sharp global smoothing estimate for the integral

term appearing in Duhamel’s formula is obtained.

Résumé. Nous revisitons la possibilité d’apparition de singularités disper-

sives (dispersive blow-up) pour des solutions d’équations de Schrödinger non

linéaires. Ce phénomène mathématique pourrait être une explication pour
l’apparition des “vagues scélérates” (rogue waves) en océanographie et op-

tique non linéaire. La possibilité de singularités dispersives pour des équations

de Schrödinger non linéaires en dimension spatiale un a été prouvée dans [9].
Ces résultats sont étendus ici dans plusieurs directions. D’une part la théorie

est étendue à des équations de Schrödinger en dimension spatiale quelconque,

avec des non-linéarités de type puissance générales. D’autre part nous traitons
également le cas des systèmes de Davey-Stewartson et de l’équation de Gross-

Pitaevskii. Un sous-produit de notre analyse est un effet de lissage global
précis pour le terme intégral de la représentation de Duhamel.

1. Introduction

This paper continues the theory of dispersive blow up which was initiated and
developed in [8] and [9]. The present contribution is especially relevant to nonlin-
ear Schrödinger-type equations, and includes theory for the Davey-Stewartson and
the Gross-Pitaevskii equations. The work on Schrödinger equations substantially
extends the results already available in [9].
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Dispersive blow up of wave equations is a phenomenon of focusing of smooth
initial disturbances with finite-mass (or, finite-energy, depending on the physical
context) that relies upon the dispersion relation guaranteeing that, in the linear
regime, different wavelengths propagate at different speeds. This is especially the
case for models wherein the linear dispersion is unbounded, so that energy can be
moved around at arbitrarily high speeds, but even bounded dispersion can exhibit
this type of blow up.

To be more concrete, consider the Cauchy problem for the linear (free) Schrödinger
equation

(1.1) i∂tu+ ∆u = 0, u
∣∣
t=0

= u0(x),

where x ∈ Rn for some n ∈ N. For u0 ∈ L2(Rn), elementary Fourier analysis shows
the solution to this initial-value problem is

(1.2) u(x, t) = eit∆u0(x) :=
1

(2π)n

∫
Rn
e−it|ξ|

2

û0(ξ)eiξ·xdξ.

Here, û0 denotes the Fourier transformed initial data, viz.

Fu0(ξ) ≡ û0(ξ) =

∫
Rn
u0(x)e−iξ·x dx.

The corresponding inverse Fourier transform will be denoted by F−1. From (1.2),
it is immediately inferred that for any s ∈ R, solutions lie in C(R;Hs) whenever u0

lies in the L2-based Sobolev space Hs. Moreover, the evolution preserves all these
Sobolev-space norms, which is to say

‖u(·, t)‖Hs(Rn) = ‖u0‖Hs(Rn)

for t ∈ R. In certain applications of this model, the case s = 0 in the last formula
corresponds to conservation of total mass in the underlying physical system.

However, in Theorem 2.1 of [9], it was shown that for any given point (x∗, t∗) ∈
Rn × R+, there exists initial data u0 ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) such that
the solution u(x, t) of the corresponding initial-value problem (1.1) for the free
Schrödinger equation is continuous on Rn × R+ \ {(x∗, t∗)}, but

lim
(x,t)∈Rn×R+→(x∗,t∗)

|u(x, t)| = +∞.

This fact is referred to as (finite-time) dispersive blow up and will sometimes be
abbreviated DBU in the following. The analogous phenomena also appears in other
linear dispersive equations, such as the linear Korteweg-de Vries equation [5] and
the free surface water waves system linearized around the rest state [9].

At first sight, one would expect that nonlinear terms would destroy dispersive
blow up. What is a little surprising is that even the inclusion of physically relevant
nonlinearities in various models of wave propagation does not prevent dispersive
blow up. Indeed, theory shows in some important cases that initial data leading to
this focusing singularity under the linear evolution continues to blow up in exactly
the same way when nonlinear terms are included. In [8], this was shown to be true
for the Korteweg-de Vries equation, a model for shallow water waves and other
simple wave phenomena. This result and analogous dispersive blow up theory for
solutions of the one-dimensional nonlinear Schrödinger equations [9],

(1.3) i∂tu+ ∂2
xu± |u|pu = 0, u

∣∣
t=0

= u0(x),
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where x ∈ R and p ∈ (0, 3), lead to the speculation that such focusing might be one
road to the formation of rogue waves in shallow and deep water and in nonlinear
optics. (see [17, 18, 28, 37]).

The analysis of [9] revolves around providing bounds on the nonlinear terms
in a Duhamel representation of the evolution. Because the phenomenon is due
to the linear terms in the equation, data of arbitrarily small size will still exhibit
dispersive blow up, and indeed it can be organized to happen arbitrarily quickly.
This emphasizes the linear aspect of these singularities and differentiates it from
the blow up that occurs for some of the same models when the nonlinear term
is focusing and sufficiently strong (see [39] for a general overview of this aspect
of Schrödinger equations). Moreover, even though the theory begins by showing
that there are specific initial data that lead to dispersive blow up, the result is
in fact self-improving. Dispersive blow up continues to hold if this special initial
data is subjected to a smooth perturbation. The theory further implies that there
is C∞ initial data with compact support which can be taken as small as we like
that will, in finite time, become large in a neighborhood of a prescribed spatial
point (see Remark 3.5 for more details). Dispersive blow up thereby also serves to
demonstrate ill-posedness of the considered models in L∞–spaces.

The aim of the present work is to generalize the results mentioned above in sev-
eral respects. Most importantly, the dispersive blow up that in [9] was obtained for
(1.3) will be shown to hold true of nonlinear Schrödinger equations in all dimensions
n ≥ 1 and for the whole range of nonlinearities p ≥ [n2 ], with or without a (possibly
unbounded) real-valued potential. Here and in the following, for µ ∈ R, the quan-
tity [µ] is the greatest integer less than or equal to µ. Higher-order Schrödinger
equations are also countenanced. Our theory relies especially on the results of
Cazenave and Weissler established in [15]. In addition to Schrödinger equations,
dispersive blow up is proved for Gross-Pitaevskii equations with non-trivial bound-
ary conditions at infinity and for the Davey-Stewartson systems.

As a by-product of our analysis, a sharp global smoothing effect is obtained for
the nonlinear integral term in the equation derived from (1.3) by use of Duhamel’s
formula.

The paper proceeds as follows: Section 2 is concerned with some preliminaries
which are mostly linear in nature. Dispersive blow up for nonlinear Schrödinger
equations is tackled in Section 3. Section 4 deals with the just mentioned sharp
global smoothing property. Dispersive blow up for the Davey-Stewartson systems
then follows more or less as a corollary to the results in Sections 2 and 3. The Gross-
Pitaevskii equation takes center stage in Section 5 whilst higher-order Schrödinger
equations are studied in Section 6.

2. Mathematical preliminaries

In this section, a review of the basic idea behind dispersive blow up is provided
in the context of nonlinear Schrödinger equations. Parts of the currently available
theory for the linear Schrödinger group are also recalled in preparation for the
analysis in Section 3.

2.1. Dispersive blow up in linear Schrödinger equations. To understand the
appearance of dispersive blow up in the solution of (1.1), start by explicitly com-
puting the inverse Fourier transformation in (1.2) to see that the free Schrödinger
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group admits the representation

(2.1) u(x, t) =
1

(4iπt)n/2

∫
Rn
ei
|x−y|2

4t u0(y) dy, for t 6= 0.

This representation formula is the starting point of the following lemma.

Lemma 2.1. Let α ∈ R, q ∈ Rn and

u0(x) =
e−iα|x−q|

2

(1 + |x|2)m
, with

n

4
< m ≤ n

2
.

Then, u0 ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) and the associated global in-time solution
u ∈ C(R;L2(Rn)) of (1.1) has the following properties.

(1) At the point (x∗, t∗) = (q, 1
4α ), the solution u in (2.1) blows up, which is to

say,
lim

(x,t)∈Rn+1→(x∗,t∗)
|u(x, t)| = +∞,

(2) it is a continuous function of (x, t) on Rn × R \ {t∗} and
(3) u(x, t0) is a continuous function of x ∈ Rn \ {x∗}.

Proof. First note that u0 ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn), that u ∈ C(R;L2(Rn))
and that the L2–norm of u is constant in view of mass conservation. On the other
hand, evaluating (2.1) at t = 1

4α for this particular u0 gives

u

(
x,

1

4α

)
=
( α
iπ

)n/2
eiα(|x|2−|q|2)

∫
Rn
e−2iαy·(x−q) dy

(1 + |y|2)m
.

Thus at x = q, it transpires that∣∣∣∣u(q, 1

4α

)∣∣∣∣ =
(α
π

)n/2 ∫
Rn

dy

(1 + |y|2)m
= +∞

provided m ≤ n
2 . Assertions (ii) and (iii) can then be proved by the same arguments

as in the proof of [9, Theorem 2.1]. In this endeavor, it is useful to note that
(1+x2)−m is closely related to the inverse Fourier transform of the modified Bessel
functions Kν(|x|), where ν = n

2 −m. �

In other words, for any given q ∈ Rn, α ∈ R, we have constructed an explicit
family of bounded smooth initial data (with finite mass) for which the solution
of the free Schrödinger equation (1.1) exhibits dispersive blow up at the point
(x∗, t∗) = (q, 1

4α ) in space and time. This result can be immediately generalized in
various ways. The following sequence of remarks indicates some of them.

Remark 2.2. The same argument shows that any initial data of the form

u0(x) = e−iα|x−q|
2

a(x),

with an amplitude a ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) but a 6∈ L1(Rn) will exhibit
dispersive blow up. Using the superposition principle, one can construct initial data
which yield dispersive blow up at any countably many isolated points in space-time
Rn × R. In addition, multiplying u0 by δ with 0 < δ � 1, allows for initial data
which are arbitrarily small, but which nevertheless blow up at (x∗, t∗). By a suitable
spatial truncation of u0, one can also construct small, smooth, bounded initial data
with finite mass, all of whose derivatives also have finite L2–norm, such that the
corresponding solution u remains smooth but achieves arbitrarily large values at a
given point in space-time (see [9] for more details).
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Remark 2.3. It was also proven in [9] that dispersive blow up holds true for the
class

i∂tu+ (−∆)
a
2 u = 0, 0 < a < 1,

of fractional Schrödinger equations in Rn×R+. However, observe that, in contrast
to the classical Schrödinger equation, the phase velocity for (2.3) becomes arbitrar-
ily large in the long wave limit but is bounded (and actually tends to zero) in the
short wave limit.

A natural extension of DBU for linear Schrödinger equations is the initial-value
problem in the presence of external potentials V (x, t) ∈ R. While we are not going
to deal here with this issue in full generality, we note that an immediate consequence
of Remark 2.2 is the appearance of dispersive blow up for Schrödinger equations
with a Stark potential, i.e.

(2.2) i∂tv + ∆v − (E · x)v = 0, v
∣∣
t=0

= v0(x),

where E ∈ Rn. This equation models electromagnetic wave propagation in a
constant electric field. Solutions of (2.2) are connected to solutions of the free
Schrödinger equation through the Avron-Herbst formula [1]. Indeed, it is easy to
check that if v solves (2.2), then

u(x, t) = v
(
x+ t2E, t

)
e−itE·x−i

t3

3 |E|
2

,

solves the linear problem (1.1) with the same initial data. Thus, if the u that solves
the free Schrödinger equation exhibits dispersive blow up at a given (x∗, t∗), then
so does the solution v of (2.2) at the point (x∗ + 2t2∗E, t∗).

An analogous result is also true in the case of linear Schrödinger equations with
isotropic quadratic potentials

(2.3) i∂tu+ ∆u± ω2|x|2u = 0, u
∣∣
t=0

= u0(x),

where ω ∈ R. The two signs correspond, respectively, to attractive (−) and repulsive
(+) potentials. Following [12], we find that if v solves (2.3) with attractive harmonic
potential, then

u(x, t) =
1

(1 + (2ωt)2)n/4
v

(
arctan(2ωt)

ω
,

x√
1 + (2ωt)2

)
e
i 2ω2x2t
(1+(2ωt)2 ,

solves (1.1). Thus, dispersive blow up for u again implies dispersive blow up for v,
although at a shifted point in space-time. A similar formula can be derived in the
repulsive case (see [13]).

Remark 2.4. Alternatively, one can prove dispersive blow up for linear Schrödinger
equations with quadratic potentials using (generalized) Mehler formulas for the
associated Schrödinger group. The Mehler formulas are

u(x, t) = e−in
π
4 sgn t

∣∣∣ ω

2π sinωt

∣∣∣n2 ∫
Rn
e

iω
sinωt (

|x|2+|y|2
2 cosωt−x·y) u0(y) dy,

for (2.3) in the attractive situation, while in the repulsive case, one has

u(x, t) = e−in
π
4 sgn t

∣∣∣ ω

2π sinhωt

∣∣∣n2 ∫
Rn
e

iω
sinhωt (

|x|2+|y|2
2 coshωt−x·y) u0(y) dy

(see [13] again). In the attractive case, Mehler’s formula is valid for |t| < π
2ω , while

in the repulsive case it makes sense for all t > 0. Generalizations of these formulas
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are available and allow one to infer that dispersive blow up can occur in the presence
of anisotropic quadratic potentials (see [13]).

We close this subsection by noting, that at least in n = 1, it is easy to show
that dispersive blow up is stable under the influence of a rather general class of
external (real-valued) potentials V ∈ C(Rt;L2(Rx)). To this end, consider the
linear Schrödinger equation

(2.4) i∂tu+ ∂2
xu− V (x, t)u = 0, u

∣∣
t=0

= u0(x),

which we can rewrite, using Duhamel’s formula, as

(2.5) u(x, t) = eit∂
2
xu0(x)− i

∫ t

0

ei(t−s)∂
2
xV (s, x)u(x, s) ds =: eit∆u0(x)− iIV (x, t).

In view of (2.1), we formally have

(2.6) IV (x, t) =
1

(4iπt)1/2

∫ t

0

∫
Rn

1

(t− s) 1
2

exp

(
i
|x− y|2

4(t− s)

)
V (s, y)u(y, s) dy ds.

Now, assume that the first term on the right-hand side of (2.5) exhibits dispersive
blow up at some (x∗, t∗). Then, it suffices to show that IV (x, t) is continuous for
(x, t) ∈ Rn×[0, T ], for any T > t∗, in order to conclude that the solution of the (2.4)
exhibits dispersive blow up at the same point (x∗, t∗). Having in mind Lebesgue’s
dominated convergence theorem, we only need to prove that IV (x, t) is locally
bounded as a function of x and t. To do so, we first apply the Cauchy-Schwartz
inequality to find

(2.7) |IV (x, t)| ≤ 1

(4π|t|)1/2

∫ t

0

1

|t− s| 12
‖V (·, s)‖L2‖‖u0‖L2 ds,

where we have also used mass conservation, i.e. ‖u(·, t)‖L2 = ‖u0‖L2 . Due to our
assumption on V and the fact that t 7→ t−1/2 is locally integrable, the right hand
side of (2.7) is finite and we are done.

Indeed, a similar argument will be used in the study of DBU for nonlinear
Schrödinger equations in n = 1, see below. It is clear, however, that in general
dimensions n > 1 a more refined analysis is needed.

2.2. Smoothing properties of the free Schrödinger group. In this subsection,
some results on the smoothing properties of the free Schrödinger group S(t) = eit∆

are reviewed. They will find use in Section 4.
First, recall the notion of admissible index-pairs.

Definition 2.5. The pair (p, q) is called admissible if

2

q
=
n

2
− n

p
, and


2 ≤ p < 2n

n−2 , forn ≥ 3,

2 ≤ p < +∞, if n = 2,
2 ≤ p ≤ +∞, if n = 1.

From now on, for any index r > 0, its Hölder dual is denoted r′, i.e. 1
r + 1

r′ = 1.

The well known Strichartz estimates for the Schrödinger group S(t) = eit∆ are
recounted in the next lemma (see [14, 29] for more details).

Lemma 2.6. If (p, q) is admissible, then the group {eit∆}t∈R satisfies(∫ ∞
−∞

∥∥eit∆f∥∥q
Lp(Rn)

dt

) 1
q

≤ C
∥∥f∥∥

L2(Rn)
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and(∫ ∞
−∞

∥∥∥∫ t

0

ei(t−s)∆g(·, s) ds
∥∥∥q
Lp(Rn)

dt

) 1
q

≤ C

(∫ ∞
−∞

∥∥g(·, t)
∥∥q′
Lp′ (Rn)

dt

) 1
q′

,

where C = C(p, n).

The estimates stated above can be interpreted as global smoothing properties of
the free Schrödinger group S(t). In addition to that, S(t) is known to also induce
local smoothing effects, some of which are collected in the following lemma (for
proofs, see [29, Chapter 4]). For 1 ≤ j ≤ n, denote the so-called homogenous
derivatives of order s > 0 by

Ds
xjf(x) := F−1

(
|ξj |sf̂(ξ)

)
(x) and, for n = 1,

Dsf(x) := F−1
(
|ξ|sf̂(ξ)

)
(x).

(2.8)

Lemma 2.7. If n = 1 and for f ∈ L2(R),

sup
x∈R

∫
R

∣∣D1/2
x eit∂

2
xf(x)

∣∣2 dt ≤ C‖f‖2L2(R).

Let n ≥ 2. Then, for all j ∈ {1, . . . , n} and f ∈ L2(Rn),

sup
xj∈R

∫
Rn

∣∣D1/2
xj e

it∆f(x)
∣∣2dx1 . . . dxj−1dxj+1 . . . dxndt ≤ C‖f‖2L2(Rn).

Helpful inequalities involving the Schrödinger maximal function

S∗T f(x) := sup
0≤t≤T

|eit∆f(x)|

are derived in [36] and [41]. They are reported in the next lemma.

Lemma 2.8. The inequality

(2.9) ‖S∗T f‖Lq(Rn) ≤ CT ‖f‖Hσ(Rn)

holds if either

(2.10) n = 1 and

{
q > 2 and σ ≥ max{ 1

q ,
1
2 −

1
q},

q = 2 and σ > 1
2 ,

or

(2.11) n > 1 and

{
q ∈ (2 + 4

(n+1) ,∞) and σ > n( 1
2 −

1
q ),

q ∈ [2, 2 + 4
(n+1) ] and σ > 3

q −
1
2 .

With these results at hand, attention is turned to establishing dispersive blow
up for nonlinear Schrödinger equations.

3. Dispersive blow up for nonlinear Schrödinger equations

In this section, the initial-value problem

(3.1) i∂tu+ ∆u± |u|pu = 0, u
∣∣
t=0

= u0(x),

for the nonlinear Schrödinger equation is considered. Here, x ∈ Rn and p > 0 is not
necessarily an integer. Finite-time dispersive blow up was established for n = 1 and
p ∈ (0, 3) in [9]. Our strategy to improve upon this result relies upon the theory
developed in [15], where the Cauchy problem (3.1) was studied for u0 ∈ Hs(Rn)
for various values of s.



8 J. L. BONA, G. PONCE, J.-C. SAUT, AND C. SPARBER

3.1. Local well-posedness in Hs. For 1 ≤ r <∞ and s > 0, define

Hs,r(Rn) = {f ∈ Lr(Rn) : F−1(1 + |ξ|2)s/2f̂ ∈ Lr(Rn)}.
These are the standard Bessel potential spaces. According to [38], which uses the
notation Ls,r instead of Hs,r, these spaces may be characterized in the following
manner. Let s ∈ (0, 1) and 2n

(n+2s) < r < ∞. Then f ∈ Hs,r(Rn) if and only if

f ∈ Lr(Rn) and

(3.2) Dsf(x) =

(∫
Rd

|f(x)− f(y)|2

|x− y|n+2s
dy

)1/2

∈ Lr(Rn).

The space Hs,r(Rn) ≡ (I −∆)−s/2Lr(Rn) is equipped with the norm

‖f‖Ls,r(Rn) = ‖(I −∆)s/2f‖Lr(Rn) = ‖f‖Lr(Rn) + ‖Dsf‖Lr(Rn)

' ‖f‖Lr(Rn) + ‖Dsf‖Lr(Rn),

where Ds is the homogenous derivative defined in (2.8). Observe that, for r = 2,
Hs,2(Rn) ≡ Hs(Rn), the usual L2–based Hilbert space. In addition, a straightfor-
ward calculation reveals that

(3.3) ‖Dsf‖L2(Rn) = cn‖|ξ|sf̂ ‖L2(Rn) ≡ cn‖Dsf‖L2(Rn).

If (q, r) is an admissible pair as defined in Section 2, then the space

(3.4) WT
s,n = C

(
[0, T ];Hs(Rn)

)
∩ Lq

(
[0, T |;Hs,r(Rn)

)
will also appear. Of course, these spaces depend on the admissible pair (q, r), but
this dependence is suppressed in the notation. The following local well-posedness
theorem established in [15] makes use of both the Bessel-potential spaces and the
latter, spatial-temporal spaces.

Proposition 3.1. Let s > sp,n = n
2 −

2
p , s > 0, with s otherwise arbitrary if p is

an even integer, s < p+ 1 if p is an odd integer and [s] < p if p is not an integer.
For given initial data u0 ∈ Hs(Rn),

(1) there exist T = T (‖u0‖Hs) > 0 and a unique solution

u ∈ C
(
[0, T ];Hs(Rn)

)
∩ Lq

(
[0, T |;Hs,r(Rn)

)
≡WT

s,n

for all pairs (q, r) admissible in the sense of Definition 2.5, and
(2) the local existence time T = T (‖u0‖Hs)→ +∞, as ‖u0‖Hs(Rn) → 0.

Remark 3.2. The proof of this result follows from a fixed point argument based
on the Strichartz estimates displayed in Lemma 2.6. Recall that the notation [s]
connotes the largest integer less than or equal to s.

To apply Proposition 3.1 in our context, we need to show that the class of initial
data constructed in Section 2.1 (yielding dispersive blow up for the free Schrödinger
evolution) admits Sobolev class regularity that will allow the use of Lemma 3.1. Via
scaling and translation, dispersive blow up can be achieved at any point (x∗, t∗) in
space-time, so without loss of generality, fix (x∗, t∗) = (0, 1) and focus upon the
initial data

(3.5) u0(x) =
e−4i|x|2

(1 + |x|2)m
, with

n

4
< m ≤ n

2
.

This initial value u0 has Sobolev regularity explained in the next lemma.
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Lemma 3.3. Let u0 be as depicted in (3.5). Then u0 ∈ Hs(Rn) if 2m > s + n
2 .

In particular, if m = n
2 , s ∈ (0, n2 ) whereas if m = n

4
+, then s = 0+.

Proof. Notice first that it suffices to consider the case 0 < s < 1. For s in this
range, Propositions 1 and 2 in [32] provide the inequalities

|Dsei|x|
2

| ≤ cn(1 + |x|s)
and

‖Ds(fg)‖L2(Rn) ≤ ‖fDsg‖L2(Rn) + ‖gDsf‖L2(Rn),

where Ds is defined in (3.2). Combining these estimates with identity (3.3) and
using interpolation, one arrives at the inequality∥∥∥∥∥Ds

(
ei|x|

2

(1 + |x|2)m

)∥∥∥∥∥
L2(Rn)

≤
∥∥∥∥ 1

(1 + |x|2)m
Ds(ei|x|

2

)

∥∥∥∥
L2(Rn)

+

∥∥∥∥Ds( 1

(1 + |x|2)m

)∥∥∥∥
L2(Rn)

≤ cn
∥∥∥∥ 1

(1 + |x|2)m

∥∥∥∥
L2(Rn)

+ cn

∥∥∥∥ |x|s

(1 + |x|2)m

∥∥∥∥
L2(Rn)

+

∥∥∥∥ 1

(1 + |x|2)m

∥∥∥∥1−s

L2(Rn)

∥∥∥∥D( 1

(1 + |x|2)m

)∥∥∥∥s
L2(Rn)

which is finite if and only if 2m− s > n
2 . The result follows �

Notice that if m = n
2 , we can certainly choose the value s in the interval (n2−

2
p ,

n
2 ]

where Proposition 3.1 applies.

3.2. Proof of dispersive blow up for nonlinear Schrödinger equations.
Here is the detailed statement of dispersive blow up for the initial-value problem
(3.1), with p ≥ [n2 ] if p is not an even integer.

Theorem 3.4. Given t∗ > 0 and x∗ ∈ Rn, there are initial data u0 ∈ Hs(Rn) ∩
L∞(Rn) ∩ C∞(Rn), with s ∈ (n2 −

1
2p ,

n
2 ], such that

(1) the initial-value problem (3.1) has a unique solution u defined in the time
interval [0, T ] belonging to the class described in Proposition 3.1 with T =
T (‖u0‖Hs) > t∗,

(2) u exhibits dispersive blow up, which is to say,

lim
(x,t)∈Rn×[0,T ]→(x∗,t∗)

|u(x, t)| = +∞.

(3) Moreover, u is a continuous function of (x, t) on Rn × ([0, T ]) \ {t∗}) and
(4) u(·, t∗) is a continuous function of x on Rn \ {x∗}.

This theorem extends the results of [9] to the cases where n ≥ 2 and p ≥ 3. Notice
that the nonlinearity y 7→ |y|py is smooth when p is an even integer. Otherwise, it
has finite regularity and hence the restriction on p in those cases.

Proof. The proof is provided in detail for p > 0 in the case n = 1 and, when n ≥ 2,
for the case p = 2k, k a positive integer. It will be clear from the argument that
the result extends to the case of p ≥ [n2 ] if p is not an even integer.

As already mentioned, we may assume that the dispersive blow up for the free
Schrödinger group S(t) occurs at x∗ = 0 and t∗ = 1. Note that the same is true
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for initial data of the form δu0, where u0 is as in (3.5) with m = n
2 , say, δ > 0

arbitrary and s satisfying the conditions in Proposition 3.1. In view of part (3) of
the latter proposition, the local existence time T ∗ = T (‖δu0‖Hs) > 0 can be made
arbitrarily large by choosing δ sufficiently small and hence we can always achieve
T ∗ > 1 = t∗.

Step 1. Take f as in (3.5) with m = n
2 and take as initial data u0 = δf . Let

s ∈ (n2 −
2
p ] with p ≥ [n2 ]. Then s satisfies the conditions of Proposition 3.1. As

noted above, by choosing δ small enough, we can be sure that the solution u of
(3.1) emanating from u0 exists and is unique in C([0, T ] : Hs) where T > t∗ = 1.

Duhamel’s formula allows us to represent u in the form

(3.6) u(x, t) = eit∆u0(x)± i
∫ t

0

ei(t−s)∆|u(x, s)|pu(x, s) ds =: eit∆u0(x)± iI(x, t),

where, at least formally, I(x, t) can be written as the double integral

(3.7) I(x, t) =
1

(4iπt)n/2

∫ t

0

∫
Rn

1

(t− s)n2
exp

(
i
|x− y|2

4(t− s)

)
|u(y, s)|pu(y, s) dy ds.

The first term on the right-hand side of (3.6) exhibits dispersive blow up at (x∗, t∗) =
(0, 1) on account of the choice of u0. If it turns out that I is continuous for
(x, t) ∈ Rn × [0, T ], then it is immediately concluded that (3.6) (and thus (3.1))
exhibits dispersive blow up at the same point (x∗, t∗) = (0, 1). To show that I(x, t)
is continuous, it suffices to prove that it is locally bounded as a function of x and
t, since then Lebesgue’s dominated convergence theorem will imply I is continuous
on Rn × [0, T ].

Step 2. Consider n = 1 first, since a more direct proof can be made in this case.
The initial data is

u0(x) =
δe−i4x

2

(1 + x2)
1
2

, x ∈ R.

The function u0 lies in Hs(R) for any s in the range 0 ≤ s < 1
2 . Proposition 3.1

then provides a local in time solution u ∈ C([0, T ];Hs(R)) to the Cauchy problem
(3.1) provided that

0 < s <
1

2
and 0 < p ≤ 4

1− 2s
.

As mentioned already, T may be taken larger than 1 by choosing δ small. By
Sobolev imbedding, Hs(R) ⊂ Lr+1(R) if 1

r+1 ≥
1
2 − s. Hence, for s = 1

2 − ε, where

ε > 0 is fixed and small, it is inferred that u ∈ C([0, T ];Lr+1(R)) for all r in the
range

0 < r ≤ min

{
2

ε
,

1− ε
ε

}
=

1− ε
ε

.

As ε > 0 was arbitrary, it follows that u(·, t) ∈ Lr+1(R), for r ≥ 1 arbitrarily large.
In consequence, I(x, t) is locally bounded. Indeed, using Hölder’s inequality, it is
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seen that

|I(x, t)| ≤
∫ t

0

1

(t− s)1/2

∥∥u(·, s)
∥∥p+1

Lp+1 ds

≤
(∫ t

0

1

(t− s)γ/2
ds

) 1
γ
(∫ t

0

∥∥u(·, s)
∥∥γ′(p+1)

Lp+1 ds

) 1
γ′

where 1
γ + 1

γ′ = 1 and γ ∈ (1, 2). Having in mind that u ∈ C([0, T ];Lp+1(R)), it

transpires that

|I(x, t)| ≤ CT
1
γ′ sup
t∈[0,T ]

‖u(·, t)‖γ
′(p+1)
Lp+1 ,

for all x ∈ R, which concludes the proof in the case n = 1.

Step 3. In case n ≥ 2, the strategy employed above no longer works beause the
factor t 7→ t−n/2 appearing in the representation formula (3.7) is no longer locally
integrable. However, it will be shown in Proposition 4.1 below that the double
integral I is in fact half a derivative smoother than one would naively expect. To
make use of this result, choose initial data u0 of the form (3.5) with m ∈ (n2 −

1
4p ,

n
2 ],

where p ≥ [n2 ]. It is immediately inferred from Lemma 3.3 that

u0 ∈ Hs(Rn) for any s ∈
(n

2
− 1

2p
,
n

2

]
.

Notice that
n

2
− 1

2p
>
n

2
− 2

p
= sp,n

so that Proposition 3.1 applies and therefore u ∈ WT
s,n (see (3.4)) satisfies the

integral form (3.6) of the nonlinear Schrödinger equation. Proposition 4.1 below
then shows that

I ∈ C([0, T ];Hs+1/2(Rn)),

and hence, for s ∈ (n2 −
1
2p ,

n
2 ], one has

I ∈ C(Rn × [0, T ]) ∩ L∞(Rn × [0, T ]).

The proof is complete. �

Remark 3.5. It was shown in [9, Theorem 2.1] that dispersive blow up results
are stable under smooth and localized perturbations of the data. That is to say,
if they hold for data u0, then they also hold for data u0 + w where, for instance,
w ∈ H∞(Rn). In particular the data leading to DBU do not need to be radially
symmetric. The same is true for Theorem 3.4. The proofs of these results consists
of writing the equation satisfied by w and showing that it has bounded, continuous
solutions. The details follow exactly the argument given already in [9].

In addition, there is a kind of density of initial data leading to dispersive blow
up. More precisely, given u0 ∈ Hs(Rn) with s > n/2 and ε > 0, there exists
φ ∈ Hr(Rn), r ∈

(
n
2 −

1
2p ,

n
2

]
with

(3.8) ‖u0 − φ‖Hr(Rn) < ε,

such that the initial data φ leads to dispersive blow up in the sense of Theorem
3.4. Indeed, it suffices to take φ = u0 + δv0, where v0 leads to dispersive blow up
and δ > 0 is small enough that (3.8) holds. A combination of Theorem 3.4 and
Proposition 3.1 then implies the above assertion.
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4. Global smoothing of the Duhamel term and applications

In this section, the proof of Theorem 3.4 is completed by showing the Duhamel
term in the integral representation (3.6) of the solution of the initial-value prob-
lem (3.1) is smoother than is the linear term involving only the initial data. In
fact, several different results of smoothing by the Duhamel term will be developed,
though the first one is enough for the dispersive blow up result in Section 3.

4.1. Smoothing by half a derivative. The following proposition suffices to com-
plete the proof of Theorem 3.4.

Proposition 4.1. Let u0 ∈ Hs(Rn), s > n
2 −

1
2p with p ≥ 1 and [p+ 1] ≥ s+ 1

2 if

p is not an even integer. Let u ∈WT
s,n be the solution of (3.1) satisfying

u(x, t) = eit∆u0(x)± i
∫ t

0

ei(t−s)∆|u(x, s)|pu(x, s)ds =: eit∆u0(x)± iI(x, t).

Then I ∈ C([0, T ];Hs+ 1
2 (Rn)).

In other words, the integral term I is “smoother” than the free propagator eit∆u0

by half a derivative. This is the key point needed in the proof of Theorem 3.4 for
n ≥ 2. In the special case wherein the nonlinearity |u|pu is smooth, so when
p = 2k, k an integer, Proposition 4.3 will show that the Duhamel term is almost
one derivative smoother than one would expect.

Remark 4.2. The fact that the nonlinear integral term in Duhamel’s formula is
smoother than the linear one in certain circumstances has been used in other works
on nonlinear dispersive equations. For example, in [30] it was employed to give a
different proof of some of the results obtained in [8]. In [11], this smoothing effect
was applied to deduce global well-posedness below the regularity index provided
by the conservation laws of mass and energy. So far as we are aware, however, the
result stated in Proposition 4.1 has not previously been explicitly written down.

Proof. The details are provided for the case p = 2k, k ∈ N. It will be clear that the
arguments extend to the case where p ≥ 1 is not an even integer, but p ≥ [n2 ] and
n ≥ 2.

Step 1. In the first step, useful estimates on eit∆u0 are derived. Start by fixing
a j ∈ {1, . . . , n} and noticing that

(4.1) sup
0≤t≤T

{
sup

x1...xj−1xj+1...xn

{
|eit∆u0(x)|

}}
. sup
x1...xj−1xj+1...xn

{
|eit(xj)∆u0(x)|

}
for some t(xj) ∈ [0, T ]. Thus, for q ≥ 2 and s > (n−1)

q , it follows by Sobolev

embedding that

(4.2)

sup
x1...xj−1xj+1...xn

|eit(xj)∆u0(x)| .
∥∥eit(xj)∆u0

∥∥
Hs,q(Rn−1

x1...xj−1xj+1...xn)

= c
∥∥eit(xj)∆Js̂ u0

∥∥
Lq
(
Rn−1
x1...xj−1xj+1...xn

)
.
∥∥ sup

t
|eit∆Js̂ u0|

∥∥
Lq(Rn−1

x1...xj−1xj+1...xn)

where here and in the following,

Js̂ = (1− (∂2
x1

+ · · ·+ ∂2
xj−1

+ ∂2
xj+1

+ · · ·+ ∂2
xn))s/2
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is defined via the associated Fourier symbol. Using (4.1) and (4.2) together with the
estimates on the Schrödinger maximal function given in Lemma 2.8, there appears
the inequality

(4.3)

∥∥eit∆u0

∥∥
Lqxj (R;L∞x1...xj−1xj+1...xnt

(Rn−1×[0,T ]))

=
∥∥∥ sup

0≤t≤T
sup

x1...xj−1xj+1...xn

|eit∆u0|
∥∥∥
Lq(Rxj )

≤ CT
∥∥∥ sup

0≤t≤T
|eit∆Js̂ u0|

∥∥∥
Lq(Rn)

.
∥∥u0

∥∥
Hσ+s(Rn)

,

with q ≥ 2, s > n−1
q and σ > 0 as specified in Lemma 2.8. The inequality (4.3),

together with the local smoothing estimates stated in Lemma 2.7, reveal that

(4.4)
∥∥Dθ/2

xj e
it∆u0

∥∥
L
q/(1−θ)
xj

(R;L
2/θ
x1··xj−1xj+1··xnt

(Rn−1×[0,T ]))
≤ cT

∥∥u0

∥∥
H(1−θ)(σ+s)(Rn)

,

where θ ∈ [0, 1], q ≥ 2, s > n−1
q and σ > 0 as before.

Step 2. To bound ‖Ds+1/2
xj I‖L∞t ([0,T ]:L2(Rn)) above, for j ∈ {1, . . . , n} and p = 2k,

write

(4.5)

∥∥∥Ds+1/2
xj

∫ t

0

ei(t−s)∆(|u|2ku)(s) ds
∥∥∥
L∞([0,T ];L2(Rn))

≤ c
∥∥Ds+1/2

xj (|u|2ku)
∥∥
L1([0,T ];L2(Rn))

≤ cT 1/2
∥∥Ds+1/2

xj (|u|2ku)
∥∥
L2([0,T ]×Rn)

.

To estimate the right-hand side of (4.5), the calculus of inequalities involving frac-
tional derivatives derived in [27] is helpful. More precisely, the following inequality,
which is a particular case of those proved in [27, Theorem A.8], will be used. Let
α ∈ (0, 1), α1, α2 ∈ [0, α] with α = α1 + α2 and let p1, p2, q1, q2 ∈ [2,∞) be such
that

1

2
=

1

p1
+

1

p2
=

1

q1
+

1

q2
.

Then

(4.6)

∥∥Dα
xj (fg)− fDα

xjf − gD
α
xjf
∥∥
L2
xj

(R;L2(Q))

≤ c
∥∥Dα1

xj f
∥∥
L
p1
xj

(R;Lq1 (Q))

∥∥Dα2
xj g
∥∥
L
p2
xj

(R;Lq2 (Q))
,

where Q = Rn−1 × [0, T ].
To illustrate the use of the inequality (4.6) in estimating the right-hand side of

(4.5), assume without loss of generality that s + 1
2 = 1 + α with α ∈ (0, 1). Thus,

omitting the domains of integration R and Q,

(4.7)

∥∥Ds+1/2
xj (fg)

∥∥
L2
xj
L2 =

∥∥D1+α
xj (fg)

∥∥
L2
xj
L2 '

∥∥Dα
xj∂xj (fg)

∥∥
L2
xj
L2

≤ c
(∥∥Dα

xj (f∂xjg)
∥∥
L2
xj
L2

∥∥Dα
xj (∂xjfg)

∥∥
L2
xj
L2

)
.
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By symmetry it suffices to consider only one of the terms on the right-hand side of
(4.7). From (4.6), with α1 = 0, there obtains∥∥Dα

xj (g∂xjf)
∥∥
L2
xj
L2 ≤

∥∥Dα
xj (g∂xjf)− gDα

xj∂xjf − ∂xjfD
α
xjg
∥∥
L2
xj
L2

+
∥∥gDα

xj∂xjf
∥∥
L2
xj
L2 +

∥∥∂xjfDα
xjg
∥∥
L2
xj
L2

≤
∥∥gDα

xj∂xjf
∥∥
L2
xj
L2 + c

∥∥∂xjf∥∥Lp1xjLq1∥∥Dα2
xj g
∥∥
L
p2
xj
Lq2

with p1, p2, q1, q2 restricted as above.
Using the latter inequality to continue the inequality (4.5) yields

(4.8)

∥∥Ds+1/2
xj I

∥∥
L∞t ([0,T ]:L2(Rn))

≤ cT 1/2
∥∥Ds+1/2

xj (|u|2ku)
∥∥
L2([0,T ]×Rn)

≤ cT 1/2
(∥∥u∥∥2k

L4k
xj

(R;L∞x1...xj−1xj+1...xn,t
(Rn−1×[0,T ]))

×
∥∥Ds+1/2

xj u
∥∥
L∞xj

(R;L2
x1...xj−1xj+1...xn,t

(Rn−1×[0,T ]))
+R

)
,

where the remainder R includes only estimates for terms involving powers of u, ∂xju
and Dα

xju . These are straightforwardly bounded above by use of (4.4). In fact, a
bound for them is an interpolation between the first two terms on the right-hand
side of (4.8). It therefore remains to bound only the terms

(4.9)
∥∥u∥∥2k

L4k
xj

(R;L∞x1...xj−1xj+1...xn,t
(Rn−1×[0,T ]))

and

(4.10)
∥∥Ds+1/2

xj u
∥∥
L∞xj

(R;L2
x1...xj−1xj+1...xn,t

(Rn−1×[0,T ]))
,

j = 1, · · · , n, appearing in (4.8).

Step 3. To bound the quantity appearing in (4.9), first note that (4.3) implies∥∥ sup
0≤t≤T

sup
x1...xj−1xj+1...xn

|eit∆u0|
∥∥
L4k
xj

(R)
.
∥∥ sup

0≤t≤T
|eit∆Js̂ u0|

∥∥
L4k(Rn)

,

with s > (n−1)
4k . This estimate can be extended using Lemma 2.8 by observing that∥∥∥ sup

0≤t≤T
|eit∆Js̂ u0|

∥∥∥
L4k(Rn)

≤
∥∥Js̂ u0

∥∥
Hσ(Rn)

.
∥∥u0

∥∥
Hσ+s(Rn)

=
∥∥u0

∥∥
Hs∗ (Rn)

,

where

s∗ = s+ σ >
n− 1

4k
+ n

(1

2
− 1

4k

)
=
n

2
− 1

4k
.

Inserting this inequality in the Duhamel representation (3.6) with

s ∈
(n

2
− 1

4k
,
n

2

]
=
(n

2
− 1

2p
,
n

2

]
,

it follows that∥∥u∥∥
L4k
xj

(R;L∞x1··xj−1xj+1··xnt
(Rn−1×[0,T ]))

≤ C
∥∥u0

∥∥
s,2

+
∥∥Js(|u|pu)

∥∥
L1
t ([0,T ];L2(Rn))

.

Since p = 2k, use of a fractional Leibniz rule (see [26]) implies that

(4.11)
∥∥Js(|u|2ku)

∥∥
L1
t ([0,T ];L2(Rn))

≤ c
∥∥u∥∥2k

L2k
t ([0,T ];L∞(Rn))

∥∥Jsu∥∥
L∞t ([0,T ];L2(Rn))

.
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If it was known that

(4.12) ‖u‖L2k
t ([0,T ];L∞(Rn))) ≤ cT θ‖Jsu‖Lqt ([0,T ];Lr(Rn))

for some θ > 0 and for some admissible Strichartz pair (r, q), then the sequence of
inequalities could be closed. To obtain (4.12), recall that

s >
n

2
− 1

4k
=

2kn− 1

4k
=

n

4kn/(2kn− 1)
,

so we can take

r =
4kn

(2kn− 1)
<

2n

(n− 2)
, if n ≥ 3,

(the case n = 1, 2 is immediate) and q = 8k. By Sobolev embedding, the inequality
(4.12) is seen to hold with θ = 3

8k . In summary, all the terms in (4.9) are shown to
be bounded.

Step 4. Finally, attention is turned to terms of the form appearing in (4.10).
The local smoothing estimate enunciated in Lemma 2.7 together with Duhamel’s
formula imply that∥∥Ds+1/2

xj u
∥∥
L∞xj

(R;L2
x1··xj−1xj+1··xn,t

(Rn−1×[0,T ]))

≤
∥∥u0

∥∥
Hs(Rn)

+
∥∥Js(|u|2ku)

∥∥
L1
t ([0,T ];L2(Rn))

.

The right-hand side was already estimated in (4.11)–(4.12). Because of (4.8), this
shows that there exists a C = C(T, n) > 0 such that∥∥Ds+1/2

xj I
∥∥
L∞t ([0,T ]:L2(Rn))

≤ C.

Summing these estimates over j for j = 1 · · · , n yields the result advertised in the
proposition.

Finally, we remark that in the case where p is not an even integer, one needs
to supplement the Leibnitz-type inequality (4.6) with the chain rule for fractional
derivatives adduced in the Appendix of [27] together with the restriction on p. �

4.2. An even stronger smoothing property. For large s and higher values of
p, a stronger smoothing result than that established in Proposition 4.1 holds.

Proposition 4.3. Let u0 ∈ Hs(Rn), s > n
2 −

1
2p with p ≥ 2 and [p+ 1] ≥ s+ 1

2 if

p is not an even integer. Under these hypothses, it follows that for any ε > 0,

I ∈ C([0, T ];Hs+1−ε(Rn)),

where the notation is taken from Proposition 4.1

Remark 4.4. The loss of ε in the regularity of I is needed to obtain a factor
T δ(ε), δ(ε) > 0, on the right-hand side of the inequalities below which allows them
to be closed. It can be recovered by assuming that the data u0 is small enough in
Hs(Rn).

The proof of Proposition 4.3 uses the following smoothing estimate, which is a
direct consequence of Lemma 2.7, a duality argument and the Christ-Kiselev lemma
[16]. For a proof, see [29, Chapter 4].
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Lemma 4.5. For any n ∈ N, the inequality∥∥∥∥D1/2
xj

∫ t

0

ei(t−s)∆f(·, s) ds
∥∥∥∥
L∞t (R;L2

x(Rn))

≤ C
∥∥Hjf∥∥L1

xj
(R;L2

x1...xj−1xj+1...xnt
(Rn))

holds, where Hj denotes the Hilbert transform in the j-th variable, which is to say,

Hjf(x) := −iF−1
(

sign(ξj)f̂(ξ)
)

(x).

Proof of Proposition 4.3. The proof is similar to that of Proposition 4.1 and hence,
we only sketch the main differences.

First consider the case of data u0 ∈ Hs(Rn) which is small, so that all the
norms involved are indeed “small”. We want to show that the integral term I in
Duhamel’s formula is one order smoother in the Sobolev scale C([0, T ];Hs(Rn))
than the the free propagation eit∆u0. To this end, apply Lemma 4.5 together with
the commutator estimate in [27, Theorem A.13] to write

(4.13)

∥∥HjDs+1
xj I

∥∥
L∞([0,T ];L2(Rn))

.
∥∥Ds+1/2

xj (|u|2ku)
∥∥
L1
xj

(R;L2
x1··xj−1xj+1··xnt

(Rn−1×[0,T ]))

.
(
‖u
∥∥2k

L2k
xj

(R;L2
x1··xj−1xj+1··xnt

(Rn−1×[0,T ]))

× ‖Ds+1/2
xj u‖L∞xj (R;L2

x1··xj−1xj+1··xnt
(Rn−1×[0,T ])) +R

)
.

To estimate the two explicit quantities on the right-hand side of the last inequality,
one uses arguments similar to those given in the proof of Proposition 4.1. The
estimates for the remainder terms represented by R then follow by interpolation
of the previous estimates. Since the terms on the right-hand side of (4.13) are
quadratic and each factor is small, one can close the estimate and get the desired
result, but only provided that u0 is sufficiently small.

For data u0 ∈ Hs(Rn) of arbitrary size one gives up ε-amount of spatial smooth-
ing for a little temporal smoothing, thereby obtaining the factor T δ(ε), δ(ε) > 0 on
the right-hand side. The right-hand side of the estimate then has lower homogeneity
than the left side and the prrof proceeds. �

4.3. Extension to the case of non-elliptic Schrödinger equations. The re-
sults above extend to the case of non-elliptic, non-degenerate nonlinear Schrödinger
equations of the form

(4.14) i∂tu+ ∆Hu± |u|pu = 0, u
∣∣
t=0

= u0(x),

where

∆H := ∂2
x1

+ . . . ∂2
xj − ∂

2
xj+1
· · · − ∂2

xn .

Proposition 4.6. The result of Theorem 3.4 also holds for the initial-value problem
delineated in (4.14) .

Proof. Remark first that for initial data of the form

(4.15) ũ0(x) =
e−iα

(
(x1−q1)2+···+(xj−qj)2−(xj+1−qj+1)2−···−(xn−qn)2

)
(1 + |x|2)m

,
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with n/4 < m ≤ n/2, the solution of the initial-value problem associated to the
linearization of (4.14) around the rest state, i.e.,

u(x, t) = eit∆H ũ0(x),

satisfies the conclusions of Lemma 2.1, and in particular, blows up at the point
q̃ = (q1, . . . , qj ,−qj+1, . . . ,−qn).

Next, notice that the the local well-posedness result stated in Proposition 3.1, is
solely based on Strichartz estimates, which are exactly the same for the two groups
{eit∆}t∈R and {eit∆H}t∈R (cf. [22]). In other words, Lemma 2.6 also holds in the
non-elliptic case. Together with Sobolev embeddings, this yields a unique solution
u ∈ WT

s,n to (4.14), by the same arguments as in [15]. Furthermore, the local
smoothing estimates stated in Lemma 2.7 carry over to the non-elliptic situation.

Finally, for the boundedness of the associated maximal function (see Lemma
2.8), we point to the estimate

(4.16)
∥∥∥ sup

0≤t≤T

∣∣eit(∂2
x1
−∂2

x2
)f
∣∣ ∥∥∥
L4(Rn)

≤ CT
∥∥∥D1/2

x f
∥∥∥
L2(R2)

,

proved in [35, Theorem 2.6] and observe that the same argument used there to
establish (4.16) shows that∥∥∥ sup

0≤t≤T

∣∣eit∆Hf
∣∣ ∥∥∥
L4(Rn)

≤ CT
∥∥∥Dn/4

x f
∥∥∥
L2(Rn)

,

which is the desired estimate. The result then follows along the same lines as given
in the proof of Theorem 3.4. �

An important consequence of this is the possibility of dispersive blow up for the
Davey-Stewartson system in the “elliptic/elliptic” or “hyperbolic/elliptic” cases
(see [22] for more details about these systems, in particular for theory of local well-
posedness). This system arose originally as an approximate description of surface
gravity-capillary waves in shallow water, but has other applications as well.

Corollary 4.7. For α, β ∈ R \ {0} consider the Davey-Stewartson system

(4.17)

{
i∂tu± ∂2

x1
u+ ∂2

x2
u = α|u|2u+ βu∂x1

φ, x = (x1, x2) ∈ R2,

∆φ = ∂x1 |u|2.

Then there exist initial values u0 ∈ Hs(R2)∩L∞(R2)∩C∞(R2), with s ∈ ( 1
2 , 1] such

that the solution u of (4.17) with the initial condition u(0) = u0 exhibits dispersive
blow up.

Proof. Rewrite the system (4.17) as a single equation

i∂tu± ∂2
x1
u+ ∂2

x2
u = α|u|2u− βu∂2

x1
(−∆)−1(|u|2),

in the usual way. The latter equation has the equivalent form

i∂tu± ∂2
x1
u+ ∂2

x2
u = α|u|2u− βuR1R1(|u|2),

where

R1f(x1, x2) := F−1

(
i
ξ1
|ξ|
f̂(ξ1, ξ2)

)
(x1, x2)

denotes the 1-Riesz transform in R2

From the Lp-continuity of the Riesz transform, it is clear that the result in
Proposition 3.1 and the argument entailed in the proof of Proposition 4.1 still hold.
Hence, Theorem 3.4 extends to solutions of the system (4.17). �
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5. Dispersive blow up in the Gross-Pitaevskii equation

In this section, the discussion is moved to the initial-value problem for the Gross-
Pitaevskii equation,

(5.1) i∂tψ + ∆ψ + (1− |ψ|2)ψ = 0, ψ
∣∣
t=0

= ψ0(x).

Here (x, t) ∈ Rn × R and ψ is subject to the boundary condition

(5.2) lim
|x|→∞

ψ(x, t) = 1, for all t ∈ R.

The Gross-Pitaevskii equation arises, for example, in the description of Bose-
Einstein condensates, superfluid helium He2 and, in one spatial dimension, as a
model for light propagation in a fiber optics cable (see for instance the survey
article [7] and other articles in the same volume).

Remark 5.1. An important conserved quantity of (5.1) is the Ginzburg-Landau
energy, defined by

E(ψ) =
1

2

∫
Rn
|∇ψ|2 dx+

1

4

∫
Rn

(1− |ψ|2)2 dx.

This invariant indicates a natural energy space

E(Rn) = {ψ ∈ H1
loc(Rn), E(ψ) < +∞}

for the Gross-Pitaevskii equation (see [20, 21] for more details).

5.1. A reformulation of the Gross-Pitaevskii Equation. Due to the non-zero
boundary condition (5.2) at infinity, the ideas that worked in the earlier sections
do not apply directly to show dispersive blow up. To prove dispersive blow up for
the Gross-Pitaevskii equation, make the change

ψ(t, x) = 1 + u(t, x),

of the dependent variable so that u ∈ L2(Rn) describes the deviation from the
steady state. In terms of u, the Gross-Pitaevskii equation (5.1) becomes

(5.3) i∂tu+ ∆u− 2Reu = F (u), u
∣∣
t=0

= ψ0(x)− 1,

where

F (u) = u2 + 2|u|2 + |u|2u.
Even the transformed initial-value problem (5.3) does not fall directly to the gen-
eral lines of argument proposed earlier, due to the appearance of the slightly odd,
R-linear term −2Reu, which at least in principle might cancel out the effect of
dispersive blow up stemming from the Laplacian.

This obstacle will be surmounted by using the further reformulation developed
by Gustafson, Nakanishi and Tsai in [23, 24]. Following them, we introduce the
Fourier multipliers

(5.4) A :=
√
−∆(2−∆) and B :=

√
−∆(2−∆)−1 .

These operators satisfy A = −∆B−1 = (2 − ∆)B =
√
−∆(2−∆). Next, define

the R-linear operator

Υu := BReu+ i Imu ≡ Bu1 + iu2,
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where u = u1 +iu2. One checks (see [23, 24]) that the left-hand side of the equation
in (5.3) can be written in the form

(5.5) i∂tu+ ∆u− 2Reu = Υ(i∂t −A)Υ−1u.

Denote by v the function

v := Υ−1u ≡ Υ−1(u1 + iu2) = B−1u1 + iu2

and rewrite (5.3) as

(5.6) i∂tv −Av = Υ−1F (u), v
∣∣
t=0

= Υ−1(ψ0 − 1).

The associated free evolution is

w(x, t) = e−itAv0(x) :=
1

(2π)n

∫
Rn
eit
√
|ξ|2(|ξ|2+2)û0(ξ)eiξ·x dξ,

which can be represented as follows.

Lemma 5.2. For any f ∈ L2(Rn) and any t 6= 0, the group {e−itA}t∈R has the
representation

e−itAf(x) = (G(·, t) ∗ f)(x),

where the kernel is G = G1 +G2 with

G1(x, t) =
eit

(4πit)n/2
e
i|x|2
4t and G2(x, t) :=

eit

(2π)n

∫
Rn
κ(ξ, t)eit|ξ|

2

eix·ξdξ.

Here, the convolution is with respect to the spatial variable over Rn and the kernel
κ is

κ(ξ, t) = 2i sin
( t

2
r(ξ)

)
ei
t
2 r(ξ)

with

r(ξ) =
−2|ξ|2(√

|ξ|2(|ξ|2 + 2) + |ξ|2
)2 ∼ O(|ξ|−2), as |ξ| → ∞.

Moreover, r lies in Cb(Rn) and is smooth away from the origin.

Note that G1 is the usual Schrödinger group multiplied by eit. Remark also that,
as |ξ| → ∞, κ(·, t) decays to zero like |ξ|−2, uniformly on compact time-intervals.

Proof. The convolution kernel G is

G(x, t) = F−1
(
eit
√

(|ξ|2(|ξ|2+2)
)

(x, t).

Observe that √
(|ξ|2(|ξ|2 + 2) = |ξ|2 + a(ξ),

where

a(ξ) =
2|ξ|2√

(|ξ|2(|ξ|2 + 2) + |ξ|2
= 1− 2|ξ|2(√

(|ξ|2(|ξ|2 + 2) + |ξ|2
)2 = 1 + r(ξ).

Consequently, it follows that

eit
√

(|ξ|2(|ξ|2+2) = eit|ξ|
2

eiteitr(ξ) = eiteit|ξ|
2

(1 + ft(|ξ|)),
where

ft(|ξ|) = 2i sin
( t

2
r(ξ)

)
eit

r(ξ)
2
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is continuous, smooth on Rn and decays to zero like |ξ|−2, as |ξ| → ∞, uniformly on
compact time intervals in (0,∞), since r(|ξ|) does so. This allows the propagator
in Fourier space to be written as

Ĝ(ξ, t) = eit
√
|ξ|2(|ξ|2+2) = eiteit|ξ|

2

(1 + κ(ξ, t))

with κ as above. �

With this representation in hand, dispersive blow up for the evolutionary group
{e−itA}t∈R can be established for at least spatial dimensions less than or equal to
three.

Lemma 5.3. Let n ≤ 3. Given x∗ ∈ Rn and t∗ > 0, there exist initial data
v0 ∈ C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) such that

w(·, t) = e−itAv0 ∈ L2(Rn),

exhibits dispersive blow up at (x∗, t∗).

Proof. Choose (x∗, t∗) = (0, 1
4 ) without loss of generality. As before, let

v0(x) =
e−i|x|

2

(1 + |x|2)m
, with

n

4
< m ≤ n

2
.

Using Lemma 5.2, it is found that

e−itAv0(x) = (G1(·, t) ∗ v0)(x) + (G2(·, t) ∗ v0)(x).

In view of the calculations in Section 2.1 it is inferred that the first term on the
right-hand side will exhibit dispersive blow up at (0, 1

4 ). It thus suffices to show
that G2(·, t) ∗ v0 ∈ Cb(Rn), uniformly on compact time-intervals.

The kernel G2(·, t) ∈ L2(Rn) for n ≤ 3, due to the decay properties of r(ξ).

Since v0 ∈ L2(Rn) by construction, the product Ĝ2(·, t)v̂0 ∈ L1(Rn), uniformly on
compact time-intervals. The Riemann-Lebesgue lemma then implies the desired
result. �

Note that even though e−itA represents the linear evolution operator associated
to (5.6), it includes part of the nonlinearity of the original Gross-Pitaevskii equation
(5.1), as can be seen from (5.5).

5.2. Proof of dispersive blow up for Gross-Pitaevskii. Lemma 5.3 together
with the results of Section 3 now allow us to prove dispersive blow up for equation
(5.6) and, consequently, also for the original Gross-Pitaevskii equation (in physically
relevant dimensions n = 1, 2, 3). To effect a proof, the following lemma on the
mapping properties of B and its inverse will be used.

Lemma 5.4. The operator B in (5.4) may be written in the form

B = Id +B1, B−1 = Id +B2,

where B1, B2 ∈ L(Hs(Rn), Hs+2(Rn)), for all s ∈ R.

Proof. The proof is a simple computation on the level of the Fourier symbols b1
and b2 associated to B1 and B2. For example, the symbol b1 is

b1(ξ) = − 2

(2 + |ξ|2)(
√
|ξ|2(2 + |ξ|2)−1 + 1)

.
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From this formula, one sees that b1 is in fact uniformly bounded and is O(|ξ|−2) as
|ξ| → ∞. Similarly, one finds

b2(ξ) =
2

(2 + |ξ|2)
√
|ξ|2(2 + |ξ|2)−1[1 + (|ξ|2(2 + |ξ|2)−1]1/2

,

from which one infers the assertion about B2. �

In particular, since Υ−1u = B−1u1 + iu2, this implies that, for all s ∈ R,
Υ−1 ∈ L(Hs(Rn), Hs(Rn)).

Here is the main result of this section.

Theorem 5.5. Let n ≤ 3. Given x∗ ∈ Rn, t∗ > 0, there exist initial data v0 ∈
C∞(Rn) ∩ L2(Rn) ∩ L∞(Rn) such that the corresponding solution of (5.3) exhibits
dispersive blow up at (x∗, t∗).

Proof. We follow the same strategy as for the nonlinear Schrödinger equation and
rewrite the solution of (5.6) as

(5.7) v(x, t) = e−itAv0(x) + i

∫ t

0

e−i(t−s)AΥ−1F (u(x, s)) ds

using Duhamel’s formula, where the nonlinearity is explicitly given by

Υ−1F (u) = B−1(3u2
1 + u2

2 + |u|2u1) + iu2(2u1 + |u|2)

since u = u1 + iu2. In view of Lemma 5.3, the first term on the right-hand side of
(5.7) exhibits dispersive blow up at (x∗, t∗) = (0, 1

4 ) provided n < 4. The advertised
result will be in hand when the second term is known to be uniformly bounded.

The Cazenave-Weissler theory implies that corresponding to initial data u0 ∈
Hs(Rn), the initial-value problem (5.3) has a local solution u ∈ C([0, T ], Hs(Rn))
for some values of s < n

2 . The integral term in (5.7) splits into I1 + I2 where

Ij(x, t) =

∫ t

0

Gj(·, t− s) ∗Υ−1F (u(·, s)) ds, j = 1, 2,

corresponding to the decomposition G = G1 + G2. The fact that I2 is a bounded
continuous function can be concluded by the same argument as in the proof of
Lemma 5.3. For n < 4, G2(·, t) ∈ L2(Rn), and so is Υ−1F (u) because u ∈ Hs(Rn)
and Υ−1 ∈ L(Hs(Rn), Hs(Rn)).

On the other hand, I1 is given by

I1(x, t) =

∫ t

0

G1(·, t− s) ∗
(
B−1[3u2

1 + u2
2 + |u|2u1] + u2(2u1 + |u|2)

)
(·, s) ds.

Inasmuch as G1 is, up to a multiplicative constant, the fundamental solution of
the usual linear Schrödinger equation (see Lemma 5.2), the double integral I1 is
of the same form (up the the appearance of B−1) as the usual nonlinearity in
the Duhamel representation of the nonlinear Schrödinger equation. In view of the
mapping properties of B−1, the desired result of boundedness and continuity then
follows from the corresponding proof for the usual nonlinear Schrödinger equation
given in Sections 3.2 and 4. �

As a corollary, we infer the appearance of dispersive blow up for the original
Gross-Pitaevskii equation (5.1) in physically relevant dimensions.
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Corollary 5.6. Let n ≤ 3. Given x∗ ∈ Rn, t∗ > 0, there exist smooth and bounded
initial data ψ0 ∈ Cb(Rn) with ψ0 − 1 ∈ L2(Rn), such that the solution ψ exhibits
dispersive blow up at (x∗, t∗).

Proof. To establish dispersive blow up for (5.1), the results for v need to be trans-
ferred back to the variable ψ. In search of such a conclusion, note that the initial
data in (5.6) is given by

v0(x) = Υ−1(ψ0 − 1) = B−1(Reψ0 − 1) + i Imψ0.

The specific choice v0(x) = e−i|x|
2

(1+|x|2)m then corresponds to the initial data

ψ0(x) = 1 +BRe v0(x) + i Im v0(x) = 1 +B

(
cos |x|2

(1 + |x|2)m

)
+

i sin |x|2

(1 + |x|2)m

for (5.1). Since B : L2(Rn) → L2(Rn), it is clear from the last formula that
ψ0 − 1 ∈ L2(Rn). By Lemma 5.4, B = Id +B1 with B1 ∈ L(L2(Rn), H2(Rn)) and
H2(Rn) ⊂ Cb(Rn) for n ≤ 3, so it is concluded that ψ0 ∈ Cb(Rn).

Now, if v = v1 + iv2 is a solution of (5.6) with the dispersive blow up property at
a point (x∗, t∗) provided by Theorem 5.5, the corresponding u = u1 + iu2 is given
by

u1 = B−1v1 = (I +B2)v1, u2 = v2.

Since B2 is a smoothing operator, u, and thus ψ = 1+u satisfies the DBU property
at the same point (x∗, t∗). �

6. Higher-order nonlinear Schrödinger equations

In this final section, we indicate how results of dispersive blow up can be extended
to higher-order nonlinear Schrödinger equations. It is mathematically natural to
inquire whether or not higher-order terms destroy dispersive blow up, but the prac-
tical motivation for considering such an extension is perhaps even more telling. In
nonlinear optics, third and fourth-order Schrödinger-type equations frequently ap-
pear in the description of various wave phenomena. In particular, the analysis of
optical rogue-wave formation has been based on higher-order nonlinear Schrödinger
equations (see, for example, [17, 18, 31, 40]).

As the ideas and even much of the technical detail mirror closely what has gone
before, we content ourselves with admittedly sketchy indications of how the theory
is developed. The one point which would require serious new effort has to do with
an appropriate generalization of the Cazenave–Weissler theory in [15] to a higher-
order setting. This is not attempted here, but is deserving of further investigation
at a later stage.

6.1. Fourth-order nonlinear Schrödinger equation. In this subsection, initial-
value problems for fourth-order nonlinear Schrödinger equations of the form

(6.1) i∂tu+ α∆u+ β∆2u+ λ|u|pu = 0, u
∣∣
t=0

= u0(x),

are considered. Here, the parameters α, β, λ are real constants, with β 6= 0. Theory
for this initial-value problem can be found, for example, in [19, 34] and in the
references cited in these works. If α = 0, the partial differential equation is often
referred to as the bi-harmonic NLS equation (see, e.g., [2]). A simple scaling allows
us to assume β = 1 and to consider only the values α ∈ {0,−1,+1}, though time
may need to be reversed.
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To establish dispersive blow up for (6.1), the dispersive properties of the associ-
ated linear equation

(6.2) i∂tu− α∆u+ ∆2u = 0, α ∈ {0,−1,+1}

are helpful, just as for the lower-order cases. As should be clear from the preceding
theory, the possibility of dispersive blow up for (6.2) is linked to the dispersive
properties of the fundamental solution

(6.3) Σα(x, t) =
1

(2π)n/2

∫
Rn
eit(|ξ|

4+α|ξ|2)+ix·ξ dx

of (6.2), which have in fact been established already in [3].

Lemma 6.1. Let Σα be as in (6.3) and µ ∈ Nna multi-index.

(1) If α = 0, there exists a C > 0 such that for x ∈ Rn and t > 0,

|∂µΣ0(x, t)| ≤ Ct−(n+|µ|)/4
(

1 +
|x|
t1/4

)−(n−|µ|)/3

.

(2) For t > 0 and either t ≤ 1 or |x| ≥ t, there exists a C > 0 such that

|∂µΣα(x, t)| ≤ Ct−(n+|µ|)/4
(

1 +
|x|
t1/4

)−(n−|µ|)/3

for α = ±1.

Strichartz estimates then follow pretty much directly from Proposition 6.1. In
some detail, we say that the pair (q, r) is admissible for the fourth-order Schrödinger

group {eit(∆2−α∆)}t∈R if

(6.4)
1

q
=
n

4

(
1

2
− 1

r

)
,

for 2 ≤ r ≤ 2n
n−2 if n ≥ 3, respectively, 2 ≤ r ≤ ∞ if n = 1 and 2 ≤ r <∞ if n = 2.

Using this, one has the following estimates, which are the fourth-order counterpart
to the ones established in Lemma 2.6. In what follows T = +∞ when α = 0 and T
is any nonnegative number when α = ±1.

Lemma 6.2 ([3]). Let (q, r) be admissible in the sense of (6.4). Then there exists
c = c(n, r, T ) such that∥∥eit(∆2−α∆)f

∥∥
Lq((−T,T );Lr(Rn))

≤ c‖f‖L2(Rn).

The linear operator

Φf =

∫ t

0

ei(t−s)(∆
2−α∆)f(s)ds

is bounded in the sense that

‖Φf‖Lq((−T,T );Lr(Rn)) ≤ c‖f‖Lq′ ((−T,T );Lr′ (Rn)),

where 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1.

If we assume for the moment that dispersive blow up holds true for the linear
model (6.2), then the Strichartz estimates above are already sufficient to prove
dispersive blow up for the nonlinear equation (6.1) in the physically relevant di-
mensions n ≤ 3.
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Proposition 6.3. Let n ≤ 3 and α ∈ {0,−1,+1}. Assume that the linear fourth-
order equation (6.2) exhibits dispersive blow up at some point (x∗, t∗) in space-time.
Then, for p < 8

n − 1, so does the fourth-order initial-value problem (6.1).

Proof. The proof follows closely the one given in [9] for the one-dimensional, second-
order nonlinear Schrödinger equation. In particular, the fact that the dispersive
estimate in Lemma 6.1 of the fundamental solution Σα has temporal behavior that
goes like t 7→ t−n/4, which is locally integrable for n < 4, is a key point in the proof.

The Duhamel representation of (6.1) is given by

u(x, t) = eit(∆
2−α∆)u0(x) + iλ

∫ t

0

ei(t−s)(∆
2−α∆)|u(x, s)|pu(x, s) ds

= eit(∆
2−α∆)u0(x) + iλI(x, t),

The first term on the right-hand side exhibits dispersive blow up by assumption.
To prove that the integral term is continuous and bounded, notice that

|I(x, t)| ≤ C
∫ t

0

∫
Rn

1

(t− s)n/4
|u|p+1(x− y, t− s) ds dy

using Lemma 6.1. Applying Hölder’s inequality, with a γ ∈ (0, 4/n) to be deter-
mined presently, it is found that

|I(t, x)| ≤
(∫

R

ds

(t− s)nγ/4

)1/γ (∫
R
‖u(·, s)‖γ

′(p+1)
p+1 ds

)1/γ′

,

with 1
γ + 1

γ′ = 1. Choose an admissible Strichartz pair in the range (6.4) as follows.

Take r = p+ 1 so that q = 8(p+1)
n(p−1) . The condition γ′(p+ 1) ≤ q then yields

γ′ =
γ

γ − 1
≤ 8

n(p− 1)
.

Combined with the condition γ < 4
n , one obtains

p <
8

n

(
1− 1

γ

)
=

8

n
− 1,

and the assertion is proved. �

Remark 6.4. The strategy deployed in this proof does not yield the optimal range
of exponents p nor is it valid for n ≥ 4. This is because it is based only on Strichartz
estimates and because t 7→ t−n/4 is locally integrable only for n < 4. To extend
the proof to higher dimensions n > 3, and to more general nonlinearities p > 0,
one could argue as in the proof of Proposition 4.1. However, an essential ingredient
in our argument was the Cazenave-Weissler result recounted in Proposition 3.1.
Thus to carry out this line of reasoning successfully, we would need the analog of
the Cazenave-Weissler results in the case of fourth-order equations, as well as the
corresponding smoothing estimates for the Duhamel term established in Section 4.
These tasks will be goal of an upcoming work.

To close the analysis, it is still required to prove that the linear fourth-order
equation (6.2) does exhibit dispersive blow up. To this end, we will need a more
precise description of the decay of the fundamental solution. This will only be car-
ried out in the one-dimensional case, though the result in higher spatial dimensions
does not require new ideas, just more complex computations.
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Proposition 6.5. Let n = 1. Given (x∗, t∗) ∈ R × (R \ {0}), there exists u0 ∈
C∞(R) ∩ L2(R) ∩ L∞(R) such that the solution u ∈ Cb(R;L2(R)) to (6.2) has the
following properties.

(1) The solution u blows up at (x∗, t∗) which is to say

lim
(x,t)∈R→(x∗,t∗)

|u(x, t)| = +∞.

(2) The function u is continuous on
{

(x, t) on R× R \ {t∗}
}

.
(3) The solution u(·, t∗) is a continuous function on R \ {x∗}.

Proof. For n = 1, it is readily checked that the fundamental solution of

(6.5) i∂tut − α∂2
xu+ ∂4

xu = 0

is given by

Σα(x, t) =
1

(4t)1/4
B

(
2αt1/2,

x

(4t)1/4

)
where B is the Pearcey integral defined by

B(x, y) =
1

π

∫
R
ei
(

1
4 s

4+ 1
2xs

2+ys
)
ds.

The Pearcey integral is a smooth and bounded function of (x, y) ∈ R2 which decays
in both variables thusly:

|B(x, y)| ≤ c
(
1 + y2 + |x|3

)−1/18
(

1 + (1 + y2 + |x|3)−5/9|(3y)2 + (2x)3|
)−1/4

(see, e.g., [3]). To establish dispersive blow up for (6.5), an asymptotic expansion
of the Pearcey integral with respect to the second variable y is helpful. Such an
expansion has been established in [33], Formulas (2.14) and (5.12). 1 These results
imply that

(i) in the case α = 0, one has

B(0, y) = C1y
−1/3 + C2y

−5/3 +O(|y|−3),

as |y| → +∞, uniformly for bounded values of x, where C1 and C2 are
nonzero complex constants and,

(ii) when α 6= 0,

B(x, y) = 21/6e−iπ/24y−1/3e−ix
2/6 exp

(
− 3i

44/3
y4/3 +

i

42/3
xy−2/3]

)
×(

1 +
4−1/3

3
xy−2/3(1− i

9
x2) +O(|y|−4/3)

)
for |y| → +∞ and bounded x.

With these results in hand, an argument can be mounted that mimics the case of
the usual Schrödinger group. Without loss of generality, take it that (x∗, t∗) = (0, 1

4 )
and consider in (6.5) the initial data

u0(x) =
Σ0(−x, 1

4 )

(1 + x2)m
=

B(0,−x)

(1 + x2)m
,

1

12
< m ≤ 1

6
,

1Note the rotation of coordinates in those formulas as compared to the way they are written
here.
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if α = 0, and

u0(x) =
Σα(−x, 1

4 )

(1 + x2)m
=

B(α,−x)

(1 + x2)m
,

1

12
< m ≤ 1

6
,

if α = ±1.
The asymptotics of the Pearcey integral can then be brought to bear to prove

Proposition 6.5. In particular, one uses these asymptotics to show that the solution
of the linear problem blows up at (0, 1

4 ), that it is continuous on the complement
of this point and that the relevant Duhamel integral is everywhere continuous. We
pass over the details. �

The analogous result for general dimensions n ∈ N can be established by passing
to radial coordinates and reducing it to the one-dimensional case (as in [3] where
the first term in the asymptotic expansion is given).

6.2. Third order NLS in one dimension. Finally, we briefly discuss the sit-
uation for a third-order nonlinear Schroödinger equation in n = 1 dimensions.
Consider the initial=value problem

(6.6) ∂tu+ iα∂2
xu+ β∂3

xu+ iγ|u|2u = 0, u
∣∣
t=0

= u0(x),

where x ∈ R, and α, β, γ ∈ R \ {0} are given parameters. This is a model problem
for a more complicated third-order equation that arises in optical wave propagation
(see [31, 40]).

Equation (6.6) appears similar to the well known Korteweg-de Vries equation,
hence the appearance of dispersive blow up can be established along the same lines
as was pursued in [8] for this latter equation. Indeed, the associated linear equation,

(6.7) ∂tu+ iα∂2
xu+ β∂3

xu = 0,

admits a fundamental solution of the form

Λ(x, t) =
1

2π

∫
R
eiβξ

3−iαξ2+ix·ξ dξ.

The expansion (
ξ +

α

3β

)3

= ξ3 +
α

β
ξ2 +

α2ξ

3β2
+

α3

27β3

allows us to write Λ in the form

Λ(x, t) =
1

2π(tβ)1/3
exp

(
4itα3

27β2

)
exp

(
−iαx
2β2

)
Ai

(
1

t1/3β1/3

(
x− α2

3β
t
))

.

Here, Ai denotes the well-known the Airy function defined, for example, by

Ai(z) =

∫
R
ei(ξ

3+izξ) dξ.

In [8], the dispersive properties of the Airy function are the basis for establishing
dispersive blow up for the Korteweg-de Vries equation. Following these ideas, dis-
persive blow up for (6.7) at (x∗, t∗) = (0, 1) is easily obtained by taking initial data
of the form

u0(x) =
A(−x)

(1 + x2)m
, with

1

8
< m ≤ 1

4

and

A(x) = Ai

(
α2 + x

3β4/3

)
.
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The proof of dispersive blow up for this third-order Schrödinger equation can then
be accomplished just as in [8]. Indeed, the proof is easier since, contrary to the
Korteweg-de Vries equation, the Duhamel representation of (6.6) does not involve
any spatial derivatives of the dependent variable. Consequently it can be shown to
be bounded by using only Strichartz estimates for the linearized Korteweg-de Vries
equation (see [4, 10]).

Remark 6.6. Combining the results of the foregoing sections allows one to de-
duce dispersive blow up for nonlinear Schrödinger-type equations with anisotropic
dispersion, such as

i∂tu+ α∆u+ iβ∂3
x1
u+ γ∂4

x1
u+ |u|pu = 0,

where α, β, γ ∈ R \ {0}. The Cauchy problem for this equation has been studied in
[10] (see also [19]).
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7. F. Béthuel, P. Gravejat, and J.-C. Saut, Existence and properties of travelling waves for

the Gross-Pitaevskii equation. In: Stationary and time dependent Gross-Pitaevskii equations,
pp. 55–103, A. Farina and J.-C. Saut (eds.), Contemp. Math. 473, American Math. Soc.:

Providence, RI, 2008.

8. J. L. Bona and J.-C. Saut, Dispersive blow up of solutions of generalized KdV equations.
J. Differential Equ. 103 (1993), 3–57.

9. J. L. Bona and J.-C. Saut, Dispersive blow up II. Schrödinger-type equations, Optical and
Oceanic Rogue Waves. Chinese Annal. Math. Ser. B 31 (2010), 793–810.

10. O. Bouchel, Remarks on nonlinear Schrödinger equations with higher order anisotropic

dispersion. Adv. Differential Eq. 13 (2008), 169–198.

11. J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical
nonlinearity. Intern. Math. Res. Notices. 5 (1998), 253–283.

12. R. Carles, Critical nonlinear Schrödinger equations with and without harmonic potential.
Math. Models Methods Appl. Sci. 12 (2002), 1513–1523.

13. R. Carles, Nonlinear Schrödinger equations with repulsive harmonic potential and applica-

tions. SIAM J. Math. Anal. 35 (2003), 823–843.
14. T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Math-

ematics, New York University Courant Institute of Mathematical Sciences: New York, 2003.

15. T. Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger
equation in Hs. Nonlin. Anal. 14 (1990), 807–836.

16. M. Christ and A. Kiselev, Maximal functions associated to filtrations. J. Funct. Anal. 179

(2001), 406–425.
17. J. Dudley, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78 (2006),

1135–1184.

18. J. Dudley, G. Genty and B. J. Eggleton Harnessing and control of optical rogue waves
in supercontinuum generation. Optics Express 16 (2008), 3644–3651.



28 J. L. BONA, G. PONCE, J.-C. SAUT, AND C. SPARBER

19. G. Fibich, B. Ilan and S. Schochet, Critical exponents and collapse of nonlinear

Schrödinger equations with anisotropic fourth-order dispersion. Nonlinearity 16 (2003), 1809–

1821.
20. P. Gérard, The Cauchy Problem for the Gross-Pitaevskii Equation. Ann. Inst. H. Poincaré
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