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Abstract

We prove that if a solution of an equation of KdV type is bounded above by a traveling wave
with an amplitude that decays faster than a given linear exponential then it must be zero. We
assume no restrictions neither on the size nor in the direction of the speed of the traveling wave.

1 Introduction and main results.

In this paper we will continue our study initiated in [2] on solutions of dispersive systems that decay
like a linear exponential. In particular, we extend the results proved in that paper for traveling
wave solutions of non–linear Schrödinger (NLS) equations to the case of equations of Korteweg–de
Vries (KdV) type.

More concretely we shall consider solutions of equations of the form(
∂t + ∂3

x

)
u = a(u)∂xu, x ∈ R , t ∈ R, (1.1)

with a regular and such that

|a(s)| ≤M1

(
|s|+ |s|j

)
, j = 1, 2, 3, . . . (1.2)
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Our main result is the following one.

Theorem 1 Assume u ∈ C1
(
R : H1(R)

)
is a real solution of (1.1)–(1.2) with a(u) also real. Then

there exist λ0 ≥ 1 and c0 > 0 such that if for some λ > 0, b ∈ R

sup
t≥0
‖u(·, t)‖2H1 ≤M2, (1.3)

sup
t≥0

∫
e|x−bt| |u(x, t)|2 dx ≤M3, (1.4)

sup
t≥0

∫
e2λ|x−bt| |u(x, t)|2 < +∞, (1.5)

and

λ ≥ max
{
λ0, c0M

2
1

(
1 +

[
M3 +M

1/2
2 M

1/2
3

]j/2)}
,

then
u ≡ 0.

Relevant examples of non–linear potentials are the pure power ones

a(u) = −juj j = 1, 2, 3..., (1.6)

and the completely integrable ones
a(u) = α1u+ α2u

2, (1.7)

that are usually known as Gardner equations, where the cases (α1, α2) = (1, 0) and (α1, α2) = (0, 1)
are the KdV and modified KdV equation respectively.

Remark 1 For (1.6) there is a scaling symmetry

uλ(x, t) = λ2/ju
(
λx, λ3t

)
, λ > 0,

and an explicit family of traveling waves

λ2/jϕj
(
λ(x− λ2t)

)
, with ϕj =

(
j + 2

2
sech2(

j

2
x)
) 1

j

.

Hence in this case we have traveling wave solutions that propagate to the right with velocity λ2.

Also given any j and using the scaling invariance we can always choose λ small enough such that
there exists a non-trivial solution that verifies (1.3), (1.4), and (1.5).

Regarding negative velocities we recall the existence of breather solutions in the case of Gardner
equations for some specific choices of the parameter α1 and α2. Let us consider for simplicity the
modified KdV equation; and specifically we take a(u) = −6u2. Then, with this normalization the
soliton solutions are

u(x, t) = λ sech
(
λ(x− λ2t)

)
, (1.8)
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and the breather solutions are [11]

u(x, t) = 2λ sech
(
λ(x+ γt)

)
·

cos [Φ(x, t)]− λ
µ sin Φ(x, t) tanh

(
λ(x+ γt)

)
1 +

(
λ
µ

)2
sin2 (Φ(x, t)) sech2

(
λ(x+ γt)

)
 , (1.9)

with

γ = 3µ2 − λ2 , δ = µ2 − 3λ2 , and Φ = µ(x+ δt)− tan−1

(
λ

µ

)
.

These breathers can be seen as wave packets with an amplitude and a frequency determined by the
parameters λ and µ. The velocity of the amplitude is γ = 3µ2 − λ2 and it can take any real value.

Remark 2 Notice that in the above examples the decay rate of the amplitude is just given by λ as
in the statement of our theorem. Choosing as before λ small enough we also conclude the sharpness
of our result for negative velocities.

Remark 3 Breather solutions also exist for complex KdV equations. For example if we choose
a(u) = −|u|2 with u(x, t) ∈ C it is easy to check (see for example [7]) that

u(x, t) =
√

3e−itµ(3λ2−µ2)+iµxψλ
(
x− (λ2 − 3µ2)t

)
,

with ψλ(x) = λψ1(λx) and ψ1(x) =
√

2sechx. The arguments needed for the proof of Theorem 1
also work for this complex KdV (i.e. a(u) = −|u|2).

There are three fundamental ingredients in the proof of Theorem 1. The first one is that the L2

norm is a conserved quantity. This property is needed to conclude that u(x, 0) = 0 if for some
sequence of times tn we have that

lim
tn→∞

‖u(·, tn)‖L2 = 0.

The second ingredient is Kato’s theory in [5] concerning the persistent property of solutions to
the initial value problem with data that satisfies linear exponential decay. Kato’s result is used to
prove that if (1.5) holds then a similar inequality is also true for ∂kxu k = 1, 2, 3. We require this
property since instead of working with the equation (1.1)–(1.2) we use the one satisfied by f = eλθu
with θ(x, t) an appropriate Carleman weight that grows almost linearly at infinity.

The final ingredient is the convexity of H(t) = ‖f‖2L2 = 〈f, f〉. As done in [2] and [3] we estimate
Ḣ(t) and Ḧ(t) using integration by parts, therefore we need f and its spatial derivatives in L2.
At this point we closely follow the arguments in [2] but the algebra, as it can be expected, turns
out to be more complicated in the KdV setting than in the NLS one. The details can be found in
the proof of Claim 1 in Section 2. In this claim we establish the positivity of the commutator that
appears in the computation of Ḧ(t) -see also [9] and [10].

There is still another difference with respect to [2] . For generalized KdV (1.1)-(1.2) the non–linear
potential can not be treated in a perturbation way and some structure is needed (see the proof of
Claim 2 in Section 2). This structure still holds in the complex KdV equation that we mentioned
above.

The use of Carleman weights to obtain positive commutators is a standard technique in elliptic
theory for obtaining lower bounds of eigenfunctions of a Schrödinger operator -see [1], [4], [8]. In
the time evolution setting some modifications of this technique are needed and an important step
in our approach is the use of the two identities (2.5) and (2.6). These identities also appear in [2].

The rest of the paper, that is to say Section 2, is devoted to the proof of Theorem 1.
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2 Proof of Theorem 1.

From the results by T. Kato in [5] we can assume that (1.5) is also satisfied possibly with another
λ for ∂kxu(x, t) with k = 1, 2, 3.

As in [2] we shall work with f = eλθu with θ = θ(x, t). More concretely θ(x, t) = ϕ(r), r = |x− bt|
for some regular even ϕ that will be fixed later on and that it grows at most linearly at infinity. As
in [3] we have

eλθ
(
∂t + ∂3

x

)
e−λθf = (Sλ +Aλ)f ;

Sλ = −3λ∂x (∂xθ∂x) +
(
−λ3(∂xθ)3 − λ∂3

xθ − λ∂tθ
)

;

Aλ = ∂t + ∂3
x + 3λ2 (∂xθ)

2 ∂x + 3λ2∂xθ∂
2
xθ = ∂t + Ãλ;

A∗λ = −Aλ Ã∗λ = −Ãλ S∗λ = Sλ. (2.1)

Hence, using the notation ∂xf = fx,

〈[Sλ;Aλ]f, f〉 = 〈(SλAλ −AλSλ)f, f〉

= 9λ
∫
ϕ′′(r)f2

xx + 6λb
∫
ϕ′′(r)f2

x + 18λ3

∫ (
ϕ′(r)

)2
ϕ′′(r)f2

x

− 6λ
∫
ϕIV (r)f2

x + 9λ5

∫ (
ϕ′(r)

)4
ϕ′′(r)f2 + λb2

∫
ϕ′′(r)f2

− 3λ3

∫ (
ϕ′′(r)

)3
f2 − 18λ3

∫
ϕ′(r)ϕ′′(r)ϕ′′′(r)f2

− 3λ3

∫ (
ϕ′′(r)

)2
ϕIV (r)f2 + λ

∫
ϕV I(r)f2 − 2λb

∫
ϕIV (r)f2

− 6λ3b

∫
ϕ′(r)2ϕ′′(r)f2

= 1©+ 2©+ 3©+ 4©+ 5©+ 6©+ 7©+ 8©+ 9©+ 10©+ 11©+ 12©.

(2.2)

Notice that
5©+ 6©+ 12© = λ

∫ (
3λ2

(
ϕ′(r)

)2 − b)2
ϕ′′(r)f2. (2.3)

As in [2] we shall use two identities that hold for solutions of

∂tf = −
(
Sλ + Ãλ

)
f + F, (2.4)

with
Ã∗λ = −Ãλ S∗λ = Sλ.

First observe that from (2.4)

d

dt
〈f, f〉 = −2〈Sλf, f〉+ 2〈F, f〉,
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and, recalling that in our case Aλ = ∂t + Ãλ, we have

d

dt
〈Sλf, f〉 = −〈(SλAλ −AλSλ)f, f〉 − 2〈Sλf, Sλf〉+ 2〈F, Sλf〉.

In this last identity we have used that

SλAλ −AλSλ = SλÃλ − ÃλSλ − (Sλ)t.

Then, take η : [a, b] −→ R. A simple integration by parts gives (see Proposition 1 and Proposition
2 in [2] for more details)∫ b

a
η′(t)〈Sλf, f〉 dt = −1

2
(
η′〈f, f〉

)∣∣b
a

+
∫ b

a
η′(t)〈F, f〉dt+

1
2

∫ b

a
η′′(t)〈f, f〉dt, (2.5)

and ∫ b

a
η′(t)〈Sλf, f〉 dt = (η〈Sλf, f〉)|ba +

∫ b
a η〈(SλAλ −AλSλf), f〉dt

+ 2
∫ b
a η〈Sλf, Sλf〉dt− 2

∫ b
a η〈F, Sλf〉dt.

(2.6)

Notice that if u solves (1.1)–(1.2) and f = eλϕ(x−bt)u, then f solves

∂tf = −
(
Sλ + Ãλ

)
f + a(u)

(
∂xf − λϕ′(x− bt)f

)
. (2.7)

Finally we shall use the following Carleman weight ϕ0:

ϕ0 ∈ C6(R), even and positive, (2.8)

ϕ′0(r) = r if 0 ≤ r ≤ 3/2 and ϕ′0(r) = 2− log 2
4 log r

if r ≥ 2, (2.9)

0 < ϕ′′0(r) ≤ 1 and it is a decreasing function for r > 3/2, (2.10)

there exists c0 > 0 such that

∣∣∣∣ dkdrkϕ0(r)
∣∣∣∣ ≤ c0ϕ′′0(r) k = 3, 4, 5, 6. (2.11)

The proof of the theorem will follow from the next three claims. Recall that f = eλϕ(r)u with
r = |x − bt|. If b ≥ 3

2λ
2 we shall choose ϕ = 1

4ϕ0. Otherwise we shall take ϕ = ϕ0. The
reason behind these choices will become clear in the proof of Claim 1 where different cases will be
considered.

Claim 1 There exist λ0 ≥ 1, A0 > 0 such that for all λ ≥ λ0

〈(SλAλ −AλSλ) f, f〉 ≥ A0

∫
ϕ′′0
(
λ3f2 + λ2f2

x

)
. (2.12)

The proof of this claim is long and it is postponed.

5



Claim 2 There exists a constant C > 0 which depends on (1.5) and on M1, M2 and M3 given in
(1.2), (1.3), and (1.3) such that∣∣〈a(u)

(
∂xf − λϕ′(x− bt)f

)
, f〉
∣∣ ≤ λC. (2.13)

Remark 4 In the above inequality (2.13) the structure of the non-linear term plays a role. This
makes a difference with respect to the non-linear Schrödinger equation, see [2].

Proof Recall that
u = e−λϕ(x−bt)f,

so that from (1.3) u is in L2. Also observe that

eλϕ∂xu = ∂xf − λϕ′f.

Hence by integration by parts∫
a(u)

(
∂xf − λϕ′f

)
f dx =

∫
a(u)eλϕ∂xu eλϕu dx = −

∫
e2λϕ2λϕ′u2α(u) dx,

with
α(s) =

1
s2

∫ s

0
a(s′)s′ds′.

The claim easily follows from the boundedness of ϕ′0 and (1.2)-(1.5).

Claim 3 There exists a universal constant C1 such that∥∥a(u)
(
fx − λϕ′f

)∥∥2

L2 ≤ C1
M2

1

λ

[(
M

1/2
2 M

1/2
3 +M3

)j/2
+ 1
] ∫

ϕ′′0
(
λ3f2 + λf2

x

)
dx. (2.14)

Proof We have

e
1
2
|x−bt|u2 ≤

∫ ∞
−∞

∣∣∣∣ ddy (e 1
2
|y−bt|u2(y)

)∣∣∣∣ dy
≤ 2‖ux‖L2

∥∥∥e 1
2
|y−bt|u

∥∥∥
L2

+
1
2

∥∥∥e 1
2
|y−bt|u

∥∥∥2

L2

≤ 2 (M2M3)1/2 +
1
2
M3.

(2.15)

Also there is a universal constant C0 such that

e−
1
2
r ≤ C0ϕ

′′
0(r). (2.16)

Then we get from (2.15)

|a(u)|2 ≤ C0ϕ
′′
0(2 (M2M3)1/2 +

1
2
M3). (2.17)

As we already said, either ϕ = 1
4ϕ0, or ϕ = ϕ0. Hence

|fx − λϕ′f |2 ≤ 2|fx|2 + 2λ2 supϕ′0|f |2 ≤ C0(|fx|2 + λ2|f |2), (2.18)

for another universal constant C0. Also recall that λ ≥ 1. The claim follows from (2.17) and (2.18).
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Let us finish the proof of the theorem before we prove Claim 1. We follow the arguments in [2],
and more concretely those in Proposition 1 and Proposition 2 of that paper.

Take λ ≥ λ0 and such that

C1
M2

1

λ

[(
M

1/2
2 M

1/2
3 +M3

)j/2
+ 1
]
≤ A0

4
.

Recall (2.7) so that (2.4) is satisfied with

F = a(u)(fx − λϕ′(x− bt)f).

Then, from (2.12) and (2.14) we get

〈[Sλ;Aλ] f, f〉+ 2〈Sλf, Sλf〉 − 2〈F, Sλf〉 ≥ 〈Sλf, Sλf〉+
A0

2

∫
ϕ′′0
(
λ3f2 + λ2f2

x

)
. (2.19)

Our first step is to use the above inequality to obtain a uniform estimate for 〈Sλf, Sλf〉. Take for
any n ∈ N, ηn(t) defined on [n− 1/2, n+ 1/2] as

ηn(t) =
1
2
− |t− n|.

Notice that ηn(n± 1/2) = 0, so that the right hand side of (2.6) is lower bounded using (2.19) by∫
ηn ‖Sλf‖2L2 dt.

On the other hand |η′n| = 1 and η′′n = −δ(t− n) ≤ 0. Then, using (1.5) and (2.13), the right hand
side of (2.5) is bounded above by λC with C depending on M1,M2,M3, and the bound in (1.5),
but not on n.

As a consequence we get ∫
ηn ‖Sλf‖2L2 dt ≤ λC.

Hence there exists a sequence of times Tn →∞ such

sup
n
‖Sλf(·, Tn)‖2L2 < +∞. (2.20)

The second and last step is to obtain a global space-time estimate for f and therefore for u. For
proving it we use again identities (2.5) and (2.6) with F = a(u)(fx − λϕ′(x − bt)f) and with η
defined on [0, Tn] regular and positive, and such that η(0) = 0 and η ≡ 1 if t ≥ 1. With this choice
of η the right hand side of (2.5) is bounded using (1.5) and (2.13). For the right hand side of (2.6)
we use (2.19) and (2.20). Hence we get that

A0

2

∫ ∞
1

∫
ϕ′′0
(
λ3f2 + λ2f2

x

)
dxdt < +∞,

and as a consequence ∫ ∞
1

∫
e2λ|x−bt||u(x, t)|2 dxdt < +∞.

This implies that there exists a sequence of times tn such that

lim
tn→∞

‖u(·, tn)‖ = 0.
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But from the L2 conservation law u0 ≡ 0. The result follows from the uniqueness property of the
initial value problem in H1 given in [6].

In order to complete the proof of Theorem 1 it remains to prove Claim 1.

Proof of Claim 1 We shall consider five different cases depending on the sign of b and the relation
between b and λ2. In what follows C0 will denote a universal constant that can change from line
to line. Only a finite number of choices of these constants will be made.

Case 1.
b

3λ2
≥ 1/2. In this case we shall take ϕ =

1
4
ϕ0.

Recall (2.2) and (2.3). Then, we have (ϕ′0 ≤ 2)

5©+ 6©+ 12© ≥ 1
16
λb2

∫
ϕ′′f2. (2.21)

On the other hand

7©+ 8©+ 9©+ 10©+ 11© ≤
∫
ϕ′′f2

{
C0λ

3 + λC0 + λbC0

}
. (2.22)

Hence taking λI0 large enough we get from (2.21)–(2.22) and for λ > λI0 a bound for

λb2
∫
ϕ′′f2 =

λb2

4

∫
ϕ′′0f

2 ≥ 9
16
λ5

∫
ϕ′′0f

2. (2.23)

We also have
4© ≤ 6C0λ

∫
ϕ′′f2

x .

Then using 2© and taking λI0 large enough we get a bound of

λb

∫
ϕ′′f2

x . (2.24)

Finally 1© gives a bound for (fxx)2 and 3© is positive but worse than 2©. Putting everything
together we get for λ > λI0 that

〈[Sλ;Aλ] f, f〉 ≥ AI0

∫
ϕ′′0
(
λ(fxx)2 + λbf2

x + λb2f2
)
dx

≥ AI0

∫
ϕ′′0
(
λ3f2 + λ2f2

x

)
dx,

(2.25)

for some AI0 > 0.

Case 2. 0 ≤ b

3λ2
≤ 1

2
, and the integrals in 1©, 2©, ... 12© will be considered in the region r ≥ 1. We

take ϕ = ϕ0.

Then
5©+ 6©+ 12© ≥ 9

4
λ5

∫
r≥1

ϕ′′0f
2; (2.26)

while the absolute value of the integral in the region r ≥ 1 of 7© + 8© + 9© + 10© + 11© is upper
bounded by ∫

r≥1
ϕ′′0f

2
(
C0λ

3 + C0λ+ C0λb
)
. (2.27)
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Hence taking λ0 ≥ λII0 for some λII0 late enough we get from (2.26)–(2.27) a bound for

λ5

∫
r≥1

ϕ′′0f
2. (2.28)

Using this time 3© instead of 2© (that is also positive) and 1© and (2.28) we get for the region r ≥ 1
a lower bound for the commutator of the type

AII0

∫
r≥1

ϕ′′0
(
λ(fxx)2 + λ3f2

x + λ5f2
)
dx, (2.29)

that is better than what we need.

Case 3. 0 ≤ b

3λ2
≤ 1

2
and r ≤ 1. We take ϕ = ϕ0.

We need a cut off function η such that η(r) = r if r ≤ 1, η(r) ≡ 0 if r ≥ 3/2 and
∣∣∣∣dkηdrk

∣∣∣∣ ≤ C0 if

k = 0, 1, 2. Then for r = |x− bt|∫
η(r)f2(x)dx =

1
6λ2

∫ (
3λr2 − b

) (
ηf2
)
xx
dx

=
1

6λ2

∫ (
3λr2 − b

) {(
2ffxx + 2f2

x

)
η + η′′f2 + 2η′ff ′

}
.

Notice that b ≥ 0, so we get, using Cauchy–Schwartz,∫
η

(
f2 +

b

3λ2
f2
x

)

≤ 1
6λ2

(
1
2

∫ (
3λ2r2 − b

)2
f2η + 2

∫
(fxx)2 η + 6λ

∫
r2f2

xη

+C0

∫
1≤r≤3/2

f2 + λf2 +
1
λ
f2
x

)
.

(2.30)

From the definition of ϕ0 we have that the terms 4©, 8©, 9©, 10© and 11© are zero and that for r ≤ 3/2
we have that 5©+ 6©+ 12© gives

λ

∫
r≤3/2

(
3λ2r2 − b

)2
ϕ′′0f

2.

Therefore we just have to take care of 7©. Using (2.30) we get

3λ3

∫
r≤1

f2 ≤ 3λ3

∫
f2η

≤ 1
4
λ

∫
r≤3/2

(
3λr2 − b

)2
f2 + λ

∫
r≤3/2

(fxx)2 + 3λ2

∫
r2f2

xη

+C0

(
λ4

∫
1≤r≤3/2

f2 + λ2

∫
1≤r≤3/2

f2
x

)

= I1 + I2 + I3 + I4.
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I1 is bounded by 5© + 6© + 12© because ϕ′′0 = 1 if r ≤ 3
2 , I2 by 1© , I3 by 3©, and I4 by the bound

(2.29) obtained in Case 2, and that as we said was better than what we needed in terms of powers
of λ. As a consequence for λ ≥ λIII0 and for some λIII0 large enough we get a lower bound for the
commutator of the type ∫

r≤1
ϕ′′0
(
λ3f2 + λ(fxx)2

)
dx. (2.31)

Finally from

λ2

∫
f2
xη = −λ2

∫
(fxfη′ + ff ′′η) = λ2

∫
(
1
2
f2η′′ − ff ′′η),

and (2.31) we prove that there exists AIII0 and a lower bound of the type

AIII0

∫
r≤1

ϕ′′0
(
λ3f2 + λ2f2

x + λ(fxx)2
)
. (2.32)

Case 4. b ≤ 0 and r ≥ 1. We take ϕ = ϕ0.

If b ≤ 0, 2© comes with the wrong sign while 12© appears with the good one. Therefore we need
another identity. We have

1©+ 2©+ 6© = 9λ
∫
ϕ′′0(fxx)2 − 6λb

(∫
ϕ′′0ffxx + ϕ′′′0 fxf

)
+ λb2

∫
ϕ′′0f

2

= 9λ
∫
ϕ′′0

(
fxx −

b

3
f

)2

+ 3λb
∫
ϕIV0 f2.

(2.33)

Notice that for r ≥ 1 the absolute value of the last term of the above identity

| 3λb
∫
ϕIV0 f2 |,

together with the absolute values of 7©, 8©, 9©, 10©, and 11© are upper bounded by

C0

∫
r≥1

ϕ′′0f
2
(
λ|b|+ λ3 + λ

)
.

But from 5© and 12© we get a lower bound of the type(
λ5 + |b|λ3

) ∫
1≤r

ϕ′′0f
2,

that can be taken in the region 1 ≤ r ≤ 3
2 as

(
9λ5 + 6|b|λ3

) ∫
1≤r≤ 3

2

ϕ′′0f
2.

Also 3© gives the bound needed for 4©. Altogether we get for λ ≥ λIV with λIV large enough, that
the commutator is lower bounded by

AIV0

∫
r≥ 3

2

ϕ′′0
((
λ5 + |b|λ3

)
f2 + λ3f2

x

)
+
∫

1≤r≤ 3
2

ϕ′′0
((

8λ5 + 5|b|λ3
)
f2 + 17λ3f2

x

)
(2.34)
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for some AIV0 and that is better than what we need.

Case 5. b ≤ 0 and r ≤ 1. We take ϕ = ϕ0.

As in Case 3 we need the cut off η ≡ 1 if r ≤ 1 and η ≡ 0 if r ≥ 3/2. We have r = |x− bt|∫
f2
xη = −

∫
r∂x

(
f2
x

)
η −

∫
rf2
xη
′

= −
∫

2rfxfxxη −
∫
rf2
xη
′

= −2
∫
ηr

(
fxx −

b

3
f

)
fx − 2

b

3

∫
ηrffx −

∫
rη′f2

x .

Hence using Cauchy–Schwarz and some integration by parts∫
f2
xη −

b

3

∫
f2η ≤ 1

λ

∫
η

(
fxx −

b

3
f

)2

+ λ

∫
ηr2f2

x +
∫
r|η′|

(
|b|
3
f2 + f2

x

)
. (2.35)

Also for r ≤ 1 the terms 4©, 8©, 9©, 10©, 11© are zero. Therefore only 7© remains as a negative term.
We have ∫

f2η =
1
2

∫
r2(f2)xxη − 2

∫
rη′ffx −

1
2

∫
r2η′′f2

=
∫
r2
(
f2
x + ffxx

)
η − 2

∫
rη′ffx −

1
2

∫
r2η′′f2

=
∫
r2f2

xη +
∫
r2f

(
fxx −

b

3
f

)
η +

b

3

∫
r2f2η

− 2
∫
rη′ffx −

1
2

∫
r2η′′f2.

Then, using Cauchy–Schwarz∫
f2η − b

3

∫
r2f2η ≤

∫
r2ηf2

x +
λ2

2

∫
r4ηf2 +

1
2λ2

∫
η

(
fxx −

b

3
f

)2

+C0

∫
1≤|r|≤3/2(1 + λ)f2 + 1

λf
2
x .

Then, for r ≤ 1 the absolute value of 7© is upper bounded by

3λ3

∫
r≤1

f2η − λ3b

∫
r2f2 ≤ 3λ3

∫
r2ηf2

x +
3
2
λ5

∫
r4ηf2 +

3
2
λ

∫
η

(
fxx −

b

3
f

)2

C0

∫
1≤|r|≤3/2 λ

4f2 + λ2f2
x

= I1 + I2 + I3 + I4.

Hence, we bound I1 with 3©. Notice that even in the region 1 ≤ |r| ≤ 3/2 there is no problem

using (2.34). For I2 we use 5© and (2.34) because
3
2
r4 < 8 if r ≤ 3/2. For I3 we use (2.33)(

ϕIV0 = 0 if r ≤ 3/2
)
. Finally for I4 we use (2.34).

11



As a conclusion we get a lower bound for the commutator of the type

λ3

∫
r≤1

f2 + λ3|b|
∫
r2f2 + λ

∫
η

(
fxx −

b

3
f

)2

+ λ3

∫
ηr2f2

x .

Hence using (2.35) we get a bound of λ2

∫
f2
xη. Therefore there exists AV0 such that the commutator

is bounded below by

AV0

∫
r≤1

ϕ′′0
(
λ3f2 + λ2f2

x

)
. (2.36)

Taking A0 = max
{
AI0, A

II
0 , A

III
0 , AIV0 , AV0

}
we conclude the proof of Claim 1 using (2.25), (2.29),

(2.31), (2.34) and (2.36). Notice that a bound of λ
∫
ϕ′′0(fxx)2 is also obtained.
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