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ALMOST GLOBAL EXISTENCE

FOR 2-D INCOMPRESSIBLE ISOTROPIC ELASTODYNAMICS

ZHEN LEI, THOMAS C. SIDERIS, AND YI ZHOU

Abstract. We consider the Cauchy problem for 2-D incompressible isotropic
elastodynamics. Standard energy methods yield local solutions on a time in-
terval [0, T/ϵ] for initial data of the form ϵU0, where T depends only on some
Sobolev norm of U0. We show that for such data there exists a unique so-
lution on a time interval [0, exp T/ϵ], provided that ϵ is sufficiently small.
This is achieved by careful consideration of the structure of the nonlinear-
ity. The incompressible elasticity equation is inherently linearly degenerate in
the isotropic case; in other words, the equation satisfies a null condition. This
is essential for time decay estimates. The pressure, which arises as a Lagrange
multiplier to enforce the incompressibility constraint, is estimated in a novel
way as a nonlocal nonlinear term with null structure. The proof employs the
generalized energy method of Klainerman, enhanced by weighted L2 estimates
and the ghost weight introduced by Alinhac.

1. Introduction

The long-time behavior of elastic waves for isotropic incompressible materials
is studied in 2-D. The equations of incompressible elastodynamics display a lin-
ear degeneracy in the isotropic case; i.e., the equation inherently satisfies a null
condition. By taking advantage of this structure, we prove that the 2-D incom-
pressible isotropic nonlinear elastic system is almost globally well-posed for small
initial data. More precisely, we prove that for initial data of the form ϵU0, there
exists a unique solution for a time interval [0, exp(T (U0)/ϵ)], where T (U0) depends
only on a certain weighted Sobolev norm of the U0.

To place our result in context, we review a few highlights from the existence
theory of nonlinear wave equations and elastodynamics. The initial value problem
for small solutions of 3-D quasilinear wave equations with quadratic nonlinearities
is almost globally well-posed [11], and in general this is sharp [8]. If, in addition, the
nonlinearity satisfies the null condition, global existence was shown independently
in [4] using conformal compactification and in [14] using the generalized energy
method. The generalized energy method of Klainerman can be adapted to prove
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almost global existence for certain nonrelativistic systems of 3-D nonlinear wave
equations, using scaling invariance to get weighted L2-estimates, as was first done
in [15]. This approach was subsequently developed to obtain global existence under
the null condition in [32]; see also [34] for a different method. A unified treatment
for obtaining weighted L2 estimates for certain hyperbolic systems appeared in [30].

The existence question is more delicate in 2-D because, even with the null condi-
tion, quadratic nonlinearities have critical decay. A series of articles considered the
case of cubically nonlinear equations satisfying the null condition; see for example
[6, 12, 21]. Alinhac [2] was the first to establish global existence for null bilinear
forms. His argument combines vector fields with what he called the ghost energy
method, but crucially it also relies on finite propagation speed through a certain
Hardy-type inequality.

The long-time existence theory for isotropic elastodynamics largely follows the
paradigm of nonlinear wave equations. Almost global existence of small displace-
ment solutions for 3-D compressible elastodynamics was first shown in [10], and
counterexamples to global existence appeared in [9, 33]. The almost global exis-
tence proof was simplified considerably in [15] by enhancing the vector field ap-
proach with a new weighted L2 estimate based on scaling invariance to compensate
for the absence of Lorentz invariance. In [27], it was first noticed that there was
a null structure compatible with the system of isotropic elastodynamics which can
be used to establish global existence of small displacement solutions in 3-D. More
comprehensive versions of this result appeared in [1, 28]. Compressible isotropic
elastodynamics (in free space) is characterized by two wave families: fast pressure
waves and slower shear waves. The aforementioned null condition limits the self-
interaction of pressure waves. The equations possess an inherent null structure
for shear waves. Thus, in the incompressible case where pressure waves are not
present, it is plausible to expect global existence of small displacement solutions in
3-D without an additional null condition assumption, although the absence of finite
propagation speed presents an obstacle. Nevertheless, this intuition was confirmed
in [29, 31].

Our method for proving almost global existence for incompressible isotropic elas-
todynamics in 2-D is based on the ideas of [31], with three new ingredients: the
treatment of the pressure term, the reliance on the structure of the nonlinear terms
to obtain weighted L2 estimates, and the use of the ghost weight in combination
with the energy estimates. The equations are written as a first-order system with
constraints whose unknowns are the material space-time gradient of the deforma-
tion, expressed in spatial coordinates (Section 2). The advantage of this choice
is that the Lagrange multiplier which enforces the incompressibility constraint ap-
pears as a pressure gradient.

The generalized energy method forms the backbone of the argument. This en-
ables control in L2(R2) of derivatives of the solution with respect to the vector
fields which arise as infinitesimal generators corresponding to the fundamental in-
variance of the equations under translation, rotation, and scaling. This invariance
gives rise to the basic commutation identities for the vector fields (Section 4). The
rotational vector field yields |x|−1/2 spatial decay by means of Sobolev-type in-
equalities (Section 3), which is weaker than the fully Lorentz invariant case. Using
scaling invariance, the spatial decay is improved to t−1/2 time decay in L∞(R2) by
means of a series of weighted estimates for the gradient of the solution which follow
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from an algebraic manipulation of the equations and the constraints. This algebraic
procedure (which is an implementation of the method of [30]) allows control of the
solution gradient in L2(R2) with the weight (t− |x|)−1, and it also gives t−1 decay
in L2(R2) of certain special quantities (Sections 6, 8). For small energy solutions,
the weighted estimates are closed by a bootstrapping argument (Section 7) which
relies on the structure of the nonlinear terms (unlike 3-D). The pressure gradient
is estimated as a solution of a nonlinear Poisson equation (Section 5). The nonlin-
earities of this elliptic equation have a null structure. Thus, the pressure term is
essentially treated in a novel way as a nonlocal null form. This absence of finite
propagation speed prevents us from achieving global existence because the Hardy-
type inequality for functions of compact support used in [2] is not available. Energy
estimates are performed using the ghost weight of [2] (Section 9) which provides a
convenient solution to the technical problem that the weighted estimates hold only
for the solution gradient.

Finally, the general isotropic case is easily treated by our method since it can be
regarded as a higher order nonlinear correction to the Hookean case (Section 10).

Before ending the introduction, let us mention some related works on viscoelas-
ticity, where there is viscosity in the momentum equation. In 2-D, the global well-
posedness with near equilibrium states is due to [22] (see also [20]), and in 3-D to [3]
and [19], independently. The initial boundary value problem is considered in [23];
the compressible case can be found in [7, 26]. For more results near equilibrium,
readers are referred to [5,24,25,35,36]. In [16] a class of large solutions in two space
dimensions is established via the strain-rotation decomposition (which is based on
earlier results in [17] and [18]). In all of these works, the initial data is restricted
by the viscosity parameter. The work [13] was the first to establish global existence
for 3-D incompressible viscoelastic materials uniformly in the viscosity parameter.

2. Preliminaries and main results

Classically, the motion of an elastic body is described as a second-order evolu-
tion equation in Lagrangian coordinates. In the incompressible case, the equations
are more conveniently written as a first-order system with constraints in Euler-
ian coordinates. We start with a time-dependent family of orientation-preserving
diffeomorphisms x(t, ·), 0 ≤ t < T . Material points X in the reference configu-
ration are deformed to the spatial positions x(t, X) at time t. Derivatives with
respect to the spatial coordinates will be written as (∂t,∇) = ∂. Let X(t, x) be the
corresponding reference map: X(t, ·) is the inverse of x(t, ·).

Lemma 2.1. Given a family of deformations x ∈ C2([0, T ) × R2; R2), define the
velocity and deformation gradient as follows:

v(t, x) =
dx(t, X)

dt

∣∣∣
X=X(t,x)

, F (t, x) =
∂x(t, X)

∂X

∣∣∣
X=X(t,x)

.

Then for (t, x) ∈ [0, T ) × R2, we have

∂tF + v · ∇F = ∇vF,(2.1)

Fmj∂mFik = Flk∂lFij ;(2.2)

and if x(t, X) is incompressible, that is, detF (t, x) ≡ 1, then

(2.3) ∇ · v = ∂ivi = 0 and (∇ · F⊤)j = ∂iFij = 0.
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Proof. The equations (2.1), (2.2) express the commutativity of material derivates
DtDXj = DXj Dt, DXj DXk = DXkDXj in spatial coordinates. The second state-
ment follows from Nanson’s formula. Details are given in [19]. !

Here and in what follows, we use the summation convention over repeated indices.
The identities (2.2) and (2.3) will be used frequently in the sequel.

The next lemma shows that we can recover the family of deformations from the
first order system (2.1), given consistent initial data for F .

Lemma 2.2. Let F0 ∈ C1(R2; M2×2). Suppose that F0 satisfies (2.2), det F0(x) >
0, and ∥F0 − I∥C1 ≪ 1. Assume that

v ∈ C1([0, T ) × R2; R2), F ∈ C1([0, T ) × R2; R2 ⊗ R2)

satisfy (2.1) with F (0, x) = F0(x). Then there exists a family of deformations
x ∈ C2([0, T ) × R2; R2) such that

F (t, x(t, X)) =
∂x(t, X)

∂X
.

If, in addition, detF0(x) = 1 and ∇ ·v = 0, then x(t, ·) is an incompressible family.

Proof. Since F0(x) is invertible, we may define H(x) = F0(x)−1. We claim that H
is the gradient of a deformation. By assumption, F0 satisfies (2.2). Multiply this by
HaiHjbHkc, sum over repeated indices, and use the fact that H∂mF0+∂mHF0 = 0,
for any derivative. This leads to the equations ∂kHij = ∂jHik. So if

ϕ(x) =

∫ 1

0
H(sx)x ds,

then ϕ ∈ C2(R2; R2) and ∂jϕi = Hij . Since ∥F0 − I∥C1 ≪ 1, we have that
∥∂ϕ− I∥C1 = ∥H − I∥C1 ≪ 1. It follows that ϕ is a deformation.

Let x(t, X) be the flow of the vector field v(t, x) with initial data x(0, X) =
ϕ−1(X). Then x(t, X) is a family of deformations and by (2.1) we see that

d

dt
[Dx(t, X) − F (t, x(t, X))] = ∇v(t, x(t, X))[Dx(t, X)− F (t, x(t, X))]

and

[Dx(t, X) − F (t, x(t, X))]
∣∣∣
t=0

= Dϕ−1(X) − F0(ϕ
−1(X))

= Dϕ−1(X) − (∂ϕ)−1(ϕ−1(X)) = 0.

The first statement follows by uniqueness.
Setting J(t, X) = detF (t, x(t, X)), we have that

DtJ(t, X) = ∇ · v(t, x(t, X))J(t, X).

So if ∇ · v = 0 and J(0, X) = 1, we get that J(t, X) = 1; i.e. x(t, X) is an
incompressible family. !

To best illustrate our methods and ideas, we shall first consider the equations
of motion for incompressible Hookean elasticity, which corresponds to the Hookean
strain energy function W (F ) = 1

2 |F |2:

(2.4)

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + v · ∇v + ∇p = ∇ · (FF⊤),

∂tF + v · ∇F = ∇vF,

∇ · v = 0, ∇ · F⊤ = 0.
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As will be seen in Section 10, where the case of general energy function is discussed,
there is no essential loss of generality in considering this simplest case. Since the
3-D case has been treated in [29, 31], below we will focus on 2-D.

Denote the rotation operator by

Ω = x2∂1 − x1∂2 = x⊥ · ∇

and the scaling operator by

S = t∂t + x1∂1 + x2∂2 = t∂t + r∂r, S0 = r∂r.

We shall frequently use the decomposition

(2.5) ∇ = (x/r)∂r + (x⊥/r2)Ω.

As in previous works, we define
⎧
⎪⎪⎨

⎪⎪⎩

Ω̃f = Ωf, ∀ scalar f,

Ω̃v = Ωv + (e2 ⊗ e1 − e1 ⊗ e2)v, ∀ v ∈ R2,

Ω̃G = ΩG + [(e2 ⊗ e1 − e1 ⊗ e2), G], ∀ G ∈ R2 ⊗ R2,

where [A, B] = AB − BA denotes the standard Lie bracket product.
Let Γ be any of the following differential operators:

(2.6) Γ ∈ {∂t, ∂1, ∂2, Ω̃, S}.

Define the generalized energy by

(2.7) Ek(t) =
∑

|α|≤k

(
∥Γαv(t, ·)∥2

L2 + ∥ΓαG(t, ·)∥2
L2

)
.

We also define the weighted energy norm

(2.8) Xk(t) =
∑

|α|≤k−1

(
∥⟨t − r⟩∇Γαv∥L2 + ∥⟨t − r⟩∇ΓαG∥L2

)
,

in which we denote ⟨σ⟩ =
√

1 + σ2.
To describe the space of the initial data, we introduce

Λ = {∇, S0,Ω}

and

Hk
Λ = {f :

∑

|α|≤k

∥Λαf∥L2 < ∞}.

Then we define

Hk
Λ(T ) = {(v, G) : [0, T ) → R2 × (R2 ⊗ R2) : (v, G) ∈

k⋂

j=0

Cj([0, T ); Hk−j
Λ }

with the norm

sup
0≤t<T

Ek(t)1/2.
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The main result of this paper is

Theorem 2.3. Let (v0, G0) ∈ Hk
Λ, with k ≥ 5. Suppose that (v0, F0) = (v0, I +G0)

satisfy the constraints (2.2), (2.3) and ∥(v0, G0)∥Hk
Λ

< ϵ.
There exist two positive constants C0 and ϵ0 which depend only on k such that

if ϵ ≤ ϵ0, then the system of incompressible Hookean elastodynamics (2.4) with
initial data (v0, F0) = (v0, I + G0) has a unique solution (v, F ) = (v, I + G), with
(v, G) ∈ Hk

Λ(T ), T ≥ exp(C0/ϵ) and Ek(t) ≤ (10ϵ)2, for 0 ≤ t < T .

3. L∞ estimates

In this section we derive several weighted L∞ −L2 Sobolev imbedding inequali-
ties. These will be useful in proving decay of solutions in L∞.

Lemma 3.1. For all radial functions f ∈ H1(R2), λ = 1, 2, there hold

rλ|f(r)|2 " ∥rλ−1∂rf∥2
L2 + ∥f∥2

L2 ,(3.1)

r⟨t − r⟩λ|f(r)|2 " ∥⟨t − r⟩∂rf∥2
L2 + ∥⟨t − r⟩λ−1f∥2

L2 ,(3.2)

provided that the right-hand side is finite.

Proof. It suffices to show the lemma for radial f ∈ C1
0 (R2) and then use a comple-

tion argument.
The first inequality is shown as follows:

rλ|f(r)|2 = −rλ
∫ ∞

r
∂ρ[|f(ρ)|2]dρ

= −rλ
∫ ∞

r
2f(ρ)∂rf(ρ)dρ

"
∫ ∞

r
ρλ−1|f(ρ)||∂rf(ρ)|ρdρ

" ∥rλ−1∂rf∥L2∥f∥L2 .

The calculation for the other inequality is similar:

r⟨t − r⟩λ|f(r)|2 = −r

∫ ∞

r
∂ρ[⟨t − ρ⟩λ|f(ρ)|2]dρ

" r

∫ ∞

r
[⟨t − ρ⟩λ|f(ρ)||∂rf(ρ)| + ⟨t − ρ⟩λ−1|f(ρ)|2]dρ

"
∫ ∞

r
[⟨t − ρ⟩2|∂rf(ρ)|2 + ⟨t − ρ⟩2(λ−1)|f(ρ)|2]ρdρ

= ∥⟨t − r⟩∂rf∥2
L2 + ∥⟨t − r⟩λ−1f∥2

L2 .

!

The next lemma is just the Sobolev imbedding theorem H1 ↪→ L∞ on the circle
S1.

Lemma 3.2. For each x = rω ∈ R2 and f(rω) ∈ H1(S1), there holds

|f(rω)|2 "
∑

a=0,1

∫

S1

|Ωaf(rω)|2dσ.
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Proof. Write ω = (cos θ, sin θ). We have

|f(rω)|2 = |f(rω)|2 cos2 θ + |f(rω)|2 sin2 θ

=

∫ θ

π
2

d

dφ

[
|f(r cosφ, r sinφ)|2 cos2 φ

]
dφ

+

∫ θ

0

d

dφ

[
|f(r cosφ, r sinφ)|2 sin2 φ

]
dφ

"
∫

S1

[|Ωf(rω)||f(rω)| + |f(rω)|2]dσ,

from which the result follows by the Cauchy-Schwarz inequality. !

These two results combine to yield

Lemma 3.3. For all f ∈ H2(R2), λ = 1, 2, there hold

rλ|f(x)|2 "
∑

a=0,1

∥rλ−1∂rΩ
af∥2

L2 + ∥Ωaf∥2
L2 ,(3.3)

r⟨t − r⟩λ|f(x)|2 "
∑

a=0,1

[∥⟨t − r⟩∂rΩ
af∥2

L2 + ∥⟨t − r⟩λ−1Ωaf∥2
L2 ],(3.4)

provided the right-hand side is finite.

Proof. First apply Lemma 3.2 to the left-hand side, then apply Lemma 3.1 to the
integrand. !

Remark. The estimates of Lemma 3.3 hold in the vector- and matrix-valued cases
using Ω̃ in place of Ω. This can be seen by applying Lemma 3.3 component-wise
and then using the fact that, for example, |Ωv| ≤ |Ω̃v| + |v|, for vectors v.

Remark. The case λ = 2 in (3.4) will be applied only to derivatives ∇f .

Lemma 3.4. For all f ∈ H2(R2), there holds

⟨t⟩∥f∥L∞(r≤⟨t/2⟩) "
∑

|α|≤2

∥⟨t − r⟩∂αf∥L2 ,

provided the right-hand side is finite.

Proof. Let ϕ ∈ C∞
0 satisfy ϕ(s) = 1 for s ≤ 1, ϕ(s) = 0 for s ≥ 3/2. Note

that ⟨t⟩ " ⟨t − r⟩ on supp ϕ(r/⟨t/2⟩). Thus, for |x| ≤ ⟨t/2⟩, we have by Sobolev
imbedding H2(R2) ↪→ L∞(R2) that

⟨t⟩|f(x)| = ⟨t⟩ϕ(r/⟨t/2⟩)|f(x)|
" ⟨t⟩∥ϕ(r/⟨t/2⟩)f∥H2

" ⟨t⟩
∑

|α|≤2

∥∂αf∥L2(r≤ 3
2 ⟨t/2⟩)

"
∑

|α|≤2

∥⟨t − r⟩∂αf∥L2 .

!

Remark. This result will only be applied to derivatives ∇f .
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4. Commutation

Write F = I + G. For any multi-index α, we have the following commutation
properties when applying Γα to the equation (2.4) (see, for instance, [13, 31] for
details). This will be essential in all of the subsequent estimations:

(4.1)

⎧
⎪⎪⎨

⎪⎪⎩

∂tΓαv −∇ · ΓαG = −∇Γαp + fα,

∂tΓαG −∇Γαv = gα,

∇ · Γαv = 0, ∇ · ΓαG⊤ = 0,

where

(4.2)

⎧
⎪⎨

⎪⎩

fα =
∑

β+γ=α
[−Γβv · ∇Γγv + ∇ · (ΓγGΓβG⊤)],

gα =
∑

β+γ=α
[−Γβv · ∇ΓγG + ∇ΓγvΓβG].

From (2.2), we also have

(4.3) ∇⊥ · ΓαG = hα,

where

(4.4) (hα)i =
∑

β+γ=α

[
ΓβGm1∂mΓγGi2 − ΓβGm2∂mΓγGi1

]
.

5. Bound for the pressure gradient

The following lemma shows that the pressure gradient may be treated as a non-
linear term. The first estimate appeared in [31]. The second is a novel refinement
which saves one derivative over the first bound and which allows us to exploit the
null structure. This is essential in Section 9 when we estimate the ghost weighted
energy.

Lemma 5.1. Let (v, F ) = (v, I +G), (v, G) ∈ Hk
Λ(T ), solve the equation (2.4) and

the constraint (2.2). Then we have

∥∇Γαp∥L2 " ∥fα∥L2 ,(5.1)

∥∇Γαp∥L2 "
∑

i

∑

β + γ = α
|β| ≤ |γ|

∥∂jΓ
βviΓ

γvj − ∂jΓ
βGikΓ

γGjk∥L2 ,(5.2)

for all |α| ≤ k − 1.

Proof. Taking the divergence of the first equation of (4.1) and then using the con-
straints given in the third equation of (4.1), we find

∆Γαp = ∇ · fα + ∇ · (∇ · ΓαG) − ∂t∇ · Γαv = ∇ · fα.
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By (4.2) and the constraint equations in (4.1), we have

∇ · fα = −
∑

β+γ=α

∂i∂j(Γ
βviΓ

γvj − ΓβGikΓ
γGjk)

= −
∑

β + γ = α
|β| ≤ |γ|

∂i∂j(Γ
βviΓ

γvj − ΓβGikΓ
γGjk)

−
∑

β + γ = α
|β| > |γ|

∂i∂j(Γ
βviΓ

γvj − ΓβGikΓ
γGjk)

= −
∑

β + γ = α
|β| ≤ |γ|

∂i(∂jΓ
βviΓ

γvj − ∂jΓ
βGikΓ

γGjk)

−
∑

β + γ = α
|β| > |γ|

∂j(Γ
βvi∂iΓ

γvj − ΓβGik∂iΓ
γGjk).

The result now follows since

∇Γαp = ∆−1∇(∇ · fα)

and since ∆−1∇⊗∇ is bounded in L2. !

6. Estimates for special quantities, I

Lemma 6.1. Suppose that (v, F ) = (v, I +G), (v, G) ∈ Hk
Λ(T ), solves (2.4), (2.2).

Define

Lk =
∑

|α|≤k

[|Γαv| + |ΓαG|]

and

(6.1) Nk =
∑

|α|≤k−1

[t|fα| + t|gα| + (t + r)|hα| + t|∇Γαp|].

Then for all |α| ≤ k − 1,

r|∂rΓ
αv · ω| " Lk(6.2)

r|∂rΓ
αG⊤ω| " Lk(6.3)

r|∂rΓ
αGω −∇ · ΓαG| " Lk(6.4)

r|∂rΓ
αGω⊥| " Lk + Nk(6.5)

(t ± r)|∇Γαv ± ∇ · ΓαG ⊗ ω| " Lk + Nk.(6.6)

Proof. By the decomposition (2.5) we have

(6.7) ∇Γαv = ∂rΓ
αv ⊗ ω +

1

r
ΩΓαv ⊗ ω⊥.

Taking the trace of this identity yields

∇ · Γαv = ∂rΓ
αv · ω +

1

r
ΩΓαv · ω⊥,
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and so, by the divergence-free velocity constraint of (4.1), we obtain (6.2). It also
follows from (6.7) that

(6.8) r|∇Γαv − ∂rΓ
αv ⊗ ω| " Lk,

which will be used shortly in proving (6.6).
Again by (2.5), we may write for any matrix-valued function H:

∂rH = ∂rH I(6.9)

= ∂rH[ω ⊗ ω + ω⊥ ⊗ ω⊥]

= ∂rHω ⊗ ω + ∂rHω⊥ ⊗ ω⊥

= [∇ · H − 1

r
ΩHω⊥] ⊗ ω + [∇⊥ · H +

1

r
ΩHω] ⊗ ω⊥.

Multiplying both sides of (6.9) times the vector ω, we obtain

∂rHω = ∇ · H − 1

r
ΩHω⊥.

Apply this to H = ΓαG⊤, and use the other divergence-free constraint from (4.1).
We thereby obtain

(6.10) r|∂rΓ
αG⊤ω| = |ΩΓαG⊤ω⊥| " Lk,

which is (6.3).
Next, apply (6.9) to H = ΓαG and use the constraint (4.3):

r∇ · ΓαG ⊗ ω − r∂rΓ
αG = ΩΓαGω⊥ ⊗ ω − [rhα + ΩΓαGω] ⊗ ω⊥.

From this it follows that

r|∇ · ΓαG − ∂rΓ
αGω| = r|[∇ · ΓαG ⊗ ω − ∂rΓ

αG]ω| = |ΩΓαGω⊥| " Lk,

proving (6.4), and also

(6.11) r|∇ · ΓαG ⊗ ω − ∂rΓ
αG| " Lk + Nk.

As an immediate consequence of this last inequality, we get

r|∂rΓ
αGω⊥| = r|[∇ · ΓαG ⊗ ω − ∂rΓ

αG]ω⊥| " Lk + Nk,

which proves (6.5). We are now ready to prove (6.6).
Using the PDEs (4.1) and the definition S = t∂t + r∂r, we can write

t∇Γαv + r∂rΓ
αG = SΓαG − tgα,

t∇ · ΓαG + r∂rΓ
αv = SΓαv − tfα + t∇Γαp.

This is rearranged as follows:

t∇Γαv + r∇ · ΓαG ⊗ ω = r[∇ · ΓαG ⊗ ω − ∂rΓ
αG] + SΓαG − tgα,

t∇ · ΓαG ⊗ ω + r∇Γαv = r[∇Γαv − ∂rΓ
αv ⊗ ω] + [SΓαv − tfα + t∇Γαp] ⊗ ω.

Notice that by (6.8) and (6.11), the right-hand sides of these identities are bounded
by Lk + Nk. Therefore, the bounds (6.6) result from the combination of these two
identities. !

Lemma 6.2. Let (v, G) ∈ Hk
Λ(T ). Then for |α| ≤ k − 2, we have

∥rΓαv · ω∥L∞ + ∥rΓαG⊤ω∥L∞ " E1/2
|α|+2.
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Proof. We shall make use of the fact that

(6.12) Ω(v(x) · ω) = (Ω̃v(x)) · ω, Ω̃(G(x)⊤ω) = (Ω̃G(x))⊤ω, ω = x/r,

by the scalar, vectorial, and matricial definitions of Ω̃ in Section 2.
By (3.3) with λ = 2 and (6.12), we have

∥rΓαv · ω∥L∞ + ∥rΓαG⊤ω∥L∞

"
∑

a=0,1

[∥r∂rΩ
a(Γαv · ω)∥L2 + ∥r∂rΩ̃

a(ΓαG⊤ω)∥L2

+ ∥Ωa(Γαv · ω)∥L2 + ∥Ω̃a(ΓαG⊤ω)∥L2 ]

=
∑

a=0,1

[∥r(∂rΩ̃
aΓαv) · ω∥L2 + ∥r∂r(Ω̃

aΓαG⊤)ω∥L2

+ ∥(Ω̃aΓαv) · ω∥L2 + ∥(Ω̃aΓαG⊤)ω∥L2 ].

The result now follows by (6.2), (6.3). !

7. Weighted L2 estimate

In this section, we show that the weighted norm is controlled by the energy for
small solutions.

Lemma 7.1. Suppose that (v, F ) = (v, I +G), (v, G) ∈ Hk
Λ(T ), k ≥ 4, solves (2.4),

(2.2). Then

∥Nk(t)∥L2 " Ek(t) + Ek(t)1/2Xk(t).

Proof. By (6.1) and Lemma 5.1, we have that

∥Nk(t)∥L2 ≤
∑

|α| ≤ k − 1

[t∥∇Γαp(t)∥L2 + t∥fα(t)∥L2 + t∥gα(t)∥L2 + ∥(t + r)hα(t)∥L2 ]

"
∑

|α| ≤ k − 1

[t∥fα(t)∥L2 + t∥gα(t)∥L2 + ∥(t + r)hα(t)∥L2 ].

In estimating these terms, we shall consider two regions: r ≤ ⟨t/2⟩ and r ≥ ⟨t/2⟩.

Estimates of nonlinearities for r ≤ ⟨t/2⟩. Examining definitions (4.2), (4.4),
we find that

∑

|α| ≤ k − 1

[t∥fα∥L2(r≤⟨t/2⟩) + t∥gα∥L2(r≤⟨t/2⟩) + ∥(t + r)hα∥L2(r≤⟨t/2⟩)]

"
∑

β + γ = α
|α| ≤ k − 1

⟨t⟩∥(|Γβv| + |ΓβG|)(|∇Γγv| + |∇ΓγG|)∥L2(r≤⟨t/2⟩).

To simplify the notation a bit, we shall write

|(Γkv,ΓkG)| =
∑

|α|≤k

[|Γαv| + |ΓαG|]
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(and similar). We make use of the fact that since β+γ = α, |α| ≤ k−1, and k ≥ 4,
either |β| + 2 ≤ k or |γ| + 3 ≤ k. Thus, we have by Lemma 3.4:

⟨t⟩∥(|Γβv| + |ΓβG|)(|∇Γγv| + |∇ΓγG|)∥L2(r≤⟨t/2⟩)

"⟨t⟩∥(Γk−2v,Γk−2G)∥L∞∥(∇Γk−1v,∇Γk−1G)∥L2(r≤⟨t/2⟩)

+ ⟨t⟩∥(Γkv,ΓkG)∥L2∥(∇Γk−3v,∇Γk−3G)∥L∞(r≤⟨t/2⟩)

"∥(Γk−2v,Γk−2G)∥L∞∥⟨t − r⟩(∇Γk−1v,∇Γk−1G)∥L2(r≤⟨t/2⟩)

+ ∥(Γkv,ΓkG)∥L2

∑

|λ|≤2

∥⟨t − r⟩∂λ(∇Γk−3v,∇Γk−3G)∥L2

"Ek(t)1/2Xk(t).

Estimates of nonlinearities for r ≥ ⟨t/2⟩. Using (2.5), we replace all derivatives
which occur in (4.2), (4.4) by their radial and angular parts. We find that

|fα| + |gα| + |hα| "
∑

β + γ = α
|α| ≤ k − 1

(|Γβv · ω| + |ΓβG⊤ω|)(|∂rΓ
γv| + |∂rΓ

γG|)

+
∑

β + γ = α
|α| ≤ k − 1

(|Γβv| + |ΓβG|)1

r
(|ΩΓγv| + |ΩΓγG|).

Thus, we obtain

(7.1)
∑

|α|≤k−1

[t∥fα∥L2(r≥⟨t/2⟩) + t∥gα∥L2(r≥⟨t/2⟩) + ∥(t + r)hα∥L2(r≥⟨t/2⟩)]

"
∑

β + γ = α
|α| ≤ k − 1

∥r(|Γβv · ω| + |ΓβG⊤ω|)(|∂rΓ
γv| + |∂rΓ

γG|)∥L2(r≥⟨t/2⟩)

+
∑

β + γ = α
|α| ≤ k − 1

∥(|Γβv| + |ΓβG|)(|ΩΓγv| + |ΩΓγG|)∥L2(r≥⟨t/2⟩).

We claim that all terms on the right-hand side of (7.1) can be bounded by Ek.
Consider the term in the first sum which has β = α, γ = 0. It can be estimated

as follows:

∥r(|Γαv · ω|+|ΓαG⊤ω|)(|∂rv| + |∂rG|)∥L2(r≥⟨t/2⟩)

"
(

sup
r≥⟨t/2⟩

r2

∫

S1

(|Γαv(rω) · ω|2 + |ΓαG⊤(rω)ω|2)dσ
)1/2

(7.2)

×
(∫ ∞

⟨t/2⟩
sup
S1

(|∂rv(rω)|2 + |∂rG(rω)|2)rdr

)1/2

.

Using (3.1) with λ = 2 from Lemma 3.1, the first of these integrals is bounded by

∥r∂rΓ
αv · ω∥L2 + ∥r∂rΓ

αG⊤ω∥L2 + ∥Γαv∥L2 + ∥ΓαG∥L2 .

Noticing the form of the first two terms, we can use (6.2), (6.3) to bound this by

E1/2
|α|+1 ≤ E1/2

k .
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The second integral in (7.2) is bounded as follows using Lemma 3.2:

∑

a=0,1

(∥Ωa∂rv∥L2 + ∥Ωa∂rG∥L2) " E1/2
2 .

This proves that the term in (7.2) is bounded by Ek, as claimed.
For the remaining terms in the first sum in (7.1), we have β ̸= α. We estimate

these as follows:

(7.3) ∥r(|Γβv · ω| + |ΓβG⊤ω|)(|∂rΓ
γv| + |∂rΓ

γG|)∥L2(r≥⟨t/2⟩)

" (∥rΓβv · ω∥L∞ + ∥rΓβG⊤ω∥L∞)(∥∂rΓ
γv∥L2 + ∥∂rΓ

γG∥L2).

The terms in L∞ are estimated by E1/2
|β|+2, using Lemma 6.2, and thus, since |β| ≤

|α| − 1 ≤ k − 2, the expression (7.3) is bounded by

E1/2
|β|+2E

1/2
|γ|+1 " Ek.

Altogether, the first sum of terms in (7.1) is bounded by Ek.
The second group of terms on the right of (7.1) is also bounded by Ek, using

the same strategy as in the case r ≤ ⟨t/2⟩. !

Lemma 7.2. Suppose that (v, G) ∈ Hk
Λ(T ) and (v, F ) = (v, I + G) solves (2.4),

(2.2). Then for |α| ≤ k − 1, there holds

∥(t − r)∇ΓαG∥L2 " Ek(t)1/2 + ∥(t − r)∇ · ΓαG∥L2 + ∥(t + r)hα∥L2 .

Proof. For any R2 ⊗ R2-valued function H, we have that

|∇H|2 − [|∇ · H|2 + |∇⊥ · H|2] = −2[∂1(Hi1∂2Hi2) − ∂2(Hi1∂1Hi2)].

Thus, using integration by parts and Young’s inequality, we get

∥(t − r)∇H∥2
L2 −

[
∥(t − r)∇ · H∥2

L2 + ∥(t − r)∇⊥ · H∥2
L2

]

= −
∫

2(t − r)2[∂1(Hi1∂2Hi2) − ∂2(Hi1∂1Hi2)]dx

= −
∫

4(t − r)[ω1(Hi1∂2Hi2) − ω2(Hi1∂1Hi2)]dx

≤ 1

2
∥(t − r)∇H∥2

L2 + C∥H∥2
L2 ,

and so we obtain

∥(t − r)∇H∥2
L2 " ∥(t − r)∇ · H∥2

L2 + ∥(t − r)∇⊥ · H∥2
L2 + ∥H∥2

L2 .

The lemma follows by applying this inequality to H = ΓαG and then using (4.3).
!

Theorem 7.3. Suppose that (v, F ) = (v, I + G), (v, G) ∈ Hk
Λ(T ), k ≥ 4, solves

(2.4), (2.2). If Ek(t) ≪ 1, then Xk(t) " Ek(t)1/2.
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Proof. Starting with definition (2.8) and using the fact that ⟨t − r⟩ ≤ 1 + |t − r|,
we obtain from Lemma 7.2:

X2
k "

∑

|α|≤k−1

[∥⟨t − r⟩∇Γαv∥2
L2 + ∥⟨t − r⟩∇ΓαG∥2

L2 ]

" Ek +
∑

|α|≤k−1

[∥(t − r)∇Γαv∥2
L2 + ∥(t − r)∇ΓαG∥2

L2 ]

" Ek +
∑

|α|≤k−1

[∥(t − r)∇Γαv∥2
L2 + ∥(t − r)∇ · ΓαG∥2

L2 + ∥Nk∥2
L2 ].

Since

∇Γαv =
1

2
[∇Γαv + ∇ · ΓαG ⊗ ω] +

1

2
[∇Γαv −∇ · ΓαG ⊗ ω]

and

∇ · ΓαG =
1

2
[∇Γαv + ∇ · ΓαG ⊗ ω]ω − 1

2
[∇Γαv −∇ · ΓαG ⊗ ω]ω,

we see that

|t − r| [|∇Γαv| + |∇ · ΓαG|]
" |t + r| |∇Γαv + ∇ · ΓαG ⊗ ω| + |t − r| |∇Γαv −∇ · ΓαG ⊗ ω|.

It follows from (6.6) that

∥(t − r)∇Γαv∥2
L2 + ∥(t − r)∇ · ΓαG∥2

L2 " Ek + ∥Nk∥2,

and thus we obtain
Xk " E1/2

k + ∥Nk∥L2 .

Then applying Lemma 7.1, we get

Xk " E1/2
k + Ek + E1/2

k Xk(t).

Under the assumption that Ek ≪ 1, we obtain

Xk " E1/2
k + Ek " E1/2

k .

!

8. Estimates for special quantities, II

With the results of the previous section in hand, we can now complete the
estimation of Γαv + ΓαGω and ΓαGω⊥.

Lemma 8.1. Let k ≥ 4, Ek ≪ 1, ω = x/|x|. Then we have

∥r(∂rΓ
αv + ∂rΓ

αGω)∥L2 + ∥r∂rΓ
αGω⊥∥L2 " E1/2

k , |α| ≤ k − 1,(8.1)

∥r(Γαv + ΓαGω)∥L∞ + ∥rΓαGω⊥∥L∞ " E1/2
k , |α| ≤ k − 2.(8.2)

Proof. First, note that

∂rΓ
αv + ∂rΓ

αGω = (∇Γαv + ∇ · ΓαG ⊗ ω)ω + (∂rΓ
αGω −∇ · ΓαG).

Therefore, by (6.4) and (6.6), we have

r|∂rΓ
αv + ∂rΓ

αGω|
≤ (r + t)|∇Γαv + ∇ · ΓαG ⊗ ω| + r|∂rΓ

αGω −∇ · ΓαG|
" Lk + Nk.
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Combining this with (6.5), we get the estimate

∥r(∂rΓ
αv + ∂rΓ

αGω)∥L2 + ∥r∂rΓ
αGω⊥∥L2 ≤ E1/2

k + ∥Nk∥L2 .

Estimate (8.1) now follows by Lemma 7.1 and Theorem 7.3.
To obtain the other estimate, we observe that (similar to (6.12))

(8.3) Ω̃(ΓαGω) = (Ω̃ΓαG)ω, Ω̃(ΓαGω⊥) = (Ω̃ΓαG)ω⊥.

By (3.3) with λ = 2, (8.3), (8.1), we have

∥r(Γαv + ΓαGω)∥L∞ + ∥rΓαGω⊥∥L∞

"
∑

a=0,1

[∥r(∂rΩ̃
aΓαv + ∂rΩ̃

aΓαGω)∥L2 + ∥Ω̃aΓαv + Ω̃aΓαGω∥L2

+ ∥r∂rΩ̃
aΓαGω⊥∥L2 + ∥Ω̃aΓαGω⊥∥L2 ] " E1/2

k .

!

9. Energy estimate with a ghost weight

We are ready to estimate the generalized energy and prove Theorem 2.3. Recall
the assumptions that (v0, G0) ∈ Hk

Λ, with k ≥ 5, that (v0, F0) = (v0, I + G0)
satisfy the constraints (2.2), (2.3), and that ∥(v0, G0)∥Hk

Λ
< ϵ ≤ ϵ0, where ϵ0 is a

sufficiently small positive constant to be chosen below. The local well-posedness
of the elasticity system is standard (by the energy method), which gives that the
system of incompressible Hookean elastodynamics (2.4) with initial data (v0, F0) =
(v0, I +G0) has a unique solution (v, F ) = (v, I +G), with (v, G) ∈ Hk

Λ(T ), at least
for a short time T > 0. Moreover, by continuity, we may assume that

(9.1) ∥(v, G)∥Hk
Λ(T ) = sup

0≤t<T
Ek(t)1/2 ≤ 10ϵ.

We are going to show that if (9.1) holds on an interval [0, T ), with T ≤ exp(C0/ϵ)
for a certain positive constant C0, then

sup
0≤t<T

Ek(t)1/2 ≤
√

10ϵ.

Thus, the existence interval on which (9.1) holds includes the interval [0, exp(C0/ϵ)].
Assume that we have a solution for which (9.1) holds on an interval [0, T ) and

ϵ ≤ ϵ0 ≪ 1. Choose ϵ0 small enough so that all lemmas established in earlier
sections hold. We are going to prove the following a priori estimate:

Ẽ′
k(t) ≤ C1(1 + t)−1Ẽk(t)3/2, e−

π
2 Ek(t) ≤ Ẽk(t) ≤ Ek(t), 0 ≤ t < T.

This estimate gives the desired conclusion:

E(t) ≤ e
π
2 Ẽk(t) ≤ e

π
2
(
Ẽk(0) + C1(10ϵ)3 ln(1 + t)

)

≤ 5ϵ2
(
1 + C1103ϵ ln(1 + T )

)
< 10ϵ2,

provided T < exp(C0/ϵ), with C0 = 1/(2 · 103 · C1), and ϵ ≤ ϵ0 ≪ 1.
We now proceed to establish the required a priori estimate.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8190 ZHEN LEI, THOMAS C. SIDERIS, AND YI ZHOU

Choose q = q(t−r), with q(σ) =
∫ σ
0 ⟨z⟩−2dz so that q′(σ) = ⟨σ⟩−2 and |q(σ)| ≤ π

2 .
Let |α| ≤ k. Taking the inner product of the first and second equation in (4.1) with
e−qΓαv and e−qΓαG respectively and then adding them up, we find

∫ (
e−q∂t(|Γαv|2 + |ΓαG|2) − 2e−q(Γαvi∂jΓ

αGij + ΓαGij∂jΓ
αvi)

)
dx

= −2

∫
e−qΓαv · ∇Γαpdx + 2

∫
e−q(fα · Γαv + (gα)ijΓ

αGij)dx.

Integration by parts gives that

d

dt

∫
e−q(|Γαv|2 + |ΓαG|2)dx(9.2)

= −
∫

e−q
[
∂tq(|Γαv|2 + |ΓαG|2) − 2∂jqΓ

αviΓ
αGij

]
dx

− 2

∫
e−qΓαv · ∇Γαpdx

+ 2

∫
e−q(fα · Γαv + (gα)ijΓ

αGij)dx

= −
∫

e−q

⟨t − r⟩2
(
|Γαv + ΓαGω|2 + |ΓαGω⊥|2

)
dx

− 2

∫
e−qΓαv · ∇Γαpdx

+ 2

∫
e−q

[
fα · Γαv + (gα)ijΓ

αGij

]
dx.

We emphasize that here we do not use integration by parts in the term involving
pressure. We also point out that we cannot use the approach of Lemma 7.1 to
estimate the nonlinear terms because we now have that |α| ≤ k rather than |α| ≤
k − 1 as we had earlier.

Let us first treat the last term in (9.2). Recall that fα and gα are given by (4.2).
Since v and G⊤ are divergence-free, we get

∫
e−q

[
fα · Γαv + (gα)ijΓ

αGij

]
dx(9.3)

=
∑

β + γ = α
γ ̸= α

∫
e−qΓαvi

[
∂jΓ

γGikΓ
βGjk − Γβvj∂jΓ

γvi

]
dx

+
∑

β + γ = α
γ ̸= α

∫
e−qΓαGik

[
∂jΓ

γviΓ
βGjk − Γβvj∂jΓ

γGik

]
dx

+
1

2

∫
e−q∂j

[
2ΓαviΓ

αGikGjk − vj(|Γαv|2 + |ΓαG|2)
]
dx.

To estimate the last term in (9.3), we first compute that
∫

e−q∂j

[
2ΓαviΓ

αGikGjk − vj(|Γαv|2 + |ΓαG|2)
]
dx

= −
∫
⟨t − r⟩−2e−q

[
2ΓαviΓ

αGikGjkωj − (|Γαv|2 + |ΓαG|2)vjωj

]
dx.
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This is estimated by

(∥⟨t − r⟩−2v · ω∥L∞ + ∥⟨t − r⟩−2G⊤ω∥L∞)Ek(t).

Now by Lemma 6.2, we have

∥⟨t − r⟩−2v · ω∥L∞ ≤ ∥⟨t − r⟩−2v · ω∥L∞(r≤⟨t/2⟩) + ∥⟨t − r⟩−2v · ω∥L∞(r≥⟨t/2⟩)

" ⟨t⟩−2∥v∥L∞(r≤⟨t/2⟩) + ∥v · ω∥L∞(r≥⟨t/2⟩)

" ⟨t⟩−2∥v∥L∞(r≤⟨t/2⟩) + ⟨t⟩−1∥rv · ω∥L∞(r≥⟨t/2⟩)

" ⟨t⟩−1E1/2
k .

A similar estimate holds for the term with G⊤ω. We have shown that the last term
in (9.3) is bounded by ⟨t⟩−1E3/2

k .
Next, we are going to estimate the first and second terms on the right-hand side

of (9.3). Since k ≥ 5, it is always the case that |γ| ≤ k − 1 and either |β| ≤ k − 2
or |γ| ≤ k − 3. For r < ⟨t/2⟩, we use Lemma 3.4 and Theorem 7.3 to get

∑

β + γ = α
γ ̸= α

∣∣∣
∫

r<⟨t/2⟩

e−qΓαvi

[
∂jΓ

γGikΓ
βGjk − Γβvj∂jΓ

γvi

]
dx(9.4)

+

∫

r<⟨t/2⟩

e−qΓαGik

[
∂jΓ

γviΓ
βGjk − Γβvj∂jΓ

γGik

]
dx

∣∣∣

" ⟨t⟩−1Ek(t)1/2
(
∥⟨t − r⟩(∇Γk−1v,∇Γk−1G)∥L2(r<⟨t/2⟩)

· ∥(Γk−2v,Γk−2G)∥L∞

+ ∥⟨t⟩(∇Γk−3v,∇Γk−3G)∥L∞(r<⟨t/2⟩)∥Γk(v, G)∥L2

)

" ⟨t⟩−1Ek(t)1/2
(
Xk(t)1/2Ek(t)1/2

)
" ⟨t⟩−1Ek(t)3/2.

For r > ⟨t/2⟩, we write using (2.5):

∑

β + γ = α
γ ̸= α

∣∣∣
∫

r>⟨t/2⟩

e−qΓαvi

[
∂jΓ

γGikΓ
βGjk − Γβvj∂jΓ

γvi

]
dx

(9.5)

+

∫

r>⟨t/2⟩

e−qΓαGik

[
∂jΓ

γviΓ
βGjk − Γβvj∂jΓ

γGik

]
dx

∣∣∣

≤
∑

β + γ = α
γ ̸= α

∣∣∣
∫

r>⟨t/2⟩

e−qΓαvi

[
ωj∂rΓ

γGikΓ
βGjk − Γβvjωj∂rΓ

γvi

]
dx

+

∫

r>⟨t/2⟩

e−qΓαGik

[
ωj∂rΓ

γviΓ
βGjk − Γβvjωj∂rΓ

γGik

]
dx

∣∣∣ +

∫

r>⟨t/2⟩

Rαdx

=
∑

β + γ = α
γ ̸= α

∣∣∣
∫

r>⟨t/2⟩

e−q
〈
(Γαv,ΓαG), B[(Γβv,ΓβG), (∂rΓ

γv, ∂rΓ
γG)]

〉
dx

∣∣∣

+

∫

r>⟨t/2⟩

Rαdx,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8192 ZHEN LEI, THOMAS C. SIDERIS, AND YI ZHOU

in which

B[(v1, G1), (v2, G2)] =
(
G2G

⊤
1 ω − (v1 · ω)v2, v2 ⊗ G⊤

1 ω − (v1 · ω)G2

)

and

|Rα| " 1

r

∑

β + γ = α
γ ̸= α

|(Γαv,ΓαG)| |(Γβv,ΓβG)| |(Ω̃Γγv, Ω̃ΓγG)|.

To analyze the structure of these terms when r > ⟨t/2⟩, we decompose vec-
tor/matrix pairs (v, G) as

(v, G) =
1∑

k=−1

Πk(v, G),

Π1(v, G) = 1
2 ((v + Gω), (v + Gω) ⊗ ω),

Π−1(v, G) = 1
2 ((v − Gω),−(v − Gω) ⊗ ω),

Π0(v, G) = (0, Gω⊥ ⊗ ω⊥).

We have the following cancellations:

B[Πk(v1, G1),Πk(v2, G2)] = 0, k = ±1,

B[Π0(v1, G1),Πk(v2, G2)] = 0, k = ±1,

B[Πk(v1, G1),Π0(v2, G2)] = 0, k = ±1.

In particular, there is no self-interaction of the “bad” quantity Π−1. Thus, we have

B[(v1, G1), (v2, G2)] = B[Π1(v1, G1),Π−1(v2, G2)]

+ B[Π−1(v1, G1),Π1(v2, G2)] + B[Π0(v1, G1),Π0(v2, G2)].

The conclusion of this discussion is that the terms in (9.5) are bounded by
∑

β + γ = α
γ ̸= α

∫

r>⟨t/2⟩
|(Γαv,ΓαG)|

{
|Γβv + ΓβGω| |(∂rΓ

γv, ∂rΓ
γG)|

+ |(Γβv,ΓβG)| |∂rΓ
γv + ∂rΓ

γGω|
+ |(Γβv,ΓβG)| |∂rΓ

γGω⊥|

+
1

r
|(Γβv,ΓβG)| |(Ω̃Γγv, Ω̃ΓγG)|

}
dx

≤C∥(Γkv,ΓkG)∥L2

×
{
⟨t⟩−1∥r(Γk−2v + Γk−2Gω)∥L∞(r>⟨t/2⟩)∥(∂rΓ

k−1v, ∂rΓ
k−1G)∥L2

+ ⟨t⟩−1/2∥Γ
kv + ΓkGω

⟨t − r⟩ ∥L2

· ∥r1/2⟨t − r⟩(∂rΓ
k−3v, ∂rΓ

k−3G)∥L∞(r>⟨t/2⟩)

+ ⟨t⟩−1∥(Γk−2v,Γk−2G)∥L∞

· ∥r|∂rΓ
k−1v + ∂rΓ

k−1Gω| + r|∂rΓ
k−1Gω⊥|∥L2(r>⟨t/2⟩)

+ ⟨t⟩−1∥(Γkv,ΓkG)∥L2

· ∥r|∂rΓ
k−3v + ∂rΓ

k−3Gω| + r|∂rΓ
k−3Gω⊥|∥L∞(r>⟨t/2⟩) + ⟨t⟩−1Ek

}
.
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By (8.2), we have that

∥r(Γk−2v + Γk−2Gω)∥L∞(r>⟨t/2⟩) " E1/2
k .

By (3.4), we obtain

⟨t⟩−1/2

∥∥∥∥
Γkv + ΓkGω

⟨t − r⟩

∥∥∥∥
L2

∥r1/2⟨t − r⟩(∂rΓ
k−3v, ∂rΓ

k−3G)∥L∞(r>⟨t/2⟩)

≤ ⟨t⟩−1/2

∥∥∥∥
Γkv + ΓkGω

⟨t − r⟩

∥∥∥∥
L2

E1/2
k .

By the conventional Sobolev imbedding, (8.1), and (8.2) we have

∥(Γk−2v,Γk−2G)∥L∞∥r|∂rΓ
k−1v + ∂rΓ

k−1Gω| + r|∂rΓ
k−1Gω⊥|∥L2 " Ek

and

∥(Γkv,ΓkG)∥L2∥r|∂rΓ
k−3v + ∂rΓ

k−3Gω| + r|∂rΓ
k−3Gω⊥|∥L∞ " Ek.

It follows, therefore, that the integral (9.3) is bounded by

µ

∥∥∥∥
Γkv + ΓkGω

⟨t − r⟩

∥∥∥∥
2

L2

+ Cµ⟨t⟩−1E3/2
k ,

for an arbitrarily small µ > 0.
It remains to treat the pressure term in (9.2). However, thanks to (5.2), this

term is handled exactly as the preceding ones.
Finally, we gather our estimates for (9.2) to get

Ẽ′
k(t) +

∥∥∥∥
Γkv + ΓkGω

⟨t − r⟩

∥∥∥∥
2

L2

≤ µ

∥∥∥∥
Γkv + ΓkGω

⟨t − r⟩

∥∥∥∥
2

L2

+ Cµ⟨t⟩−1E3/2
k ,

with

Ẽk(t) =
∑

|α|≤k

∫
e−q(|Γαv|2 + |ΓαG|2)dx.

Notice that e−
π
2 Ek(t) ≤ Ẽk(t) ≤ Ek(t). We obtain, for µ small, the a priori bound

Ẽ′
k(t) ≤ C1⟨t⟩−1Ẽk(t)3/2, 0 ≤ t < T.

As discussed at the beginning of the section, this implies that Ek(t) remains
bounded by 10ϵ2 on a time interval of order T ∼ exp(C0/ϵ).

10. General isotropic elastodynamics

For general isotropic elastodynamics, the energy functional has the form W =
W (F ) with

(10.1) W (F ) = W (QF ) = W (FQ)

for all rotation matrices: Q = Q⊤, det Q = 1. The first relation is due to frame
indifference, while the second one expresses the isotropy of materials. This implies
that W depends on F through the principal invariants of FF⊤, namely tr FF⊤

and det FF⊤ in 2-D. Setting τ = 1
2 tr FF⊤ and δ = det F = (detFF⊤)1/2, we

may assume that W (F ) = W̄ (τ, δ), for some smooth function W̄ : R+ ×R+ → R+.
Since

∂τ

∂F
= F and

∂δ

∂F
= δF−T ,
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the Piola-Kirchhoff stress has the form

S(F ) ≡ ∂W (F )

∂F
= W̄τ (τ, δ) F + W̄δ(τ, δ)δF

−T .

We assume that the reference configuration is stress free, S(I) = 0, so that

(10.2) W̄τ (1, 1) + W̄δ(1, 1) = 0.

The Cauchy stress tensor is

T (F ) ≡ δ−1S(F )F⊤ = δ−1W̄τ (τ, δ)FF⊤ + W̄δ(τ, δ)I,

and the term ∇ · FF⊤ in (2.4) is replaced by ∇ · T (F ). Let us now proceed to
examine this term.

Write

T (F ) =W̄τ (1, 1)FF⊤

+ [δ−1W̄τ (τ, δ) − W̄τ (1, 1)][FF⊤ − I]

+ [δ−1W̄τ (τ, δ) − W̄τ (1, 1) + W̄δ(τ, δ)]I

≡
3∑

a=1

Ta(F ).

Assume that

(10.3) W̄τ (1, 1) > 0.

Then T1(F ) gives rise to a Hookean term. Notice that assumption (10.3) rules out
the hydrodynamical case W̄τ = 0. The principal invariants can be expanded about
the identity as follows:

(10.4) τ =
1

2
tr FF⊤ =

1

2
tr (I + G)(I + G⊤) = 1 + tr G +

1

2
tr GG⊤

and

(10.5) δ = detF = det(I + G) = 1 + tr G + det G.

In the case of incompressible motion, we have δ = 1, so from (10.5), we get

tr G + det G = 0,

and hence from (10.4)

τ − 1 =
1

2
tr GG⊤ − det G = O(|G|2).

Thus, we see that for |G| ≪ 1,

T2(F ) = O[(τ − 1)|G|] = O(|G|3),

which produces nonlinearities which are of cubic order or higher. Finally, T3(F )
leads to a gradient term which can be included in the pressure. The conclusion
is that the general incompressible isotropic case differs from the Hookean case by
a nonlinear perturbation which is cubic in the displacement gradient G. Such
terms present no further obstacles in the proof of almost global existence in 2-D;
in particular, they have the requisite symmetry properties for energy calculations
(see [31]).
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Theorem 10.1. Let (v0, G0) ∈ Hk
Λ, with k ≥ 5. Suppose that (v0, F0) = (v0, I+G0)

satisfy the constraints (2.2), (2.3) and ∥(v0, G0)∥Hk
Λ

< ϵ.

Assume that the smooth strain energy function W (F ) is isotropic, frame indif-
ferent, and satisfies (10.2), (10.3).

There exist two positive constants C0 and ϵ0 which depend only on k such that
if ϵ ≤ ϵ0, then the system of incompressible isotropic elastodynamics

(10.6)

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + v · ∇v + ∇p = ∇ · T (F ),

∂tF + v · ∇F = ∇vF,

∇ · v = 0, ∇ · F⊤ = 0,

with initial data (v0, F0) = (v0, I + G0), has a unique solution (v, F ) = (v, I + G),
with (v, G) ∈ Hk

Λ(T ), T ≥ exp(C0/ϵ), and Ek(t) ≤ 2ϵ2, for 0 ≤ t < T .
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