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hyperbolic systems
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Abstract.

An approach to obtaining dispersive estimates for certain multi-
dimensional linear hyperbolic systems will be described. The key
result is a local energy decay estimate which provides the intermedi-
ate link between the generalized Sobolev inequality and the energy
inequality.

§1. Introduction

Dispersive estimates play a central role in the perturbative existence
theory of nonlinear hyperbolic systems. Traditionally, such estimates
are proved by means of representation formulae. The generalized energy
method offers an alternative approach in problems which possess Lorentz
invariance [2] or, as has been more recently found, Galilean invariance
[3, 4, 5, 6, 7]. The nonlinear analysis in these recent works relied heavily
on key linear estimates which establish, in an ad hoc manner, local energy
decay.

This note summarizes a unified point of view for obtaining these
local energy decay estimates. The general framework is based on sym-
metric hyperbolic systems, in combination with a system of constraint
equations. The constraints are essential because they rule out time-
independent solutions for which decay cannot hold. The other key in-
gredient is an isotropic spectral assumption on the symbol associated to
the problem, guaranteeing the existence of commuting vector fields. An
additional dissipation term can be included at no extra cost.

The main result, appearing in section 4, shows that solutions decom-
pose into individual wave families, corresponding to the eigenstates of
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the symbol. Thanks to the isotropy assumption, the characteristic cones
are standard, and the components related to the positive eigenvalues con-
centrate along these cones. This is reminiscent of the one-dimensional
picture where wave families propagate along characteristics, [1]. The
remaining components, associated to the nonpositive eigenvalues, actu-
ally decay uniformly in L2. In the anisotropic case, solutions still decay
uniformly in L2 in a region which is strictly interior to all characteristic
cones, but detailed information along the cones is lost. A detailed proof
of this result can be found in [8].

For completeness, an outline is also given for combining this result
with energy and Sobolev inequalities to obtain pointwise dispersive esti-
mates. The main point is that in the Galilean invariant case, one cannot
pass directly from L∞ to L2 via the generalized Sobolev inequality. Lo-
cal energy decay forms the intermediate link. This will be explained in
the linear context, but the utility of these estimates is best seen in non-
linear applications coming from nonlinear elastodynamics, see [6], [7].
Specific examples of relevant linearized systems appear in [8].

§2. Framework

Let V and W be finite dimensional inner product spaces over R. We
will be concerned with V-valued strong solutions u : [0, T )× Rn → V of
the linear system

(PDE1) L(∂)u− ν∆u = f with L(∂) = ∂t +A(∇), A(∇) = Ak∂k

together a system of constraints

(PDE2) B(∇)u = g with B(∇) = Bk∂k.

Here, we suppose that

Ak ∈ L(V,V), Bk ∈ L(V,W), k = 1, . . . , n

and
f : [0, T )× Rn → V, g : [0, T )× Rn →W

are functions whose required regularity will become clear below.
The first assumption is the symmetry of the coefficients of (PDE1)

as elements of L(V,V)

(A1) Ak = A∗k, k = 1, . . . , n.

Associated to the differential operators A(∇) and B(∇), define the
symbols

A(ξ) = Akξ
k and B(ξ) = Bkξ

k, ξ ∈ Rn.
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The second assumption is the nondegeneracy condition

(A2) kerB(ξ) ∩ kerA(ξ) = {0}, for every 0 6= ξ ∈ Rn.

The third assumption is a sort of isospectral condition. Assume that
there exist smooth maps taking the identity to the identity1 such that

V : SO(Rn) → SO(V) and W : SO(Rn) → L(W,W)

such that for every ξ ∈ Rn and R ∈ SO(Rn)

(A3) A(Rξ) = V (R)A(ξ)V (R)∗

and

(A4) B(Rξ) = W (R)B(ξ)V (R)∗.

We will see momentarily that these assumptions imply that, in a certain
sense, the system is isotropic and that there exists a useful collection of
commuting vector fields.

§3. Basic consequences of the assumptions

Here we list several useful and important properties implied by the
assumptions (A1)-(A4).

Isospectral property

Lemma 1. The spectrum of A(ω) is real and independent of ω ∈
Sn−1. The nonzero eigenvalues of A(ω) occur in plus/minus pairs.

Invariance property

Lemma 2. For any smooth function u : Rn → V and any R ∈
SO(Rn), the following hold

A(∇)[V (R)u(R∗x)] = V (R)[A(∇)u](R∗x),

B(∇)[V (R)u(R∗x)] = W (R)[B(∇)u](R∗x),

∆[V (R)u(R∗x)] = V (R)[∆u](R∗x).

1In typical applications these maps are homomorphisms.
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Vector fields
Let {ei}n

i=1 be the standard basis on Rn, and define the anti-symmetric
maps

Sij = ei ⊗ ej − ej ⊗ ei 1 ≤ i < j ≤ n.

Then Rij(τ) = exp(τSij) is a smooth one-parameter family in SO(Rn).
It is natural to consider the vector fields arising as the infinitesimal
generators of the invariants

d

dτ
V (Rij(τ))u(Rij(τ)∗x)|τ=0 = Ωiju(x) + Ziju(x) ≡ Ω̃iju(x),

where Ωij = xi∂j − xj∂i are the standard angular momentum operators
(note that we have used the fact that V (I) = I) and

Zij =
d

dτ
V (Rij(τ))|τ=0 ∈ L(V,V).

Further, we define

Yij =
d

dτ
W (Rij(τ))|τ=0 ∈ L(W,W).

We shall also make use of the scaling vector field

S = t∂t + r∂r.

Commutation properties
Lemma 3. If u is a sufficiently regular solution to (PDE1),(PDE2),

then
[L(∂)− ν∆]Ω̃iju = Ω̃ijf

and
B(∇)Ω̃iju = (Ωij + Yij)g.

In addition, for any positive integer p,

[L(∂)− ν∆]Spu = (S + 1)pf −
p−1∑
j=0

(−1)p−j

(
p

j

)
ν∆Sju,

and
B(∇)Spu = (S + 1)pg.

This result combined with the energy method allows for the estima-
tion of these derivatives in L2, see Lemma 6.
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Spectral projections
Let {λβ} denote the distinct eigenvalues of A(ω). For each ω ∈

Sn−1, let Pβ(ω) ∈ L(V,V) be the orthogonal projection onto the eigenspace
of A(ω) corresponding to the eigenvalue λβ .

Lemma 4. The orthogonal projections Pβ(ω) are smooth functions
of ω = x/|x| on Sn−1 which satisfy the commutation property [Ω̃ij ,Pβ(ω)] =
0.

Plane waves
Consider a plane wave solution of the operator L(∂):

u(t, x) = φ(〈ω, x〉 − λβt)ψβ(ω),

in which ψβ(ω) is an eigenvector of A(ω) for λβ . Our assumptions imply
that the propagation speed λβ is independent of the direction of propa-
gation ω and that a rotation R of the propagation direction produces a
corresponding rotation V (R) of the eigenspace of the polarization vector
ψβ(ω). In this sense, the system is isotropic.

If the eigenvalue λβ = 0, then the plane wave solution is stationary.
This solution does not satisfy the homogeneous version of the constraint
equation thanks to the nondegeneracy condition (A2).

§4. Dispersive estimates

From now on, we regard the projections {Pβ(ω)} onto the eigenspaces
of A(ω) as homogeneous functions of degree zero on Rn, by setting
ω = x/|x|.

Weighted L2-inequality
Theorem 1. Let n ≥ 2 and j = 1, . . . , n. Assume that conditions

(A1) and (A2) hold. There are positive constants α and C, depending
on the coefficients Ak and Bk, such that all sufficiently regular solutions
of (PDE1), (PDE2) satisfy the estimate

αt‖∂ju‖L2({r≤αt},V) + (νt)1/2‖∇u‖L2(Rn,V) + νt‖∆u‖L2(Rn,V)

≤ C‖u‖L2(Rn,V) + ‖Su‖L2(Rn,V) + t‖f‖L2(Rn,V) + t‖g‖L2(Rn,W).

If, in addition, conditions (A3), (A4) hold, then

‖(λβt− r)Pβ∂ju‖L2({r≥αt},V)

≤ C
[
‖Ω̃u‖L2(Rn,V) + ‖u‖L2(Rn,V)

]
+ ‖Su‖L2(Rn,V) + t‖f‖L2(Rn,V),
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and

‖rB(ω)∂ju‖L2({r≥αt},W)

≤ C
[
‖Ω̃u‖L2(Rn,V) + ‖u‖L2(Rn,V)

]
+ ‖rg‖L2(Rn,W).

Although it is elementary, the proof will not be given. The interested
reader can consult [7]. Nevertheless, here is the key step:

Lemma 5. Let n ≥ 2. Suppose that conditions (A1) and (A2) hold.
All sufficiently regular solutions of (PDE1) satisfy the estimate

‖(tA(∇)− r∂r)u‖2
L2(Rn,V)

+ (n− 2)νt‖∇u‖2
L2(Rn,V) + (νt)2‖∆u‖2

L2(Rn,V)

≤ ‖Su− tf‖2
L2(Rn,V).

Proof of Lemma 5. Using the definition of S, we may rewrite (PDE1)
as

tA(∇)u− r∂ru− νt∆u = −Su+ tf.

Taking the L2-norm of both sides, this immediately gives

‖tA(∇)u− r∂ru‖2
L2(Rn,V)

+ 2〈r∂ru− tA(∇)u, νt∆u〉L2(Rn,V) + ‖νt∆u‖2
L2(Rn,V)

≤ ‖Su− tf‖2
L2(Rn,V).

Thanks to the symmetry of the coefficient matrices, we find using inte-
gration by parts that

〈A(∇)u,∆u〉L2(Rn,V) = 〈Ak∂ku,∆u〉L2(Rn,V) = 0.

Again using integration by parts, we can rewrite the remaining cross
term as follows:

2〈r∂ru,νt∆u〉L2(Rn,V)

=2νt〈xj∂ju,∆u〉L2(Rn,V)

=− 2νt〈xj∂j∂ku, ∂ku〉L2(Rn,V) − 2νt〈∂ku, ∂ku〉L2(Rn,V)

=nνt〈∂ku, ∂ku〉L2(Rn,V) − 2νt〈∂ku, ∂ku〉L2(Rn,V)

=(n− 2)νt〈∂ku, ∂ku〉L2(Rn,V)

=(n− 2)νt‖∇u‖2
L2(Rn,V).

Q.E.D.
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The proof of Theorem 1 proceeds by extracting the relevant infor-
mation from the first quantity on the left in Lemma 5.

Higher-order estimates
Let Γ = (Γ1, . . . ,Γq) denote the collection of q = n+ 1 +n(n− 1)/2

vector fields ∂j , S, Ω̃ij . Let a = (a1, . . . , am) be an m-tuple in {1, . . . , q}.
We denote by Γa the mth-order operator Γa1 · · ·Γam .

We define the
generalized energy norm

‖u(t)‖2
s =

∑
|a|≤s

‖Γau(t)‖2
L2(Rn,V),

and we also define the weighted L2 quantity

Xs[u(t)] =
n∑

j=1

∑
|a|≤s−1

{
‖〈t+ r〉P0(·)∂jΓau(t, ·)‖L2(Rn,V)

+
∑

λβ 6=0

‖〈λβt− r〉Pβ(·)∂jΓau(t, ·)‖L2(Rn,V)

}
.

We emphasize that the V-inner product is used in the construction of
these norms.

For W-valued functions the s-norm is defined analogously using
derivatives Γ′ = (∂j , S,Ωij + Yij).

Theorem 1 and Lemma 3 imply

Corollary 1. Let n ≥ 2. Assume that conditions (A1)-(A4) hold.
Then all sufficiently regular solutions of (PDE1), (PDE2) satisfy

Xs[u(t)] . ‖u(t)‖s + t‖f(t)‖s + t‖g(t)‖s.

Energy estimate
Lemma 6. Assume that conditions (A1)-(A4) hold. Then all suf-

ficiently regular solutions of (PDE1), (PDE2) satisfy

‖u(t)‖2
s +

∫ t

0

ν‖∇u(τ)‖2
s dτ

. ‖u(0)‖2
s +

∑
|a|≤s

∫ t

0

|〈Γaf(τ),Γau(τ)〉L2(Rn,V)| dτ.

This follows by the standard energy method for symmetric systems,
Lemma 3, and induction on the number of “S” derivatives.
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From Lemma 6 and Corollary 1, we deduce the inequality

(?) Xs[u(t)] . ‖u(0)‖s +
∫ t

0

‖f(τ)‖sdτ + t[‖f(t)‖s + ‖g(t)‖s].

Sobolev inequality

Here we quote a result in three dimensions. The proof follows from
the method in Lemmas 4.1 and 4.2 in [3] and Proposition 3.3 in [5].

Lemma 7. For n = 3, |a|+ 3 ≤ s, u : [0, T )× R3 → V,

〈r〉〈t+ r〉|P0(ω)∂jΓau(t, x)|V

+
∑

λβ 6=0

〈r〉〈λβt− r〉|Pβ(ω)∂jΓau(t, x)|V . Xs[u(t)].

In combination with (?), this gives precise pointwise decay for so-
lutions in the homogeneous case, for example. In nonlinear situations,
more work is required, but the same basic strategy can be used.
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