HARDY UNCERTAINTY PRINCIPLE, CONVEXITY AND
PARABOLIC EVOLUTIONS

L. ESCAURIAZA, C. E. KENIG, G. PONCE, AND L. VEGA

ABSTRACT. We give a new proof of the L? version of Hardy’s uncertainty prin-
ciple based on calculus and on its dynamical version for the heat equation. The
reasonings rely on new log-convexity properties and the derivation of optimal
Gaussian decay bounds for solutions to the heat equation with Gaussian de-
cay at a future time. We extend the result to heat equations with lower order
variable coefficient.

1. INTRODUCTION

In this paper we continue the study in [18, 6, 8, 9, 10, 11] related to the Hardy
uncertainty principle and its relation to unique continuation properties for some
evolutions.

One of our motivations came from a well known result due to G. H. Hardy ([14],
[21, pp. 131]), which concerns the decay of a function f and its Fourier transform,

~

fo=ent [ e

If f(z) = O(e~1=I7/8%) | F(&) = O(e=461*/**) and 1/aB > 1/4, then f = 0. Also,
if 1/afB =1/4, f is a constant multiple of elel?/8%,

As far as we know, the known proofs for this result and its variants - before the
one in [18, 6, 9, 10, 11] - use complex analysis (the Phragmén-Lindelof principle).
There has also been considerable interest in a better understanding of this result
and on extensions of it to other settings: [3], [15], [20], [1] and [2].

The result can be rewritten in terms of the free solution of the Schrédinger
equation

0w+ Au =0, in R" x (0, +00),
with initial data f,

ilz—y|? ilz|?

e t) = (amit) [T ) dy = (2mit) N p (),

in the following way:
If u(x,0) = O(e’|$|2/f82), u(z,T) = O(e*|"’”‘2/a2) and T/af > 1/4, then u = 0.
Also, if T/aB = 1/4, u has as initial data a constant multiple of e~ (1/B%+i/4T)ly|*
The corresponding results in terms of L?-norms, established in [4], are the fol-
lowing:
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If elel’/8% § A€/ £ gre in L?(R™) and 1/af > 1/4, then f = 0.

If elol* /B y(z,0), el*l’/*”w(z, T) are in L2(R™) and T/aB > 1/4, then u = 0.

In [10] we proved a uniqueness result in this direction for variable coefficients
Schrodinger evolutions

(1.1) Owu =1 (Au+ V(x,t)u) , in R™ x [0,T).

with bounded potentials V' verifying, V (x,t) = Vi (x)+ Va(x,t), with V; real-valued
and

[Sup] ”eTQIm\"‘/(aHB(Tft))QVQ(t)||Lw(Rn) < 400
0,7

or
T

Rl | [V ()l Lo ®n\BR) dt = 0.

More precisely, we showed that the only solution u to (1.1) in C([0,T], L?(R™)),
which verifies

2 2 2 2
e/ u(O) | L2y + [l u(T) | 2y < +o0

is the zero solution, when T/af > 1/4. When T'/af = 1/4, we found a complex
valued potential potential V' with

and a nonzero smooth solution u in C*°([0,T],8(R™)) of (1.1) with
1el1*/5*w(0) | 2 gy + [l€®1/ %" w(T) | 12y < +00.

Thus, we established in [10] that the optimal version of Hardy’s Uncertainty
Principle in terms of L?-norms holds for solutions to (1.1) holds when T'/af3 > 1/4
for many general bounded potentials, while it can fail for some complex-valued
potentials in the end-point case, T'/a8 = 1/4. Finally, in [11] we showed that the
reasonings in [18, 6, 8, 9, 10, 11] provide the first proof (up to the end-point case)
that we know of Hardy’s uncertainty principle for the Fourier transform without
the use of holomorphic functions.

The Hardy uncertainty principle also has a dynamical version associated to the
heat equation,

Opu — Au =0, in R™ x (0, +00),

with initial data f,

u(a,t) = (4mt) "/ / e lovl /4t ) dy, (g ) = e F(6), @, € ERT, £ 0.

In particular, its L> and L? versions yield the following statements:

If w(0) is a finite measure in R™, u(x,T) = O(e~1#1"/3") and § < /AT, then
f=0. Also, if § = VAT, then u(0) is a multiple of the Dirac delta function.

If w(0) is in L?(R™), ||e‘””|2/52u(T)||Lz(Rn) is finite and 6 < V4T, then u = 0.

In [9, Theorem 4] we proved that a dynamical L2-version of Hardy uncertainty
principle holds for solutions u in C([0,T], L*(R™)) N L2([0, T], H(R")) to

(1.2) Ou = Au+V(z,t)u, in R™ x [0,T7,
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when V is any bounded complex potential in R” x [0,7] and § < v/T. Here, we
find the optimal interior Gaussian decay over [0, 1] for solutions to (1.2) with

2 2
e/ u(T)| p2gny < +o0,

when 6 > /4T and derive from it the full dynamical L? version of the Hardy
uncertainty principle for solutions to (1.2), reaching the end-point case, § = V4T

Theorem 1. Assume that u in C([0,T], L2(R™))NL2([0, T], H(R™)) verifies (1.2)
with V' in L= (R™ x [0,T]). Assume that

(1.3) (|71 AT5 RS o (T | Lo (gny < +00

for some R > 0. Then, there is a universal constant N such that

2 2 2
(1) sup ) e

< N Wl sexiomn) [Jju(0)| ey + |4 +R0u(T)

HLZ(R" ||L2(Rn):| .

Moreover, u must be identically zero when ||e‘“”|2/4Tu(T)HL2(Rn) is finite.

Theorem 1 is optimal because
(15)  up(z,t) = (t—iR)" 2 1#I/40—iR) — (4 _ jR)=% ¢~ (HHiR)[xl*/4(*+R?)

is a solution to the heat equation and for each fixed t > 0, t/4(t> + R?) is decreasing
in the R-variable for R > 0 . Also, observe that t/4(t> + R?) attains its maximum
value in the interior of [0, 7], when R # T,

Notice that the finiteness condition on condition on ||e‘x‘2/4Tu(T)HLz(Rn) is in-
dependent of the size of the potential or the dimension and that we do not assume
any regularity or strong decay of the potentials.

This improvement of our results in [9, Theorem 4] on the relation between Hardy
uncertainty principle and its dynamical version for parabolic evolutions comes from
a better understanding of the solutions to (1.2) which have Gaussian decay and of
the adaptation to the parabolic context of the same kind of log-convexity arguments
that we used in [10] to derive the dynamical version of the Hardy uncertainty
principle for Schrédinger evolutions.

We have not tried to extend the results in Theorems 1 to parabolic evolutions
with nonzero drift terms

(1.6) Ou = Au+ Wz, t) - Vu+ V(z,t)u.

We expect that similar methods will yield analogue results for solutions to (1.6)
(See [5] for initial results following the approach initiated in [18] and [6] for the case
of Schiodiger evolutions).

In what follows, N denotes a universal constant depending at most on the di-
mension, Ny ¢, . a constant depending on the parameters a,&,... In section 2 we
give three Lemmas which are necessary for our proof in section 3 of Theorem 1.

2. A FEW LEMMAS

In the sequel

(f.9) = /Rn fgdz |17 = (f, f) and ||V ]oe = V]| o Rnx[0,1))-
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In Lemma 1, § and A denote respectively a symmetric and skew-symmetric
bounded linear operators on §(R™). Both are allowed to depend smoothly on the
time-variable, 8; = 9,8 and [8, A] is the space commutator of 8 and A. The reader
can find a proof of Lemma 1 in [10, Lemma 2].

Lemma 1. Let § and A be as above, f lie in C*([c,d],S(R™)) and 7 : [¢,d] —
(0, +00) be a smooth function such that

(v8ef(t) + 7 [S AL F () +78f (1), (1)) 2 0, when ¢ <t <d.
Then, if H(t) = || f(t)||* and € > 0
H(t)+e<(H(c)+ e)g(t) (H(d) + e)l_e(t) eMeOF2N) - yyhen ¢ < t < d,

where M, verifies

_ _ 2
o0 (younr) = — 10 ZBZAIE e iy are) = by =0,
_ [, (Osf(s) = 8F(s) — Af(s), £(5))
Ne—/C Re FIOET ds
and das
o(t) = td;

—

¢ v

A calculation (see formulae (2.12), (2.13) and (2.14) in [9] with v = 1) shows that
given smooth functions a : [0,1] — [0,400), b: [0,1] — R and T : [0,1] — R,
and £ in R™

DIz E-TWIEP (9, _ A} e=a®lel—bOr+TOKS — 5, _ g _ 4

where & and A are the symmetric and skew-symmetric linear bounded operators
on §(R™) given by

(2.1) §=A+ (d +4a®) |z|* + (V' +4ab)z - £+ (0> = T') [,
(2.2) A=-2(2ax +bE) -V —2na.
and

(23) 8 +[8,A] = —8a A+ (a” + 16ad’ + 32a°) |z|2
+ (b + 8ab’ + 8a’b + 32a%b) @ - £ + (8ab® + 4bb — T") [¢]*.

In Lemma 2 we make choices of a, b and T" which make non-negative the self-
adjoint operator

4 (8, + (8, A + (#4)'8,
where A denotes an anti-derivative of ¢ in [0,1] with A(1) =0, .
Lemma 2. Let a:[0,1] — R be a smooth function verifying
(2.4) (¥4a)" >0, in [0,1],
and let b and T be the solutions to

(egAb)H =2 (egAa)H, in [0, 1],
(2:5) {b(()) =b(1) =0,
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and

(egAT’)/ =2 (eSAbz)/ - (egAa)H, in [0, 1],
(2:6) {T(O) =T(1)=0.
Then,

(eSAStf + eSS AL f + (e84) 8F, f) >0, when f € S(R™) and 0 <t < 1.
Proof. From (2.1), (2.3), the identities
(eSAa) " A (a” + 24ad’ + 64a3) .
(e340)" = 3 (b + 16ab + 8a'b + 64a°b) .
(840?)" = &34 (8ab® + 2b')
and the definitions of b and T, we have
S (8 + 8, 4]) + (8Y)'8
= (M) Jof? + (*40) " @ €+ (2 (¢42) = (M4T7)) J¢?

= (egAa)" (|x\2 +2x- &+ |§|2) = (eSAa)” |z + &%

The later and (2.4) implies Lemma 2. O

In the next Lemma we assume that u in C([0,1], L*(R™)) N L?([0,1], H*(R"™))
verifies (1.2) in R™ x (0,1] and

llel=*/8% u(1)|| < +oc.

Lemma 3. Let a: [0,1] — [0,400) be a smooth function with a(0) =0, a(1) =
1/62, (esAa)” >0 in [0,1] and

sup ||e(a(t)*€)|"”‘2u(t)|| < 400, when 0 <e<1.
[0,1]

Then, there is a universal constant N such that for b and T as in (2.5) and (2.6),
Jer OOt Oy )] < NOHVIRD ()] + e u(n)])
when & 1s in R™ and 0 <t < 1.
Proof. For £ in R™ and € > 0, set
fo(z,t) = eaelz\2+b€z<§fTe\£\2u($7t)’

with ac = a—e, Ac = A+€(1—t), and with b. and T, as in Lemma 2 but with a and
A replaced by a. and A, respectively. The local Schauder estimates for solutions
o (1.2) show that

r|Vu(z,t)| + r? 7[ |0sulP + | D?ulP dyds
B, (z)x(t—12,t]

<Ny (1+T2||V||L°°(R"x[o,1]))7[ |u| dyds
Boy (z) X (t—4r2,t]

P
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for 1 < p<oo,0<r<+vt/2 0<t<1 Thus, f isin Wi (R" x [o,1]) and
verifies
—£)|x|?
sup || fe(t)]| < Naycesup [lel®=2) " u(r)],
[0,1] [0,1]

(2.7) ’ ’ S
sup [V £ (£)]| < Naee,psup el 5 u(t))]
[0,1] [0,1

for 0 < 0 < 1 and
(2.8) Otfe —8cfe — Acfe = Vi(x,t)fe, in R™ x (0,1],

where 8. and A, are the operators defined in (2.1) and (2.2) with a, A, b and T
replaced by a., Ac, be and T, respectively. Also, (2.7), the equation (2.8) verified
by fe and [22, Lemma 1.2] show that f. is in C((0,1], L*(R")).
Extend f. as zero outside R™ x [0,1] and let 6 in C°°(R"*!) be a mollifier
supported in the unit ball of R**!. For 0 < p < i, set fe, = fex0, and
05! (.) = p T O(5 =),
Then, fc, is in C*([0,1],8(R")) and for  in R™ and p <t <1 —p,

atffv/’ Sefep— ‘Afep)( ):(er)*ﬁp(a:,t)
(2.9) /fe qe y73 5 (l‘,t,f)) Q?t dyds

+ /Vyfe [(ac(t)x + 20 (1)€) — (ac(s)y + 2bc(s)€)] 65" dyds,
with

ge(,,) = (ar(t) + 4aZ(t)) [of”
+ (0(t) + dac(t)be(t) @ - € + (b2(t) = T/ (1)) [ — 2nac(t).
The last identity gives,
(atfe,p —8cfep — Aefe,p) (z,t) = (Vfe) » 9p(337t) + Ae p(m, 1),
in R™ x [p,1 — p], where A, , denotes the sum of the second and third integrals in

the right hand side of (2.9). Moreover, from (2.7) there is N, ¢ , such that for
0<g<%and0<p§g,

)—& |2
sup [ Ac,p(D)]| L2 (gny < PNace,o sup [|el@O= )yt

le,1—¢] (-1.1]

Also, (eSAGaE)N > 01in [0,1], when 0 < € < ¢4, and from Lemma 2 we can apply to
8¢, Ac and fe ,, the conclusions of Lemma 1 with [c,d] = [0,1 — g, v = €34

H, ,(t) = || fep(t)]|*. Thus,
(2.10) Hep(t) < (Hep(0) + Hep(1 — 0) +26) eMer®+2Nen when g <t <1,
where M, , verifies
{at( BAQ M, ) = —eBAe 8¢ fe.p—Se fpj,r;A el i fo1—
M. p(0) = Me,p(l —0) =0,

< and

and

N = [ ISt~ Se) Akt
o H. ,(s)+e
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We can now pass to the limit in (2.10), when p tends to zero and derive that for
H(t)=[|f.(t)]?, 0< 0<% and 0 < € < €,, We have
(2.11) H.(t) < [Hc(o) + He(1 — o) + 2€] eMc®+2[Vllee i [o,1— o],
with

_ _ 2 .
(2.12) {at (68A€3tM€) — B4 [0t fe 35152 Acfell , in [O, 1]'

M.(0) = M.(1) =0,

By writing an explicit formula for the solution to (2.12), it follows from the

monotonicity of A; i.e. A’ > 01in [0,1] and (2.8) that
M(t) < N (14 [V]2).

Also, there is N, > 0 such that |b.| + |T7| < N,, when 0 < € < ¢,. The later,
the continuity of f. in C'((0,1], L?(R™)) and the fact that a(0) = b.(0) = T.(0) =0
show, that for each fixed £ € R™ and all 0 < € < ¢,, there is g, with lim,_,5+ 0 =0
such that He(1 — o) < He(1) + € and He(oe) < supjgqp [[u(t)[|. Thus, after taking
0= 0c in (2.11), we get

@ al*+be @z =Te@IE” (1) < eNOHIVIZ) |sup [Ju(t)]] + [le/®”/* u (1) + 3¢] ,

)

for p. <t <1 — p.. Then, let ¢ — 0% and recall the L? energy inequality verified
by solutions to (1.2). O
3. PROOF OF THEOREM 1

Proof. By scaling it suffices to prove Theorem 1 when T' = 1. Assume first that u
in C([0,1], L2(R™)) N L2([0, 1], H'(R™)) verifies (1.2) in R™ x (0, 1] and
el u(1)]] < 400
for some ¢ > 2. Following [9, Theorem 4], for c =1 and =1+ %, define
~ « % afx t %
u(z,t) = (7(1(1@[%) u(a(ngm, a(lft)Jrgt)e‘*(a“’ =

Then, @ is in C([0,1], L2(R™)) N L?([0,1], H(R™)) and from [9, Lemma 5] with
A+iB=1

Ayt = AU+ V(z,t)u, in R™ x (0,1],
with _

— ap VB Bt
Viz,t) = (a(l—t)+,6t)2v(a(1—t)+6t7 a(l—t)+[3t)'

. _ 1
Also, for v = 55
2 . T 2 __ T 2 2
1”750 ]| = [[u(0)[| and e a(1)] = e/ u(1)]].
From the log-convexity property of ||e?l#I°%(t)|| established in [9, Lemma 3], we
know that
(3.1) [S(}IE 1G] < N HIV i e xio,n) (||6’Y|90\2ﬁ(0)|| i He’”“'zﬂ(l)ﬂ) .

The last claim in [9, Lemma 5] shows that with s = ﬁ,

yapB a—p 2
(3.2) ||6’Y|w\2a(t)” _ ”e[(as+[3(l—s))2+4(as+ﬁ(l—s))}lyl u(s)”, for0 <t <1.
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From (3.1) and (3.2), we find that

tlx|?
(33)  suplle@r e u(@)]] < N OHIVIR) [u(0)]| + flel=I* /2 u(n))]
[0,1]

We then begin an inductive procedure where at the kth step we have constructed
k smooth functions, a; : [0,1] — [0, +00) verifying

1 .
(34) O<a1<a2<'--<ak<~~§m,m(O,l),
(3.5) a;(0) =0, a;(1) =1/82, (¥%a;)" >0, in [0,1],
(3.6)  sup e Ol Fugp] < NHVIR) [lu(0)] + b=/ u(1))]
[0,1]

when j = 1,...,k, with A} = a;, A;(1) = 0. The case k = 1 follows from (3.3)
with ay(t) =t/ (6 +2 —2t)>. Assume now that ai,...,a) have been constructed
and let b, and T} be the functions defined in Lemma 3 for a = a;. Then,

(3.7) [leas®lal+be(z-6=TiIEl 4|12
2
< AN(HIVIE) (Hu(O)H - |\e'“"2/52U(1)H) )

for 0 <t <1 and all £ € R™. Observe that (3.7) and the existence of the solutions
up defined in (1.5) imply that T, > 0in (0,1), when § > 2. Otherwise, (3.7) implies
that ug = 0, when 2v1 + R2 < 0.

For € > 0, multiply (3.7) by e~ 2Tc(I¢* and integrate the new inequality with
respect to £ in R™. It gives,

Sup||eai+1<t)lrl2u(t)” < (1 n %)% NOHIVIZ) (||u(0)|| + ||e‘”|2/52u(1)||),
[0,1]

with
bi
4 (1 + 6) Ty ’
On the other hand, e84%by, is strictly convex and b, < 0 in [0, 1],

Ajp1 = ak +

(3.8) bi(t) = 2 (ak(t) . te_SAk(t)(S_Q)
and

¢ ¢ ¢
Ti(t) = 2/0 b2 (s)ds — ag(t) — 8/0 az(s)ds — ak/o e 8AR () g,

1 1 1
ap = (2/ b (s)ds — (%2 - 8/ az(s) ds) (/ e~ 84k(s) ds)
0 0 0

The last two formulae and (3.4) show that there is N5 > 1, independent of k > 1,
such that

with
—1

t
(3.9) Ti(t) <2 (/ b (s)ds + N(;) and Nj + %’“ >1, in [0,1].
0
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Also, ((a +4a3) e'04%)" = 345 (e34kay)", (), + 4a}) €' is non decreasing in
[0,1] and

(3.10) aj, +4ai >0 in [0,1].
Set then,

2
(3.11) ars1(t) = ax(t) + b’““)

8 (Jo #(s)

We have, ar < Q41 in (0’ 1)7 ak-‘rl(o) = 07 ak-‘rl(l) = 5%7

1 ! 1 !
(3.12) Apy1=Ar+ A log (/ bz (s)ds + N5) ~3 log (/ bz (s)ds + N(;),
0 0

and

Cn
v

sup ||e(“’“+1(t)_e)|’”‘2u(t)|| < +o0, for all € > 0.
[0,1]

The identity (68‘4)/” =8 (egAa)H and (3.12) show that (esA’f“akH)“ is a positive

multiple of
t
_ (esAk)/// (/ bi(s)ds + Né)
0

<68Ak (/Ot b2 (s)ds + N5)>

+3(34) b2 + 6 (34%) bybl, + 234 (byiby, + bP)

The equation verified by b, shows that the last sum is equal to

t
(esAk)/// (/ b2 (s)ds + Ns + b;)
0

+ 8 (a}, + 8a3) e®4b2 + 2544 b2 + 1634 aybyb)..
From (3.9) and (3.10), the above sum is bounded from below by
(845)" 4+ 2634 (dagby, + by)? > 0, in [0, 1].

The later and Lemma 3 show that (3.6) holds up to j = k + 1. Finally, because
(3.10) holds with k replaced by k + 1,

1 /
—( ) +4 >0, in(O,l]7
k41

and the integration of this identity over [¢, 1] shows that ax41(t) < 57— in (0,1).
Thus, there exists a(t) = limg_ 100 ax(t) and from (3.11), limy_, oo b (t) =
This and (3.8) show that

(3.13) ae®t =1672in [0,1].

Write a(1) = 1/62? as 1/4 (1 + R?), for some R > 0. Then, a(t) = t/4 (t* + R?)
follows from the integration of (3.13) and (1.4) from (3.6) after letting j — +o0.
Finally, when § = 2, we have

2 2 2 2 X
[SOUE ||et|a:| /A(+R )u(t)” < eN(1+IIVHoo) [HU(O)HLZ(R") + ||€|l‘2/4u(1)|\} :

for all R > 0. Letting R — 0", we get
z|? 2 2|2
sup e/ u(0)] < N OHIVIE) [1u(0) | p2an) + el Hu ()]

"
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and it implies, u = 0. O

Remark 1. Theorem 1 holds when (1.3) and (1.4) are replaced respectively by

2 2 2
[T/ AT w(T) | 2 gny < 400

and

(1]
2]
(3]

(4]

sup ||em§/4(t2+R2)u(t) L2 @)

[0,T7]
2 2 2 2 2
< NOFTA VG o mn) [|]u(0)]| 2 grmy + €73/ AT+E )U(T)Ilmnw} '
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