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Abstract. The motion of incompressible and ideal fluids is stud-
ied in the plane. The stability in L1 of circular vortex patches is
established among the class of all bounded vortex patches of equal
strength without any restriction on the size of the initial pertur-
bation.

For planar incompressible and ideal fluid flow, the theory of Yudovich
[9] establishes global well-posedness of the initial value problem with
initial vorticity in L1(R2) ∩ L∞(R2). Because vorticity is transported
in 2d, it remains constant along particle trajectories. If Φt is the flow
map, then the vorticity is given by ω(t, Φt(y)) = ω(0, y), for all t > 0
and y ∈ R2. When the initial vorticity is a patch of unit strength,
represented by the indicator (characteristic) function IΩ0 of a bounded
open set Ω0 ⊂ R2, the resulting vorticity is IΩt , with Ωt = Φt(Ω0). In
the special case when Ω0 is equal to a ball B, the patch is stationary,
Φt(B) = B, for all t > 0. Theorem 3, our main result, gives the stability
in L1(R2) of any circular patch within the class of all bounded vortex
patches of equal strength. No restriction is placed on the L1 distance
of the perturbation to the ball, and the flow region is not limited to a
bounded domain, but rather is the entire space R2.

Wan and Pulvirenti [8] were the first to study stability of vortex
patches in L1. They considered the case where the flow was contained
in a bounded region, and their key estimate, (J), required the initial
perturbation to be close to a circular patch in L1. Our analog of the
inequality, given in Lemma 2, removes this assumption. Weaker stabil-
ity results were given by Saffman [7] and Dritschel [4]. These authors
control the measure of the symmetric difference of two patches through
a convenient integral, and this idea is incorporated into our argument
in Lemma 1.
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Stability in L1 does not imply that the boundaries of the two patches
remain close in any metric. Indeed, numerical simulations give strong
evidence of fingering and filamentation, see [1, 3]. Spreading of vorticity
may also occur. The best upper bound for the growth rate of the patch
diameter is O(t log t)1/4 given in [5], see also [6]. Nevertheless, in spite
of the fact that the patch geometry may be complicated, smoothness
of smooth patch boundaries persists for all time, see [2].

For any bounded open set A ⊂ R2, denote its mass, momentum, and
moment of inertia by

|A| =
∫

A

dx, M(A) =

∫
A

x dx, and i(A) =

∫
A

|x|2dx,

respectively. Our arguments depend heavily upon the fact that these
three quantities are conserved in time when A = Ωt is a patch moving
with the flow.

Lemma 1. If A ⊂ R2 is any bounded open set, then

i(A)− |A|2

2π
− |M(A)|2

|A|
≥ 0.

Equality holds if and only if the set A is a ball.

Proof. For any ball Br(x0) = {x ∈ R2 : |x − x0| < r}, introduce the
quantity

(1) Q = Q(A; Br(x0)) =

∫
A4Br(x0)

∣∣|x− x0|2 − r2
∣∣ dx,

in which A4Br(x0) = (A\Br(x0))∪(Br(x0)\A) denotes the symmetric
difference. Note that Q ≥ 0 and Q = 0 if and only if A = Br(x0).

The quantity Q can also be written as

Q =

∫
A

(|x− x0|2 − r2) dx +

∫
Br(x0)

(r2 − |x− x0|2) dx,

since the portions of these two integrals over the set A∩Br(x0) cancel.
Now, we can expand the first integral in Q and compute the second

to obtain

Q = i(A)− 2x0 ·M(A) + (|x0|2 − r2)|A|+ π

2
r4.

A rearrangement of terms gives

(2) Q = i(A)− |A|2

2π
− |M(A)|2

|A|
+

1

2π

(
πr2 − |A|

)2
+|A|

∣∣∣∣x0 −
M(A)

|A|

∣∣∣∣2 .
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This last expression is minimized by choosing Br(x0) with the same
mass and center of mass as A:

|Br(x0)| = πr2 = |A| and x0 =
M(A)

|A|
.

With this choice, the Lemma now follows. �

Lemma 2. If B = Br(0), then for any bounded open set A,

‖IA − IB‖2
L1 ≤ 4π Q(A; B) ≤ 4π sup

A4B

∣∣|x|2 − r2
∣∣ ‖IA − IB‖L1 ,

in which Q(A; B) is defined by (1).

Proof. Using the identity (2) and then Lemma 1, we have for any
bounded open set A′,

(|A′| − |B|)2 = (|A′| − πr2)2 ≤ 2π Q(A′; B).

Application of this inequality with A′ = A ∪ B and A′ = A ∩ B yields
the first part of the Lemma as follows

‖IA − IB‖2
L1 = (|A \B|+ |B \ A|)2

≤ 2|A \B|2 + 2|B \ A|2

= 2(|A ∪B| − |B|)2 + 2(|A ∩B| − |B|)2

≤ 4π [Q(A ∪B; B) + Q(A ∩B; B)]

= 4π Q(A; B).

The second half of the Lemma follows directly from the definition of
Q(A; B) given in (1). �

Theorem 3. Let B = Br(0). Then for any bounded open set Ω0 ⊂ R2,
we have that

‖IΩt − IB‖2
L1 ≤ 4π sup

Ω04B

∣∣|x|2 − r2
∣∣ ‖IΩ0 − IB‖L1 ,

for all t > 0.

Proof. The identity (2) shows that the quantity Q(Ωt; B) depends only
on conserved quantities, and it is therefore also conserved. Thus, we
have that Q(Ωt; B) = Q(Ω0; B), for all t > 0, and so the result follows
from Lemma 2. �
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