MATH 201-A FALL 2013 FIRST HOMEWORK

<u>Problem 1</u> Consider the function $f:[0,1] \to \mathbb{R}$ defined as

(1)
$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q} \cap [0,1], \\ \frac{1}{q}, & \text{if } x = \frac{p}{q} \ (p, q \in \mathbb{Z}^+ \text{ relative primes}). \end{cases}$$

Where is f discontinuous? Using the definition prove that f is Riemann integrable on $\left[0,1\right]$

<u>Problem 2</u> Consider the function $f:[0,1] \to \mathbb{R}$ defined as

(1a)
$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q} \cap [0, 1], \\ 1, & \text{if } x = \frac{p}{q}, \quad p, q \in \mathbb{Z}^+. \end{cases}$$

Where is f discontinuous? Using the definition prove that f is not Riemann integrable on [0, 1].

Definition 1. A set $E \subset \mathbb{R}$ is said to be of "measure zero" if given $\epsilon > 0$ there is a countable collection of intervals $\{I_j\}_{j \in \mathbb{Z}^+}$ which covers E,

$$E \subset \bigcup_{j \in \mathbb{Z}^+} I_j$$
 such that $\sum_{j=1}^{\infty} |I_j| = \sum_{j=1}^{\infty} length of I_j < \epsilon.$

Thus : (i) Prove that every countable set of \mathbb{R} is a set of measure zero. and (ii) the countable union of sets of measure zero has measure zero.

<u>Problem 3</u> Let E be the set of all $x \in [0,1]$ whose decimal expansion contains only the digits 4 and 7. Prove that E is uncountable set of measure zero.

4

Definition 2. Let $f : [a,b] \to \mathbb{R}$ be a bounded function, $b - a < \infty$. For $x \in [a,b]$ and $\eta > 0$ define

$$\Omega(f, x, \eta) = \sup\{|f(x_1) - f(x_2)| : x_1, x_2 \in (x - \eta, x + \eta) \cap [a, b]\},\$$

and the oscillation of f at a point $x \in [a, b]$.

$$\omega_f(x) = \lim_{\eta \to 0^+} \Omega(f, x, \eta) = \inf_{\eta > 0} \Omega(f, x, \eta).$$

<u>Problem 4</u> Prove that $\omega_f(x)$ is defined for any $x \in [a, b]$.

<u>Problem 5</u> Prove that f is continuous at x_0 if and only if $\omega_f(x_0) = 0$.

<u>Problem 6</u> Prove that for any $\mu > 0$ the set $A_{\mu} = \{x \in [a, b] : \omega_f(x) \ge \mu\}$ is compact.

<u>Problem 7</u> Prove that the set of discontinuities of f can be written as

$$D_f = \bigcup_{j \in \mathbb{Z}^+} A_j = \{ x \in [a, b] : \omega_f(x) \ge \frac{1}{j} \}.$$

8 MATH 201-A FALL 2013

<u>Problem 8</u> Prove that if for some $\epsilon > 0$, $\omega_f(x) < \epsilon$ for any $x \in [a, b]$, then there exists a $\eta > 0$ such that

 $\Omega(f, x, \eta) < \epsilon, \quad \text{ for any } x \in [a, b].$

Hint : Use the compactness of [a, b].

At this point we are ready to prove the Lebesgue criterion for Riemann integrability.

Theorem 1. Let $f : [a,b] \to \mathbb{R}$ be a bounded function and $b-a < \infty$. Then f is Riemann integrable on [a,b] if and only if the set of discontinuities of f, D_f is a set of measure zero.

<u>Problem 9</u> Prove theorem 1.

Hint : Assume that f is RI and that D_f does not have measure zero. Prove that for some $j_0 \in \mathbb{Z}^+$

$$A_{j_0} = \{ x \in [a, b] : \omega_f(x) \ge \frac{1}{j_0} \}$$

is not a set of measure zero. Take a partition P of [a, b], observe that the sub-intervals of this partition cover A_{j_0} . Evaluate the difference between its upper and lower sum to get a contradiction.

Assume that D_f has measure zero. Then for any j the set A_j is compact and has measure zero. For j large one can cover A_j by a countable collection of intervals whose sum of their lengths is arbitrary small, say less than $\epsilon/2$. Show that one can expand these intervals to obtain a new collection of OPEN intervals covering A_j and whose sum of their lengths is less than ϵ . Use the compactness of A_j to construct an appropriate partition, which allows to conclude the proof.

10 MATH 201-A FALL 2013 FIRST HOMEWORK

•

MATH 201-A

We saw in class that if B is a open set of \mathbb{R} , then B is the union of an at most countable collection of disjoint open intervals.

Let B be a open bounded set of \mathbb{R} . Define $\chi_B \ \chi_B(x) = 1$, if $x \in B$, and $\chi_B(x) = 0$, if $x \notin B$.

$$\int \chi_B(x) dx = ?$$

<u>Problem 10</u> Give an example of B open and bounded such that χ_B is not Riemann integrable. Moreover, χ_B is not Riemann integrable even after any modification on a set of measure zero.