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Abstract. In this paper we prove that the initial value problem associated
to the following higher-order Benjamin-Ono equation

∂tv − bH∂2
xv + a∂3

xv = cv∂xv − d∂x(vH∂xv + H(v∂xv)),

where x, t ∈ R, v is a real-valued function, H is the Hilbert transform, a ∈ R,
b, c and d are positive constants, is locally well-posed for initial data

v(0) = v0 ∈ Hs(R), s ≥ 2 or v0 ∈ Hk(R) ∩ L2(R; x2dx), k ∈ Z+, k ≥ 2.

1. Introduction

We study the initial value problem (IVP) associated to the following higher-order
Benjamin-Ono equation

(1.1)
{

∂tv − bH∂2
xv + a∂3

xv = cv∂xv − d∂x(vH∂xv + H(v∂xv))
v(x, 0) = v0(x),

where x, t ∈ R, v is a real-valued function, a ∈ R, a 6= 0, b, c and d are positive
constants, and H is the Hilbert transform, i.e.

(1.2) Hf(x) = p.v.
1
π

∫

R

f(y)
x− y

dy.

The equation above corresponds to a second order approximation of the unidirec-
tional evolution of weakly nonlinear dispersive internal long waves at the interface
of a two-layer system, one being infinitely deep. It was derived by Craig, Guyenne
and Kalisch [4], using Hamiltonian perturbation theory.

In this work we are interested in establishing a well-posedness theory for the
IVP (1.1) in usual Sobolev spaces. We first observe that the L2-norm as well as
the quantity

(1.3) H(v) =
∫

R

(
a(∂xv)2 + bvH∂xv +

c

3
v3 − dv2H∂xv

)
dx

are conserved by solutions of the equation in (1.1).
In contrast with the IVP associated to the Benjamin-Ono equation (see [1, 3, 8,

9, 11, 17, 21, 23]) there are no well-posedness results for the IVP (1.1) available in
the literature. In [19] it was shown that the map data-solution of the IVP (1.1)
from Hs(R) to C([0, T ];Hs(R)), for any s ∈ R, is not C2. Thus one has that local
well-posedness in Hs(R) cannot be established by a fixed point argument using the
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integral equation. The techniques in [19] follow the ideas used in [18] to obtain a
similar result for the Benjamin-Ono equation.

The purpose of this paper is to investigate local well-posedness for the IVP (1.1).
In this direction our main results are next.

Theorem 1.1. Let k ∈ Z+ be such that k ≥ 3. Then for any

(1.4) v0 ∈ Zk = Hk(R) ∩ L2(R;x2dx),

there exist T = T (‖v0‖Zk) > 0 with T (α) ↗ +∞ as α → 0, a space Zk
T such that

Zk
T ↪→ C([0, T ] : Zk),

and a unique solution v of (1.1) in Zk
T satisfying v(·, 0) = v0.

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood Ωk of v0 in Zk such
that the flow map data-solution is smooth from Ωk into Zk

T ′ .

Our argument of proof follows the idea of the gauge transformation introduced
by Hayashi and Ozawa [7] in the one dimensional nonlinear Schrödinger equation,
and used in [15], [16] in related context. However due to the nonsmooth character
of the symbol modeling the dispersive relation and other features our problem does
not fall in the scope of these works.

After projecting into the positive and negative frequencies and applying the
gauge transforms to a system formally equivalent to the equation in (1.1) one per-
forms a fixed point argument using the smoothing properties associated to the
linear problem however one needs to include the L2 norm with weight x2 to control
the gauge transform. One also should observe that one key tool in our analysis
to deal with the second order derivatives in the nonlinear terms was the use of a
commutator estimate (see Lemma 2.5 below) recently proved in [5]. The result in
Theorem 1.1 should be the best possible using a fixed point argument which agrees
with the result in [19].

One should also mention that the solution obtained in Theorem 1.1 solves the
IVP (1.1). Actually one can prove that under suitable data the system (3.11)
(below) and the IVP (1.1) are equivalent.

We can still improve the result in Theorem 1.1 noticing that H2 would be suffi-
cient to obtain solutions via contraction mapping principle except to control ‖xv‖L2 .
Thus we can use an energy method argument to show the following result.

Theorem 1.2. For any v0 satisfying

(1.5) v0 ∈ Z2 = H2(R) ∩ L2(R;x2dx),

there exist T = T (‖v0‖Z2) > 0 with T (α) ↗ +∞ as α → 0, and a unique solution
v of (1.1) satisfying

(1.6) v ∈ C([0, T ] : Z2),

(1.7) ∂l
xP±v ∈ L6([0, T ] : L∞(R)), l = 0, 1, 2.

(1.8) ∂3
xP±v ∈ L2([0, T ];L2

loc(R)),

(1.9) ∂x(xv) ∈ L2([0, T ]; L2
loc(R)),
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and

(1.10)
+∞∑

j=−∞
sup

0≤t≤T
sup

j/N≤x≤j/N+1

|∂l
xP±v|2 < ∞, l = 0, 1.

where N = N(T ) ∈ Z+. Moreover, the flow map data-solution : v0 7−→ v is
continuous from Z2 in the class (1.6)-(1.10).

The next question is whether one can obtain local well-posedness for the IVP
(1.1) without impose the solution being in a weighted space. As we commented
above the restriction comes up when the gauge transform is implemented. More
precisely, the gauge transforms in our argument can be chosen either as

(1.11) Φ(x, t) = exp
(
i

x∫

−∞
v(y, t) dy

)

or

(1.12) Φ(x, t) = exp
(
i

x∫

0

v(y, t) dy
)

In the first case since we only have v ∈ L2(R) we need to use the ‖x(·)‖2L-norm
to control Φ. The second case looks better since one just requires v(·, t) ∈ L2

loc(R)
to make sense of Φ however in this case the application associated to the integral
equation fails to be a contraction.

To overcome that obstruction we use a compactness argument. We still use
the gauge transform and the same kind of estimates established in Theorem 1.1
to obtain a priori estimates for smooth solutions of the IVP (1.1) provided by the
argument used in [22]. Here is essential to select the gauge transform as in (1.12),
this will allow us to take the limit in H2 without restriction on the data. The result
is as follows.

Theorem 1.3. Let s ≥ 2. For any v0 ∈ Hs(R), there exists a positive time
T = T (‖v0‖Hs) and a unique solution v of (1.1) satisfying

(1.13) v ∈ C([0, T ];Hs(R)),

(1.14) Dr
x∂l

xP±v ∈ L6([0, T ]; L∞(R)), l = 0, 1, 2,

(1.15) P±v ∈ L2([0, T ]; Hs+1
loc (R))

and

(1.16)
+∞∑

j=−∞
sup

0≤t≤T
sup

j/N≤x≤j/N+1

|Dr
x∂xP±v|2 < ∞,

where 0 ≤ r ≤ s− 2, N = N(T ) ∈ Z+.
Moreover, for any T ′ < T , there exists a neighborhood V of v0 in Hs(R) such that

the flow map data-solution : ṽ0 7→ ṽ from V into the class defined by (1.13)–(1.16)
with T ′ instead of T is continuous.
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In the light of these results, the above comments on those in [19] and the con-
servation law (1.3) (which gives an a priori estimate of the H1-norm of the local
solutions) the question of the local well-posedness in H1 (which implies global well-
posedness) presents itself.

Our arguments may be further refined to obtain the result for s > 7/4. In fact,
it may be possible that a modification of the original equation with an appropriate
gauge transform as in the work of Tao [23] for the BO equation can be used to
lower the regularity required for the existence. However in this case one still needs
to rely on the existence of solutions which as pointed out before is first established
here.

This paper is organized as follows: In Section 2, we introduce some notation
and derive several estimates useful in the proof of our main results. The proof of
Theorems 1.1 and 1.2 will be given in Section 3. Finally in Section 4 we show
Theorem 1.3.

2. Notations and preliminary estimates

The following notation will be used throughout this article: (·, ·)L2 denotes the
L2-scalar product for real valued functions, while Js = (1−∆)

s
2 and Ds = (−∆)

s
2

will denote the Bessel and Riesz potential of order −s. Note that D1 = H∂x. We
will use k to denote a positive constant; moreover, for any positive numbers a and
b, the notation a . b means that a ≤ kb. And we denote a ∼ b when, a . b and
b . a. We will also denote by k any positive constant.

Since the linear differential operators a∂3
x ± ib∂2

x will appear in our analysis, we
shall begin by considering the associated problems

(2.1)

{
(∂t + a∂3

x ± ib∂2
x)w = F

w(x, 0) = w0(x),

whose solutions when F ≡ 0 are given by the unitary groups {W±(t)}t∈R in Hs(R),
where W±(t) = e−t(a∂3

x±ib∂2
x). We also define the unitary group associated to the

linear part of (1.1), V (t) = e−t(a∂3
x−bH∂2

x). We shall reduce the estimates for (2.1)
to known ones for the linearized KdV equation

(2.2)

{
∂tz + a∂3

xz = F̃

z(x, 0) = z0(x).

We will treat for example the case of W+. Multiply the equation in (2.1) by ei b
3a x

and define f(x, t) = ei b
3a x w(x, t), so

(2.3) ∂tf + a∂3
xf +

b2

3a
∂xf − i

2
27

b3

a2
f = ei b

3a xF.

It is deduced by setting h(x, t) = f(x + b2

3a t, t) that

(2.4) ∂th + a∂3
xh− i

2
27

b3

a2
h = ei b

3a (x+ b2
3a t)F (x +

b2

3a
t, t).

Finally define

(2.5) z(x, t) = e−i 2
27

b3

a2 t h(x, t) = ei b3

27a2 t ei b
3a x w(x +

b2

3a
t, t).
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Then z is a solution to (2.2) with

(2.6) z0(x) = ei b
3a x w0(x) and F̃ (x, t) = ei b3

27a2 t ei b
3a x F (x +

b2

3a
t, t),

or equivalently if z(x, t) is a solution to (2.2), then

(2.7) w(x, t) = e−i b3

27a2 t e−i b
3a x z(x− b2

3a
t, t)

solves (2.1) with the appropriate modifications on F and w0.

Lemma 2.1. There exist three positive constants c1, c2 and c3 such that

(2.8) ‖W±(t)w0‖L6
t L∞x ≤ c1‖w0‖L2 ,

(2.9)
{

sup
j∈Z

∫ T

0

∫ +∞

−∞
|χj/N∂xW±(t)w0(x)|2dxdt

} 1
2 ≤ c2(1 + T )

1
2 ‖w0‖L2 ,

and

(2.10)
{ +∞∑

j=−∞
sup

0≤t≤T
sup
x∈R

|χj/N (x)W±(t)w0(x)|2
} 1

2 ≤ c3(1 + T )2‖w0‖H1 ,

where χ ∈ C∞0 (R), 0 ≤ χ ≤ 1, χ ≡ 1 on [0, 1], suppχ ⊂ (−1, 3), χj/N = χ(·−j/N)
and N = N(T ) ∈ Z+, N ∼ (1 + T ).

Remark 2.2. Estimates (2.8)–(2.10) still hold with V instead of W±.

Proof. Fix F ≡ 0 in (2.1)–(2.7) for the rest of the proof. It is known from [13] that

‖z‖L6
t L∞x ≤ c‖z0‖L2 ,

which implies (2.8), since all the transformations used in (2.4)–(2.7) preserve the
L6

t L
∞
x norm.

Now, for R > 0, let χR ∈ C∞0 (R) such that 0 ≤ χR ≤ 1, χR ≡ 1 on [0, R],
supp χR ⊂ (−R, 3R) and χR

j = χR(· − j). It was proved in [13] that

sup
x∈R

∞∫

−∞
|∂xz(x, t)|2 dt = ‖z0‖2L2 = ‖w0‖2L2 .

Then it follows that

(2.11) sup
j∈Z

∞∫

−∞

∞∫

−∞
|χR

j (x) ∂xz(x, t)|2 dxdt ≤ 3R‖w0‖22.

On the other hand, fix R ≥ 1 + b2T
3a and N = N(T ) ∈ Z+ such that

#
{

l ∈ Z | 0 ≤ l ≤ R +
b2T

3a

}
< 2R + 1 ≤ N.
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Then, it is deduced from (2.5), (2.11) and the L2-norm conservation for (2.1) that

sup
j∈Z

T∫

0

∞∫

−∞
|χ1

j/N (x) ∂xw(x, t)|2 dxdt

≤ sup
j∈Z

T∫

0

∞∫

−∞
|χ2R

j (x− b2t

3a
) ∂xw(x, t)|2 dxdt

≤ sup
j∈Z

∫∫
|χ2R

j (x) ∂xz(x, t)|2 dxdt + sup
j∈Z

∫∫
|χ2R

j (x)
b

3a
w(x +

b2t

3a
, t)|2 dxdt

≤ (6R +
bT

3a
)‖w0‖2L2 ,

which implies (2.9).
The following maximal function estimate was derived in [12]:

(2.12)
( ∞∑

j=−∞
sup
|t|≤T

sup
j<x<j+R

|z(x, t)|2
)1/2

≤ cR(1 + T )‖z0‖Hs ,

for any s > 3
4 . Moreover, it follows from (2.5) that

(2.13) ‖z0‖2H1 ≤ (1 + (
b

3a
)2)‖w0‖22 + ‖∂xw0‖22.

Therefore, it is concluded from (2.12) and (2.13) that
∞∑

j=−∞
sup
|t|≤T

sup
x∈R

|χ1
j/N (x)w(x, t)|2 ≤

∞∑

j=−∞
sup
|t|≤T

sup
x∈R

|χR
j (x− b2t

3a
)w(x, t)|2

≤ c(1 + (
b

3a
)2)R2(1 + T )2‖w0‖2H1 ,

which yields (2.10). ¤

Remark 2.3. Note that, contrarily to c2 and c3, the constant c1 does not depend
on the parameters a and b.

A result to commute V with x, which is proved in [20], will be useful.

Lemma 2.4. Let
Γ(x, t) = x− 3at∂2

x + 2btH∂x.

Then,

(2.14) Γ(x, t)V (t)φ = V (t)(xφ),

for all φ ∈ S(R).

The following lemma, proved in [5], will also be needed to estimate commutators
involving the Hilbert transform and derivatives.

Lemma 2.5. (i) Let L denote one of the following operators: P+, P−, or H,
where P̂±f(ξ) = χR± f̂(ξ). Then for any p ∈ (1,∞) and any l, m ∈ Z+ ∪ {0} with
l + m ≥ 1, there exists c = c(p; l; m) > 0 such that

(2.15) ‖∂l
x[L, a]∂m

x f‖p ≤ c‖∂(l+m)
x a‖∞‖f‖p.
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(ii) Let α ∈ [0, 1), β ∈ (0, 1) with α + β ∈ [0, 1]. Then for any p, q ∈ (1, +∞) and
for any δ > 1

q , there exists c = c(α, β, p, q, δ) > 0 such that

(2.16) ‖Dα[Dβ , a]D1−(α+β)f‖Lp
x
≤ c‖Jδ∂xa‖Lq

x
‖f‖Lp

x
.

We also recall some identities involving H, P+ and P−.

Lemma 2.6. It holds that

(2.17) H = −i(P+ − P−) and 1 = P+ + P−,

(2.18) ‖Hφ‖Hs = ‖φ‖Hs , ∀ s ∈ R and ∀φ ∈ Hs(R),

and

(2.19) xH(φ) = H(xφ), ∀φ ∈ S(R) satisfying
∫

R
φdx = 0.

3. Proof of Theorems 1.1 and 1.2

3.1. The gauge transformation. First we perform a gauge transformation on
(1.1) in order to eliminate the higher-order derivative terms in the nonlinearity.
Taking the derivative of (1.1) leads to

(∂t + a∂3
x − bH∂2

x)∂xv =c(∂xv∂xv + v∂2
xv)− d(H∂xv∂2

xv + 2∂xvH∂2
xv)

− 3dH(∂xv∂2
xv)− d(vH∂3

xv + H(v∂3
xv)).

(3.1)

To get rid of the Hilbert transform we shall project the equation in (3.1) into the
positive and negative frequencies, using the identities (2.17), so

(∂t + a∂3
x − bH∂2

x)∂xP+v

= cP+(∂xv∂xv + v∂2
xv)− dP+(H∂xv∂2

xv + 2∂xvH∂2
xv)

+ 3idP+(∂xv∂2
xv)− dP+(vH∂3

xv) + idP+(v∂3
xv).

(3.2)

Observe that the nonlinear terms on the right-hand side of (3.2) are of two types
(i) and (ii). The terms in class (i) involve up to “second order derivatives” in v,
and when it does appear (the second order derivatives) is multiplied by at worst
order one (or order zero). So it suffices to consider the term −2dP+(∂xvH∂2

xv) as
a representative of this class, which can be rewritten using (2.17) as

(3.3) 2idP+(∂xv(∂2
xP+v − ∂2

xP−v)).

The terms in the second class (ii) involving “third order derivatives” in v can be
handled as follows

−dP+(vH∂3
xv) + idP+(v∂3

xv) =− dvP+H∂3
xv − d

[
P+, v

]
∂xH∂2

xv

+ id{vP+∂3
xv +

[
P+, v

]
∂x∂2

xv}
=2idv∂3

xP+v + 2id
[
P+, v

]
∂3

xP+v.

(3.4)

Thus equation (3.1) is rewritten as

(∂t + a∂3
x + ib∂2

x)∂xP+v =P+Q+(v, ∂xP+v, ∂xP−v)

+ 2idv∂3
xP+v + 2id

[
P+, v

]
∂3

xP+v.
(3.5)
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Taking the complex conjugate of (3.5) and using the fact that P+v = P−v, since v
is real-valued, we get a similar equation for P−v, i.e.,

(∂t + a∂3
x − ib∂2

x)∂xP−v =P−Q−(v, ∂xP+v, ∂xP−v)

− 2idv∂3
xP−v − 2id

[
P−; v

]
∂3

xP−v.
(3.6)

Here Q+ and Q− are quadratic polynomials, whose “worse” terms are of order 2 in
v (or order 1 in ∂xP±v) multiplied by one of order 1 or 0 in v. Moreover, the last
terms on the right-hand side of (3.5) and (3.6) can be considered as terms in the
first class (i) because of the commutator estimate (2.15).

Next, we perform a gauge transformation on (3.5)–(3.6) in order to eliminate the
higher-order derivative terms in the nonlinearity. Multiply the equation in (3.5) by
Ψ = Ψ(x, t) and use the identities

(3.7a) Ψ∂t∂xP+v = ∂t(Ψ∂xP+v)− ∂tΨ∂xP+v,

Ψa∂3
x∂xP+v =a∂3

x(Ψ∂xP+v)− 3a∂xΨ∂3
xP+v

− 3a∂2
xΨ∂2

xP+v − a∂3
xΨ∂xP+v,

(3.7b)

and

(3.7c) Ψ∂2
x∂xP+v = ib∂2

x(Ψ∂xP+v)− 2ib∂xΨ∂2
xP+v − ib∂2

xΨ∂xP+v.

We collect the “real” terms of order 3 in v

(3.8) 3a∂xΨ∂3
xP+v + 2idvΨ∂3

xP+v,

and want to choose Ψ to vanish this expression, so −3a∂xΨ + i2dvΨ = 0, i.e.

(3.9) Ψ(x, t) = exp
(
− i

2d

3a

x∫

−∞
v(s, t) ds

)
.

In the sequel, we will denote Ψ by Ψ+ and its complex conjugate Ψ by Ψ−. The
term ∂tΨ ∂xP+v appearing in (3.7a) can be rewritten by making use of the equation
in (1.1) as

(3.10) −∂xP+v Ψ i
2d

3a

{
− a∂2

xv + bH∂xv + c
v2

2
− d(vH∂xv + H(v∂xv))

}
(x, t),

which falls in the class considered in (i).
Therefore, after defining the new variables w± = Ψ±∂xP±v, we get the following

dispersive system

(3.11)





(∂t + a∂3
x − bH∂2

x)v = cv∂xv + id∂x

(
v(Ψ−w+ −Ψ+w−)

)

−dH∂x

(
v(Ψ−w+ + Ψ+w−)

)

(∂t + a∂3
x ± ib∂2

x)w±= Ψ±P±Q†±(Ψ±, v, w±) + Ψ±Q‡±(Ψ±, v, w±)
+N±(Ψ±, v, w±),

where Q†
± and Q‡± are polynomials at least quadratic involving the first derivative

of v± and w± multiplied by a term of order zero, for example

(3.12) F1 = Ψ+P+(w+∂xw+),

and N± are the last terms on the right-hand side of (3.5) and (3.6), which is to say

(3.13) F2 =
[
P+, v

]
∂3

xP+v =
[
P+, v

]
∂2

x(Ψ−w+).
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We will also choose

(3.14) F3 = H∂x

(
vΨ−w+

)

as a representative term for the nonlinearity on the right-hand side of the first
equation in (3.11).

Finally, the gauge transformed system (3.11) is solved by using a fixed point
argument.

Proposition 3.1. Let k ∈ Z+, k ≥ 2. Then for any (v0, w±0) such that

(3.15) (v0, w±0) ∈
(
Hk(R) ∩ L2(R; x2dx)

)
×Hk(R)2 = Xk,

there exist T = T (‖(v0, w±0)‖Xk) > 0 with T (α) ↗ +∞ as α → 0, a space Xk
T such

that Xk
T ↪→ C([0, T ];Xk), and a unique solution (v, w±) of (3.11) in Xk

T satisfying

(3.16) (v(·, 0), w±(·, 0)) = (v0, w±0).

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood Ωk of (v0, w±0) in Xk

such that the flow map data-solution is smooth from Ωk into Xk
T ′ .

Proof. For sake of simplicity, we will only consider the case k = 2. The integral
system associated to (3.11) writes

(3.17)

{
v = F(v, w±) = V (t)v0 +

∫ t

0
V (t− t′)N(v, w±)(t′)dt′

w± = G±(v, w±) = W±(t)w±0 +
∫ t

0
W±(t− t′)M±(v, w±)(t′)dt′

where N and M± denote the nonlinearities on the right-hand side of (3.11). Let
T > 0. Define the following semi-norms

λT
1 (f) = sup

0≤t≤T
‖f(t)‖H2

λT
2 (f) =

3∑

l=0

‖∂l
xf‖L6

T L∞x

λT
3 (f) =

{
sup

j

∫ T

0

∫
|χj/N (x)∂3

xf(x, t)|2 dx dt
}1/2

λT
4 (f) =

1∑

l=0

{∑

j

sup
|t|≤T

sup
x
|χj/N (x)∂l

xf(x, t)|2
}1/2

λT
5 (f) = sup

0≤t≤T
‖xf‖L2

x

λT
6 (f) =

{
sup

j

∫ T

0

∫ ∣∣χj/N (x)∂x

(
xf(x, t)

)∣∣2 dx dt
}1/2

.

(3.18)

Since N depends on T , we fix 0 < T ≤ 1, so that the constants appearing on the
estimates (2.9) and (2.10) are fixed. Then, we define the Banach space X2

T by

X2
T = {(v, w±) ∈ C([0, T ];X2) | ‖(v, w±)‖X2

T
< ∞}.

where

‖(v, w±)‖X2
T

=
6∑

j=1

λT
j (v) +

4∑

j=1

λT
j (w±),
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and X2 is defined in (3.15). Note that if (v, w±) ∈ X2
T , it follows that Ψ± are well

defined so that the gauge transform system (3.11) makes sense. Moreover, we have
that ‖Ψ±‖L∞x,T

≤ 1, since v is a real valued function.
Using the integral equation, Minkowski’s integral inequality, identity (2.14) and

the linear estimates obtained in Lemma 2.1, it is deduced that

6∑

j=1

λj(F) +
4∑

j=1

λj(G+) +
4∑

j=1

λj(G−)

. ‖(v0, w±0)‖X2 +

T∫

0

(‖N(t)‖H2 + ‖xN(t)‖L2 + ‖M±(t))‖H2

)
dt.

(3.19)

Then it remains to estimate ‖∂2
xFj‖L1

T L2
x
, j = 1, 2, 3, and ‖xF3‖L1

T L2
x

where Fj are
defined in (3.12)–(3.14), since they are the representative terms of the nonlinearities
N and M±. We have, using Hölder’s inequality,

‖∂2
xF1‖L1

T L2
x

. ‖∂2
xΨ+P+(w+∂xw+)‖L1

T L2
x

+ ‖∂xΨ+P+(∂xw+∂xw+)‖L1
T L2

x

+ ‖∂xΨ+P+(w+∂2
xw+)‖L1

T L2
x

+ ‖Ψ+P+(∂xw+∂2
xw+)‖L1

T L2
x

+ ‖Ψ+P+(w+∂3
xw+)‖L1

T L2
x

.
∫ T

0

‖w+‖L∞x

(
1 + ‖∂xv‖L∞x + ‖v‖2L∞x

)‖∂xw+‖L2
x
dt

+
∫ T

0

‖∂xv‖L∞x ‖∂xw+‖L∞x ‖∂xw+‖L2
x
dt

+
∫ T

0

(‖∂xv‖L∞x ‖w+‖L∞x + ‖∂xw+‖L∞x

)‖∂2
xw+‖L2

x
dt

+ T
1
2 ‖χj/Nw+∂3

xw+‖l2jL2
x,T

. T (1 + λT
1 (v) + λT

1 (v)2)λT
1 (w+)2 + T

1
2 λT

3 (w+)λT
4 (w+).

(3.20)

Next it is deduced from estimate (2.15) that

‖∂2
xF2‖L1

T L2
x
≤

∥∥∂2
x

[
P+, v

]
∂2

x(Ψ−w+)
∥∥

L1
T L2

x

≤
∫ T

0

‖∂2
xv‖L∞x ‖∂2

x(Ψ−w+)‖L2
x
dt

. T
5
6 λT

2 (v)
(
1 + λT

1 (v) + λT
1 (v)2

)
λT

1 (w+).

(3.21)

The estimate for ‖∂2
xF3‖L1

T L2
x

follows similarly to the one for ‖∂2
xF1‖L1

T L2
x
. Hence,

it remains to bound ‖xF3‖L1
T L2

x
. In this direction, observe from (2.19) that

xF3 = H
(
x∂x(vΨ−w+)

)

= H
(
∂x(xv)Ψ−w+

)−H
(
vΨ−w+

)
+ H

(
xv∂x(Ψ−w+)

)
.
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Thus, Hölder’s inequality yields

‖xF3‖L1
T L3

x
≤ T

1
2 ‖χj/NΨ−w+∂x(xv)‖l2j L2

x,T

+
∫ T

0

(
‖v‖L∞x ‖w+‖L2

x
+ ‖xv‖L2

x
‖∂x(Ψ−w+)‖L∞x

)
dt

. T
1
2 λT

6 (v)λT
4 (w+) + TλT

1 (v)λT
1 (w+)

+ TλT
5 (v)(1 + λT

1 (v))λT
1 (w+).

(3.22)

Therefore, it is deduced combined estimates (3.19)–(3.22) that there exist pos-
itive constants θ and k and a polynomial p with all terms at least quadratic such
that

(3.23) ‖(F(v, w±), G±(v, w±))‖X2
T
≤ k‖(v0, w±0)‖X2 + kT θp(‖(v, w±)‖X2

T
),

which concludes the proof of Proposition (3.1) by a fixed point argument (see [15]
for example). ¤

Theorem 1.1 follows by applying Proposition 3.1 to the gauge transformed system
(3.11) with initial data (v0,Ψ0,−P+∂xv0, Ψ0,+P−∂xv0).

3.2. A priori estimates in H2(R)∩L2(R; x2dx). To prove Theorem 1.2, it would
be sufficient to bound ‖xv‖L∞T L2

x
using energy estimates for the H3(R)∩L2(|x|2 dx)

solutions given by Theorem 1.1 in terms of “H2-solution”. To do so we will use the
equation in (1.1) directly.

We multiply the equation in (1.1) by xv and integrate with respect to x. We
have that

(3.24)
∫

x∂tvxv =
1
2

d

dt

∫
(xv)2.

Using (2.19) and integration by parts
∫

x∂2
xHvxv = −2

∫
x∂xHv v −

∫
x∂xHvx∂xv

= −2
∫

x∂xHvv + 2
∫

xHv∂xv +
∫

xHvx∂2
xv

= −4
∫

x∂xHvv + 2
∫

x∂x(Hvv)−
∫

vH(x2∂2
xv)

= −4
∫

x∂xHvv − 2
∫

Hvv −
∫

vx2H∂2
xv

(3.25)

Thus

(3.26)
∫

x∂2
xHvxv = −2

∫
x∂xHvv ≤ 2‖∂xv‖L2‖xv‖L2 .

By integration by parts

(3.27)
∫

x∂3
xvxv = −2

∫
x∂2

xvv −
∫

x∂2
xvx∂xv.

Then

(3.28) −2
∫

x∂2
xvv ≤ 2‖∂2

xv‖L2‖xv‖L2
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and

−
∫

x∂2
xvx∂xv = −

∫
x2∂x

( (∂xv)2

2

)
=

∫
x∂xv∂xv = −

∫
∂xvv −

∫
xv∂2

xv

≤ ‖xv‖L2‖∂2
xv‖L2 .

(3.29)

Thus combining (3.27)–(3.29) we get

(3.30)
∣∣∣
∫

x∂3
xvxv

∣∣∣ ≤ 3 ‖∂2
xv‖L2‖xv‖L2 .

Using the Sobolev inequality

(3.31)
∫

xv∂xvxv ≤ ‖∂xv‖L∞‖xv‖2L2 ≤ c ‖v‖H2‖xv‖2L2 .

Finally, using Leibniz’s rule we have that∫
x∂x(vH∂xv)xv +

∫
x∂xH(v∂xv)xv

=
∫

x∂xvH∂xvxv +
∫

(xv)2H∂2
xv +

∫
H(x∂xv∂xv + xv∂2

xv)xv.

(3.32)

Using Hölder’s inequality it follows that

(3.33)
∣∣∣
∫

(xv)2H∂2
xv +

∫
H(xv∂2

xv)xv
∣∣∣ ≤ c

(‖H∂2
xv‖L∞ + ‖∂2

xv‖L∞
)‖xv‖2L2 .

On the other hand, integration by parts, Hilbert transform properties and the
Cauchy-Schwarz inequality yield

∫
x∂xvH∂xvxv = −

∫
H(x2∂x

v2

2
)∂xv =

∫
H(xv2)∂xv − 1

2

∫
(xv)2H∂2

xv

≤ ‖v‖2H2‖xv‖L2 +
1
2
‖H∂2

xv‖L∞‖xv‖2L2 ,

(3.34)

and ∫
H(x∂xv∂xv)xv =

∫
v∂xvH(xv) +

∫
xv∂2

xvH(xv)

+
∫

xv∂xvHv +
∫

x2∂x(
v2

2
)H∂xv

=
∫

v∂xvH(xv) +
∫

xv∂2
xvH(xv) +

∫
xv∂xvHv

−
∫

xv2H∂xv − 1
2

∫
(xv)2H∂2

xv

≤ ‖v‖2H2‖xv‖L2 + (‖∂2
xv‖L∞ +

1
2
‖H∂2

xv‖L∞)‖xv‖2L2 .

(3.35)

Getting together (3.24)–(3.26) and (3.30)–(3.35) we have that

(3.36)
1
2

d

dt
‖xv‖2L2 ≤ c (‖v‖H2 +‖v‖2H2)‖xv‖L2 +c (‖∂2

xv‖L∞+‖H∂2
xv‖L∞

)‖xv‖2L2 .

Now our H3(R)∩L2(|x|2dx) solution can be extended in H2(R)∩L2(|x|2dx) in
a time interval depending only on

δ = ‖v0‖H2 + ‖xv0‖L2 .
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Since we are using the fixed point in the norms in (3.18) except ‖xv(t)‖L2 , our
solution for given v0 as in (1.5) satisfies (1.6)-(1.10) and is unique in this class.

4. Proof of Theorem 1.3

4.1. Proof of the uniqueness. Let v1 and v2 be two solutions of (1.1) associated
with the same initial data v0, defined on a time interval [0, T ], and satisfying (1.13)–
(1.16). We will denote by M j

T , j = 1, 2, the maximum of the quantities defined on
(1.13)–(1.16) for vj and by MT the maximum of M1

T and M2
T .

Introducing u = v1 − v2, one has that u satisfies the equation

∂tu− bH∂2
xu + a∂3

xu =
c

2
∂x((v1 + v2)u)− d∂x(uH∂xv1 + v2H∂xu)

− d∂x(H(u∂xv1) + H(v2∂xu)),
(4.1)

with initial data u(·, 0) = 0. We deduce multiplying (4.1) by u, integrating in the
space variable x and then integrating by parts that

1
2

d

dt
‖u‖2L2 =

c

4
(∂x(v1 + v2)u, u)L2 + d(uH∂xv1, ∂xu)L2 + d(v2H∂xu, ∂xu)L2

− d(u∂xv1, H∂xu)L2 − d(v2∂xu, H∂xu)L2

=
c

4
(∂x(v1 + v2)u, u)L2 − d

2
(uH∂2

xv1, u)L2

+ d(u∂2
xv1, Hu)L2 + d(∂xu∂xv1, Hu)L2 .

Therefore it follows from Hölder and Young’s inequalities that, for all δ > 0, there
exists a positive constant k such that

d

dt
‖u‖2L2 ≤ k(‖∂x(v1 + v2)‖L∞ + ‖P±∂2

xv1‖L∞ + δ−1)‖u‖2L2 + δ

∫
(∂xv1∂xu)2dx.

This leads, after integration in time between 0 and T , to

(4.2) ‖u(T )‖2L2 ≤ k(MT + δ−1)
∫ T

0

‖u(t)‖2L2dt + δf(T ), ∀δ > 0,

where

(4.3) f(T ) =
∫ T

0

∫
(∂xv1∂xu)2dxdt.

Following the ideas of Ponce for the fifth order KdV equation [22], the following
Kato smoothing effect for u will be useful to control the term f(T ).

Lemma 4.1. There exists a positive constant k such that for all δ > 0
∫ T

0

∫
(∂xu + D1u)2ψ′dxdt

≤ k(1 + MT )‖u(T )‖2L2 + k(MT + M2
T + δ−1)

∫ T

0

‖u(t)‖2L2dt + δf(T ),

(4.4)

where f(T ) is defined in (4.3) and ψ ∈ C∞(R) with ψ′ ∈ C∞0 (R) and ψ, ψ′ ≥ 0.
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Assuming Lemma 4.1 (which will be proven below), we shall prove the uniqueness
part of Theorem 1.3. We use the splitting argument of Ginibre and Tsutsumi to
get that

f(T ) ≤
+∞∑

j=−∞

∫ T

0

∫
(∂xv1∂xu)2χ3

j/Ndxdt

≤



+∞∑

j=−∞
sup

R×[0,T ]

(∂xv1χj/N )2




(
sup
j∈Z

∫ T

0

∫
(∂xu)2χj/Ndxdt

)
,

where χj/N is defined as in Lemma 2.1. Thus, we deduce applying (4.4) with
ψ′ = χj/N and by the definition of MT that for all δ > 0,

f(T ) ≤kMT (1 + MT )‖u(T )‖2L2

+ kMT (MT + M2
T + δ−1)

∫ T

0

‖u(t)‖2L2dt + MT δf(T ).
(4.5)

Inserting (4.5) in (4.2) and fixing δ > 0 such that

MT δ + 2kMT (1 + MT )δ ≤ 1
2
,

we deduce that

‖u(T )‖2L2 ≤ k(MT + δ−1)
∫ T

0

‖u(t)‖2L2dt.

Therefore we conclude from Gronwall’s inequality and the fact that u(·, 0) = 0 that
‖u(t)‖L2 = 0 for all t ∈ [0, T ], which yields the uniqueness result.

It remains to prove Lemma 4.1. For this purpose the following commutator
estimate, which can be found in [6] (p. 249–252), will be useful.

Lemma 4.2. For any s ∈ R and σ > 1
2 , there exists c = cs,σ > 0 such that

(4.6) ‖[Js, φ]f‖L2 ≤ c‖φ‖Hs+2+σ‖f‖Hs−1 ,

for all φ ∈ Hs+2+σ(R), f ∈ Hs−1(R).

Proof of Lemma 4.1. Step1: gain of 1/2 derivative. Let ψ as in Lemma 4.1. We
apply J−

1
2 to equation (4.1), multiply by J−

1
2 uψ and integrate in space to deduce

that

1
2

d

dt
(J−

1
2 u, J−

1
2 uψ)L2 = −a(J−

1
2 ∂3

xu, J−
1
2 uψ)L2 + b(J−

1
2 H∂2

xu, J−
1
2 uψ)L2

+
c

2
(J−

1
2 ∂x((v1 + v2)u), J−

1
2 uψ)L2

− d(J−
1
2 ∂x(uH∂xv1 + H(u∂xv1)), J−

1
2 uψ)L2

− d(J−
1
2 ∂x(v2H∂xu + H(v2∂xu)), J−

1
2 uψ)L2

:= I + II + III + IV + V.

(4.7)
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and
1
2

d

dt
(J−

1
2 Hu, J−

1
2 Huψ)L2

= −a(J−
1
2 ∂3

xHu, J−
1
2 Huψ)L2 − b(J−

1
2 ∂2

xu, J−
1
2 Huψ)L2

+
c

2
(J−

1
2 ∂xH((v1 + v2)u), J−

1
2 Huψ)L2

− d(J−
1
2 ∂xH(uH∂xv1 + H(u∂xv1)), J−

1
2 Huψ)L2

− d(J−
1
2 ∂xH(v2H∂xu + H(v2∂xu)), J−

1
2 Huψ)L2

:= Ĩ + ĨI + ĨII + ĨV + Ṽ .

(4.8)

First, we observe integrating by parts and using the Cauchy-Schwarz inequality
that

(4.9) I = −3a

2
(J−

1
2 ∂xu, J−

1
2 ∂xuψ′)L2 + O(‖u‖2L2),

and

(4.10) Ĩ = −3a

2
(J−

1
2 ∂xHu, J−

1
2 ∂xHuψ′)L2 + O(‖u‖2L2),

where O(f) denotes big O of f . We also get integrating by parts that

II = −b(J−
1
2 H∂xu, J−

1
2 ∂xuψ)L2 − b(J−

1
2 H∂xu, J−

1
2 uψ′)L2

and
ĨI = b(J−

1
2 ∂xu, J−

1
2 H∂xuψ)L2 + b(J−

1
2 ∂xu, J−

1
2 Huψ′)L2 .

Then

II + ĨI = 2b(J−
1
2 ∂xu, J−

1
2 Huψ′)L2 + b(J−

1
2 u, J−

1
2 Huψ′′)L2

= 2b(J−1∂xu, J−
1
2 Huψ′)L2 + 2b([J−

1
2 , ψ′]J−

1
2 ∂xu,Hu)L2 + O(‖u‖2L2),

so that we deduce from (4.6) that

(4.11) II + ĨI . ‖u‖2L2 .

Using similar arguments, we deduce that

(4.12) III+IV +ĨII+ĨV . (‖v1‖H2 +‖v2‖H2 +‖P±∂2
xv1‖L∞)‖u‖2L2 . MT ‖u‖2L2 .

Next observe that

V = −d(J−
1
2 (∂xv2H∂xu), J−

1
2 uψ)L2 + d(J−

1
2 ∂xH(∂xv2u), J−

1
2 uψ)L2

− d(J−
1
2 (v2H∂2

xu), J−
1
2 uψ)L2 − d(J−

1
2 ∂2

xH(v2u), J−
1
2 uψ)L2 .

(4.13)

The first two terms can be handled using a similar argument as for IV . The
remaining terms can be bounded applying the commutator estimates (2.15) and
(4.6) by

− d(J−
1
2 (v2H∂2

xu), J−
1
2 uψ)L2 + d(J−

1
2 (v2u), H(∂2

xJ−
1
2 uψ))L2

=− d([J−
1
2 , ψ]J−

1
2 (v2H∂2

xu), u)L2 − d(J−1(v2H∂2
xu), uψ)L2

+ d(J−
1
2 (v2u), [H, ψ]J−

1
2 ∂2

xu)L2 + d(J−
1
2 (v2u), ψJ−

1
2 H∂2

xu)L2

=− d([J−1, v2]H∂2
xu, uψ)L2 − d(v2J−1H∂2

xu, uψ)L2 + O(MT ‖u‖2L2)

+ d(v2u, [J−
1
2 , ψ]J−

1
2 H∂2

xu)L2 + d(v2u, ψJ−1H∂2
xu)L2 .

(4.14)
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Then, we get observing that the second and fourth terms on the right-hand side of
(4.14) cancel and repeating a similar argument for Ṽ that

(4.15) V + Ṽ . MT ‖u‖2L2 .

Finally, we notice that∫
(D

1
2 u)2ψ′dx =

∫
(D1J−

1
2 u + (D

1
2 −D1J−

1
2 )u)2ψ′dx

. (J−
1
2 H∂xu, J−

1
2 H∂xuψ′)L2 + ‖(D 1

2 −D1J−
1
2 )u‖2L2

. (J−
1
2 H∂xu, J−

1
2 H∂xuψ′)L2 + ‖u‖2L2 ,

(4.16)

since the symbol of the operator D
1
2 −D1J−

1
2 , m(ξ) = |ξ| 12 −|ξ|(1+ ξ2)−

1
4 belongs

to L∞(R). Therefore, we conclude integrating (4.7) and (4.8) between 0 and T and
using estimates (4.9)–(4.16) that

(4.17)
∫ T

0

∫
((D

1
2 u)2 + (D

1
2 Hu)2)ψ′dxdt . ‖u(T )‖2L2 + (1 + MT )

∫ T

0

‖u(t)‖2L2dt.

Step2: gain of 1 derivative. For this, multiply equation (4.1) by uψ and integrate
in space to deduce that

1
2

d

dt
(u, uψ)L2 =−a(∂3

xu, uψ)L2 + b(H∂2
xu, uψ)L2 +

c

2
(∂x((v1+ v2)u), uψ)L2

− d(∂x(uH∂xv1+ H(u∂xv1)), uψ)L2

− d(∂x(v2H∂xu+ H(v2∂xu)), uψ)L2

:= I + II + III + IV + V,

(4.18)

and similarly
1
2

d

dt
(Hu, Huψ)L2 = −a(∂3

xHu,Huψ)L2 − b(∂2
xu, Huψ)L2

+
c

2
(∂xH((v1 + v2)u),Huψ)L2

− d(∂xH(uH∂xv1 + H(u∂xv1)), Huψ)L2

− d(H∂x(v2H∂xu + H(v2∂xu)), Huψ)L2

:= Ĩ + ĨI + ĨII + ĨV + Ṽ.

(4.19)

It is deduced integrating by parts as in (4.9)–(4.10) that

(4.20) I + Ĩ = −3a

2

∫
(∂xu + D1u)2ψ′dx + O(‖u‖2L2),

and using the same trick as in (4.11), Plancherel’s identity and estimate (2.16) that

II + ĨI = −2b(D1u, uψ′)L2 + O(‖u‖2L2)

= −2b

∫
(D

1
2 u)2ψ′dx− 2b(u, D

1
2 [D

1
2 , ψ′]u)L2

= −2b

∫
(D

1
2 u)2ψ′dx + O(‖u‖2L2).

(4.21)

One can also easily see integrating by parts that

(4.22) III + IV + ĨII + ĨV = O(MT ‖u‖2L2) + k(∂xv1∂xu, Huψ)L2 ,
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and for all δ > 0 one can use Young’s inequality to estimate the integral in time
between 0 and T of the last term on the right-hand side of (4.22) by

(4.23)
∫ T

0

(∂xv1∂xu, Huψ)L2dt ≤ kδ−1

∫ T

0

‖u(t)‖2L2dt + δf(T ).

Furthermore, it follows integrating by parts and using the commutator estimate
(2.15) that

V = d(v2H∂xu, ∂xuψ)L2 + d(v2H∂xu, uψ′)L2

− d(v2∂xu, H(∂xuψ))L2 + d(H(v2∂xu), uψ′)L2

= d(v2H∂xu, ∂xuψ)L2 + 2d(v2H∂xu, uψ′)L2 − d(v2∂xu, ψH∂xu)L2

− d(v2∂xu, [H, ψ]∂xu)L2 + d([H, v2]∂xu), uψ′)L2

= 2d(v2H∂xu, uψ′)L2 + d(∂xv2u, [H, ψ]∂xu)L2

+ d(v2u, ∂x[H, ψ]∂xu)L2 + d([H, v2]∂xu), uψ′)L2

= 2d(v2H∂xu, uψ′)L2 + O(MT ‖u‖2L2).

(4.24)

Note that Ṽ could be treated similarly. To handle the integral in time between 0
and T of the first term on the right-hand side of (4.22) we can use (2.16) and (4.17)

∫ T

0

(v2H∂xu, uψ′)L2

=
∫ T

0

∫
v2(D

1
2 u)2ψ′dxdt +

∫ T

0

∫
uD

1
2 [D

1
2 , v2ψ′]udxdt

. MT ‖u(T )‖2L2 + MT (1 + MT )
∫ T

0

‖u(t)‖2L2dt.

(4.25)

Integrating in time between 0 and T (4.18)–(4.19) and using estimates (4.20)–(4.25)
together with (4.17) to treat the first term appearing on the right-hand side of (4.21)
yield (4.4). ¤
Remark 4.3. Combining the argument used to derive the uniqueness result with
parabolic regularization method implies the existence of smooth solutions for initial
data in H∞(R). Similar results were derived by Ponce for the fifth order KdV
equation in [22].

4.2. Proof of the existence. Let v0 ∈ Hs(R), with s ≥ 2. From Remark 4.3, we
know that for all ε > 0, there exists Tε > 0, with Tε →

ε→0
0, and a unique solution

vε ∈ C([0, Tε];H∞(R)) of

(4.26)
{

∂tv − bH∂2
xv + a∂3

xv = cv∂xv − d∂x(vH∂xv + H(v∂xv))
v(x, 0) = v0,ε(x) = ρε ∗ v0(x),

where ρ ∈ S(R) with ρ ≥ 0,
∫

ρdx = 1, and
∫

xkρ(x)dx = 0, k ∈ Z+, 0 ≤ k ≤ [s]+1.
The following properties of the smoothing operators will be used in this section:

Lemma 4.4. Let s ≥ 0, φ ∈ Hs(R) and for any ε > 0, φε = ρε ∗ φ. Then,

(4.27) ‖φε‖Hs+α . ε−α‖φ‖Hs , ∀α ≥ 0,

and

(4.28) ‖φ− φε‖Hs−β =
ε→0

o(εβ), ∀β ∈ [0, s].
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The proof of Lemma 4.4 can be found in [2] or [10].
The first step is to derive an a priori H2-estimate on the solution vε in a time

interval [0, T0], where T0 is a positive time independent of ε. In this direction, fix
ε > 0 and let us denote, for sake of simplicity, v = vε. Then, arguing as in Section
3.1, it is deduced that w̃± = Φ±∂xP±v are solutions to the dispersive equations

(∂t + a∂3
x ± ib∂2

x)w̃± = Φ±P±Q†±(Φ±, v, w̃±) + Φ±Q‡±(Φ±, v, w̃±)

+ L±(Φ±, v, w̃±) + N±(Φ±, v, w̃±),
(4.29)

where

(4.30) Φ±(x, t) = exp
(
∓ i

2d

3a

x∫

0

v(s, t) ds
)
.

Notice that we choose the “primitive” starting at x = 0. This has the advantage
that the integral is defined if v(·, t) ∈ L2

loc(R) (which will be a consequence of our
estimates below). However we pay a price on it, because of the term ∂tΦ ∂xP+v
appearing in (3.7a), which can be rewritten by making use of the equation in (1.1)
as

− ∂xP+v Φ i
2d

3a

{
− a∂2

xv + bH∂xv + c
v2

2
− d(vH∂xv + H(v∂xv))

}
(x, t)

+ ∂xP+v Φ i
2d

3a

{
− a∂2

xv + bH∂xv + c
v2

2
− d(vH∂xv + H(v∂xv))

}
(0, t).

(4.31)

The first term in (4.31) is nonlinear of the class considered in (i), while the second
is a linear one. Here, recall that Q†± and Q‡± are polynomials at least quadratic
involving the first derivative of v± and w̃± multiplied by a term of order zero, for
example

(4.32) F1 = Φ+P+(w̃+∂xw̃+),

L± are the linear terms obtained in the second part of (4.31) and whose a repre-
sentative term is

(4.33) F2 = w̃+(x, t)∂2
xv(0, t),

and N± are the last terms on the right-hand side of (3.5) and (3.6), which is to say

(4.34) F3 =
[
P+, v

]
∂3

xP+v =
[
P+, v

]
∂2

x(Φ−w̃+).

Proposition 4.5. Let s ∈ R and v0 ∈ Hs(R). There exists T0 = T0(‖v0‖H2) > 0
such that for all ε > 0, the solution vε of (4.26) satisfies

(4.35) sup
[0,T0]

‖vε(t)‖Hs
x

+
2∑

j=1

‖Dr
x∂j

xP±vε‖L6
T0

L∞x ≤ M1(‖v0‖H2),

(4.36) sup
j∈Z

∫ T0

0

∫

R
|χj/NDr

x∂2
xw̃ε,±)|2dxdt ≤ M2(‖v0‖H2),

and

(4.37)
∑

j∈Z
sup

[0,T0]×R
|χj/NDr

xw̃ε,±|2 ≤ M3(‖v0‖H2),

for all 0 ≤ r ≤ s−2, where M1, M2 and M3 are independent of ε, χ ∈ C∞0 (R), 0 ≤
χ ≤ 1, χj = χ(· − j), and N = N(T ) ∈ Z+.
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Proof. For sake of simplicity, we will only consider the case s = 2. Recall here the
notation w̃ε,± = Φε,±∂xP±vε where Φε,±(x, t) = e−i 2d

3a

R x
0 vε(s,t)ds. For any T > 0,

we define the following quantities:

λ1(T ) = sup
0≤t≤T

‖vε(t)‖L2
x

+ sup
0≤t≤T

‖w̃ε,±(t)‖H1
x

λ2(T ) =‖w̃ε,±‖L6
T L∞x + ‖∂xw̃ε,±‖L6

T L∞x

λ3(T ) =
{

sup
j

∫ ∫
|χj/N (x)∂2

xw̃ε,±(x, t)|2 dx dt
}1/2

λ4(T ) =
{∑

j

sup
|t|≤T

sup
x
|χj/N (x)w̃ε,±(x, t)|2

}1/2

.

Since N depends on T , we fix 0 < T ≤ T ∗ with T ∗ = (1 + ‖v0‖H2)−1, so that
the constants appearing on the estimates (2.9) and (2.10) are fixed. Note that
‖Φε,±‖L∞x,T

≤ 1, since vε is a real valued function. Moreover, due to the L2-norm
conservation of (1.1), we have that

(4.38) sup
0≤t≤T

‖vε(t)‖L2 = ‖v0,ε‖L2 ≤ ‖v0‖L2 .

To estimate the other part of the λj(T ), consider the integral system associated
to (4.29)

(4.39) w̃ε,± = w̃±(t)w̃0,ε,± +
∫ t

0

w̃±(t− t′)N±(vε, w̃ε,±)(t′)dt′,

where N± denote the nonlinearities on the right-hand side of (4.29). Using (4.38),
(4.39), Minkowski’s integral inequality and the linear estimates obtained in Lemma
2.1, it is deduced that

max
{
λ1(T ), λ2(T ),(1 + T )−

1
2 λ3(T ), (1 + T )−2λ4(T )

}

. ‖v0,ε‖L2 + ‖w̃0,ε,±‖H1 +

T∫

0

‖N±(t)‖H1
x
dt.

(4.40)

Then it remains to estimate ‖Fj‖L1
T H1

x
, j = 1, 2, 3, where Fj are defined in (4.32)–

(4.34), since they are the representative terms of the nonlinearities N±. We have,
using Hölder’s inequality,

‖F1‖L1
T H1

x
≤ ‖Φ+P+(w̃+∂xw̃+)‖L1

T L2
x

+ ‖∂xΦ+P+(w̃+∂xw̃+)‖L1
T L2

x

+ ‖Φ+P+((∂xw̃+)2)‖L1
T L2

x
+ ‖Φ+P+(w̃+∂2

xw̃+)‖L1
T L2

x

.
∫ T

0

‖w̃+‖L∞x

(
1 + ‖v‖L∞x

)‖∂xw̃+‖L2
x
dt

+
∫ T

0

‖∂xw̃+‖L∞x ‖∂xw̃+‖L2
x
dt + T

1
2 ‖χj/N w̃+∂2

xw̃+‖l2jL2
x,T

. T (1 + λ1(T ))λ1(T )2 + T
5
6 λ1(T )λ2(T ) + T

1
2 λ3(T )λ4(T ).

(4.41)
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Next it follows from Hölder’s inequality that

‖F2‖L1
T H1

x
≤

∫ T

0

‖∂2
xv(t)‖L∞x ‖w̃+(t)‖H1

x
dt

≤
∫ T

0

(‖∂x(Φ−w̃+)‖L∞x + ‖∂x(Φ+w̃−)‖L∞x )‖w̃+(t)‖H1
x
dt

. T
5
6 (1 + λ1(T ))λ2(T )λ1(T ).

(4.42)

Finally, estimate (2.15) yields

‖F3‖L1
T H1

x
≤

∥∥[
P+, v

]
∂2

x(Φ−w̃+)
∥∥

L1
T L2

x
+

∥∥∂x

[
P+, v

]
∂2

x(Φ−w̃+)
∥∥

L1
T L2

x

.
∫ T

0

‖∂2
xv(t)‖L∞x ‖(Φ−w̃+)(t)‖H1

x
dt

. T
5
6 λ2(T )(1 + λ1(T ))λ1(T ).

(4.43)

Therefore, gathering (4.40)–(4.43), it is deduced that there exist two polynomials
p1, p2, with all terms of order at least 1, such that

max
{
λ1(T ), λ2(T ), (1 + T )−

1
2 λ3(T ), (1 + T )−2λ4(T )

}

. ‖v0‖H2 + Tp1(λ1(T ))λ1(T ) + T
5
6 p2(λ1(T ))λ2(T ) + T

1
2 λ3(T )λ4(T ).

(4.44)

Notice that λj , j = 1, · · · , 4 are continuous nondecreasing functions; hence, defining
T0 as the smallest T such that

max
{
T0p1(λ1(T0)), T

5
6
0 p2(λ1(T0)), T

5
6
0 p2(λ1(T0))λ1(T0))−1λ2(T0),

T
1
2
0 (1 + T0)2λ3(T0), T

1
2
0 (1 + T0)

1
2 λ4(T0)

}
=

1
10k

,
(4.45)

where k is the implicit positive constant appearing in (4.44), it follows from (4.44)
that

max
{
λ1(T0), λ2(T0),(1 + T0)−

1
2 λ3(T0), (1 + T0)−2λ4(T0)

}
. ‖v0‖H2 .(4.46)

Furthermore, it is deduced from (4.45) and (4.46) that at time T0 one of the fol-
lowing inequalities must hold:

1
10
≤ kT0p1(‖v0‖H2),

1
10
≤ kT

5
6
0 p2(‖v0‖H2),

or
1
10
≤ kT

1
2
0 (1 + T0)

1
2 (1 + T0)2‖v0‖H2 ,

which implies that there exists a constant M = M(‖v0‖H2) such that T0 ≥ M . ¤

Proposition 4.5 implies that the sequence(vε)ε>0 defined on the time interval
[0, T0], independent of ε, is bounded in the norms defined in (4.35)–(4.37). More-
over, using a similar argument to the one employed in the proof of the uniqueness
and estimate (4.28), one can prove that for ε > ε′ > 0, the function u = uε,ε′ =
vε − vε′ satisfies

(4.47) sup
[0,T0]

‖u(t)‖L2 ≤ k‖v0,ε − v0,ε′‖L2 =
ε→0

o(εs).

Then the sequence (vε)ε>0 converges in C([0, T0];L2(R)), as ε tends to zero, to a
solution v of (1.1).
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Furthermore, since (vε)ε is bounded in C([0, T0];Hs(R)), we deduce by an inter-
polation argument that

(4.48) vε −→
ε→0

v in C([0, T0];Hr(R)), for any r < s.

The next proposition fills the gap between (4.48) and the persistence property.

Proposition 4.6. We have that

(4.49) v ∈ C([0, T0];Hs(R)).

Proof. It suffices to prove that (vε) tends to v in C([0, T0];Hs(R)) as ε tends to
zero. In this direction, fix ε > 0 and define

(4.50) w̃ε,± = Φε,±∂xP±vε, where Φε,±(x, t) = e∓i 2d
3a

R x
0 vε(y,t)dy,

(4.51) u = uε = vε − v, and α± = αε,± = w̃ε,± − w̃±.

Arguing as before, we deduce that α+ satisfies

(∂t + a∂3
x ± ib∂2

x)α±= Φε,±P±Q†±(Φε,±, vε, w̃ε,±) + Φε,±Q‡
±(Φε,±, vε, w̃ε,±)

+ w̃ε,±∂2
xvε(0, t) + 2idΦε,±[P±, vε]∂2

xw̃ε,±

− Φ±P±Q†±(Φ±, v, w̃±)− Φ±Q‡±(Φ±, v, w̃±)

− w̃±∂2
xv(0, t)− 2idΦ[P±, v]∂2

xw̃±,

(4.52)

where Q†± and Q‡
± are defined as in (3.4). Then we can rewrite (4.52) as

(∂t + a∂3
x ± ib∂2

x)α± = Φε,±P±
{
Q†
±(Φε,±, vε, w̃ε,±)−Q†±(Φ±, v, w̃±)

}

+ (Φε,± − Φ±)P±Q†
±(Φ±, v, w̃±)

+ Φε,±
{
Q‡±(Φε,±, vε, w̃ε,±)−Q‡

±(Φ±, v, w̃±)
}

+ (Φε,± − Φ±)Q‡
±(Φ±, v, w̃±)

+ α±∂2
xvε(0, t) + w̃±∂2

xu(0, t)

+ 2idΦε,±[P±, u]∂2
xw̃ε,± + 2idΦε,±[P±, v]∂2

xα±

+ 2id(Φε,± − Φ±)[P±, v]∂2
xw̃±.

(4.53)

In the sequel, we will need the following assertion:

(4.54) ‖(Φε,± − Φ±)f‖L2 =
ε→0

o(1), ∀ f ∈ L2(R).

Observe that we do not have that ‖(Φε,± − Φ±)‖L∞ →
ε→0

0. By the dominated

convergence theorem, it suffices to prove that
∣∣Φε,±(x, t) − Φ±(x, t)

∣∣2 →
ε→0

0, for
almost every x ∈ R. But, using the mean value and Cauchy-Schwarz inequalities
and (4.47), we get that for every x ∈ R,

∣∣∣Φε,±(x, t)− Φ±(x, t)
∣∣∣
2

≤ 2d

3a

∣∣∣
∫ x

0

(vε − v)(y, t)dy
∣∣∣
2

≤ |x|‖(vε − v)(·, t)‖2L2 →
ε→0

0,

which implies (4.54).
Next we define, (still in the case s = 2),

λ̃1(T ) = λ̃1(T, α±) = sup
[0,T ]

‖α±(t)‖H1 ,

λ̃2(T ) = λ̃2(T, α±) = ‖α±‖L6
T L∞x + ‖∂xα±‖L6

T L∞x ,
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λ̃3(T ) = λ̃3(T, α±) = sup
j∈Z

∫ T

0

∫

R
|χj/N∂2

xα±|2,

and
λ̃4(T ) = λ̃4(T, α±) =

∑

j∈Z
sup

[0,T ]×R
|χj/Nα±|2.

We deduce arguing as in the proof of Proposition 4.5 with equation (4.53), and
using (4.42), (4.43), (4.47) and (4.54) that

(4.55) max
{
λ̃1(T0), λ̃2(T0), (1 + T0)−

1
2 λ̃3(T0), (1 + T0)−2λ̃4(T0)

}
=

ε→0
o(1).

To conclude the proof of Proposition 4.6, we observe that

∂x(vε − v) = ∂xP+(vε − v) + ∂xP−(vε − v)

= Φε,−α+ + (Φε,− − Φ−)w̃+ + Φε,+α− + (Φε,+ − Φ+)w̃−,
(4.56)

so that we deduce (4.49) gathering (4.47), (4.54)–(4.56). ¤

Finally, the proof of the continuity of the flow map data-solution follows by using
the classical Bona-Smith argument (see [2], [10] or [21]).
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