Problem 1 Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}0, & \text { if } x \notin \mathbb{Q} \cap[0,1] \tag{1}\\ \frac{1}{q}, & \text { if } x=\frac{p}{q}\left(p, q \in \mathbb{Z}^{+} \text {relative primes }\right) .\end{cases}
$$

Where is f discontinuous? Using the definition prove that f is Riemann integrable on $[0,1]$

Problem 2 Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}0, & \text { if } x \notin \mathbb{Q} \cap[0,1] \tag{1a}\\ 1, & \text { if } x=\frac{p}{q}, \quad p, q \in \mathbb{Z}^{+}\end{cases}
$$

Where is f discontinuous? Using the definition prove that f is not Riemann integrable on $[0,1]$.

Definition 1. A set $E \subset \mathbb{R}$ is said to be of "measure zero" if given $\epsilon>0$ there is a countable collection of intervals $\left\{I_{j}\right\}_{j \in \mathbb{Z}^{+}}$which covers E,

$$
E \subset \bigcup_{j \in \mathbb{Z}^{+}} I_{j} \text { such that } \sum_{j=1}^{\infty}\left|I_{j}\right|=\sum_{j=1}^{\infty} \text { length of } I_{j}<\epsilon
$$

Thus: (i) Prove that every countable set of \mathbb{R} is a set of measure zero. and (ii) the countable union of sets of measure zero has measure zero.

Problem 3 Let E be the set of all $x \in[0,1]$ whose decimal expansion contains only the digits 4 and 7 . Prove that E is uncountable set of measure zero.

Definition 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, $b-a<\infty$. For $x \in[a, b]$ and $\eta>0$ define

$$
\Omega(f, x, \eta)=\sup \left\{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|: x_{1}, x_{2} \in(x-\eta, x+\eta) \cap[a, b]\right\}
$$

and the oscillation of f at a point $x \in[a, b]$.

$$
\omega_{f}(x)=\lim _{\eta \rightarrow 0^{+}} \Omega(f, x, \eta)=\inf _{\eta>0} \Omega(f, x, \eta)
$$

Problem 4 Prove that $\omega_{f}(x)$ is defined for any $x \in[a, b]$.

Problem 5 Prove that f is continuous at x_{0} if and only if $\omega_{f}\left(x_{0}\right)=0$.

Problem 6 Prove that for any $\mu>0$ the set $A_{\mu}=\left\{x \in[a, b]: \omega_{f}(x) \geq\right.$ $\mu\}$ is compact.

Problem 7 Prove that the set of discontinuities of f can be written as

$$
D_{f}=\bigcup_{j \in \mathbb{Z}^{+}} A_{j}=\left\{x \in[a, b]: \omega_{f}(x) \geq \frac{1}{j}\right\} .
$$

Problem 8 Prove that if for some $\epsilon>0, \omega_{f}(x)<\epsilon$ for any $x \in[a, b]$, then there exists a $\eta>0$ such that

$$
\Omega(f, x, \eta)<\epsilon, \quad \text { for any } x \in[a, b] .
$$

Hint: Use the compactness of $[a, b]$.

At this point we are ready to prove the Lebesgue criterion for Riemann integrability.

Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function and $b-a<\infty$. Then f is Riemann integrable on $[a, b]$ if and only if the set of discontinuities of f, D_{f} is a set of measure zero.

Problem 9 Prove theorem 1.

Hint : Assume that f is RI and that D_{f} does not have measure zero. Prove that for some $j_{0} \in \mathbb{Z}^{+}$

$$
A_{j_{0}}=\left\{x \in[a, b]: \omega_{f}(x) \geq \frac{1}{j_{0}}\right\}
$$

is not a set of measure zero. Take a partition P of $[a, b]$, observe that the sub-intervals of this partition cover $A_{j_{0}}$. Evaluate the difference between its upper and lower sum to get a contradiction.

Assume that D_{f} has measure zero. Then for any j the set A_{j} is compact and has measure zero. For j large one can cover A_{j} by a countable collection of intervals whose sum of their lengths is arbitrary small, say less than $\epsilon / 2$. Show that one can expand these intervals to obtain a new collection of OPEN intervals covering A_{j} and whose sum of their lengths is less than ϵ. Use the compactness of A_{j} to construct an appropriate partition, which allows to conclude the proof.

We saw in class that if B is a open set of \mathbb{R}, then B is the union of an at most countable collection of disjoint open intervals.

Let B be a open bounded set of \mathbb{R}. Define $\chi_{B} \chi_{B}(x)=1$, if $x \in B$, and $\chi_{B}(x)=0$, if $x \notin B$.

$$
\int \chi_{B}(x) d x=?
$$

Problem 10 Give an example of B open and bounded such that χ_{B} is not Riemann integrable. Moreover, χ_{B} is not Riemann integrable even after any modification on a set of measure zero.

