
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

GLOBAL AND ALMOST GLOBAL
EXISTENCE OF SMALL SOLUTIONS TO A
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NEARLY NULL NONLINEAR TERMS
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Abstract. The existence of global small O(ε) solutions to quadratically non-
linear wave equations in three space dimensions under the null condition is
shown to be stable under the simultaneous addition of small O(ν) viscous dis-
sipation and O(δ) non-null quadratic nonlinearities, provided that εδ/ν � 1.
When this condition is not met, small solutions exist “almost globally”, and in
certain parameter ranges, the addition of dissipation enhances the lifespan.
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1. Introduction. We shall be concerned with the nonlinear PDE

∂2
t ϕ−∆ϕ− ν∂t∆ϕ =

3∑
α,β=0

3∑
`=1

C`α,β∂αϕ∂`∂βϕ, (t, x) ∈ R+ × R3, (1.1)

in which ∂0 = ∂t, ∂` = ∂x`
, ` = 1, 2, 3, and R+ = [0,∞). Greek indices will

always range from 0 to 3 and Latin indices from 1 to 3. Hereafter, we shall employ
the summation convention. The viscosity parameter will be assumed to satisfy
0 < ν ≤ 1. The equation (1.1) serves as a simplified, dimensionless model for
viscoelasticity.

In Theorem B of [8], Ponce proved that the initial value problem for (1.1) has a
unique, global, strong solution for initial data that is sufficiently small. His argu-
ment is based on the dissipative properties of the linear equation, and although he
does not quantify it, the size of the initial data must be small relative to the viscos-
ity parameter. On the other hand, in the hyperbolic case ν = 0, when the nonlinear
terms satisfy the Klainerman null condition, there exist global small solutions, see
[5], [1]. One would expect this result to be stable under viscous perturbations, and
moreover, based on Ponce’s result one also expects that the introduction of small
viscosity would allow a simultaneous nonlinear perturbation from the null condition.
However, proving this requires the by no means routine adaptation of hyperbolic
methods to dissipative equations such as (1.1).

The main result of this paper, Theorem 4.1, shows that these suppositions do
indeed hold. We define a parameter δ which measures the deviation of the non-
linearity from being null, and we quantify the limitation on the size of the initial
data, roughly ν/δ, leading to global existence. We also obtain in Theorem 4.3 lower
bounds for the lifespan of solutions in cases where our global existence result does
not hold. In the hyperbolic case, it is well-known that the lifespan T (ε) of small so-
lutions of size ε satisfies an “almost global” lower bound of the form [T (ε)]ε ≥ C > 1,
see [3], [4]. We show that dissipative effects can improve the almost global lifespan
of the hyperbolic case if the viscosity ν is large enough relative to the size of the
data.

These results require decay estimates which are uniform with respect to ν, given
in Sections 8 and 9. The derivation of the decay estimates extends the weighted L2

approach, introduced in [6] and refined in [10], to the case of partial dissipation, at
the expense of introducing space-time weighted norms. To implement the method of
[10], it is helpful to reformulate the problem as a first order system, and this is done
in the next section. The decay estimates are coupled with energy estimates based
on the translational, rotational, and scaling vector fields, derived for two distinct
energy levels in Sections 10 and 11. The energy estimates are also nonstandard
insofar as occurrences of the scaling vector field are indexed separately because the
linear equation is not scaling invariant. A short discussion of local existence is
provided in Section 12, for completeness.

There is an extensive literature on existence of solutions to dissipative wave equa-
tions in three space dimensions. However, the authors are aware of only one other
work, [7], with uniformity in the viscosity parameter. There the underlying nonlin-
ear hyperbolic system is Hamiltonian with a positive definite conserved energy, and
the nonlinearity is bounded at infinity. It is possible to use the dissipation to es-
tablish local well-posedness in spaces of low regularity and to prove global existence
for large data.
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2. PDEs. It is convenient to rewrite equation (1.1) in first order form. To do so,
let e0, . . . , e3 be the standard basis on R4 (viewed as column vectors), and define
the new unknowns

u = uαeα = ∂αϕeα. (2.1a)
We shall denote the spatial and space-time gradients of u as∇u and ∂u, respectively.
Thus, we have

(∇u)αk = ∂ku
α and (∂u)αβ = ∂βu

α,

as well as the relations
∂u = ∂u>. (2.1b)

We obtain from (1.1), (2.1a), (2.1b), the evolutionary system

Lu ≡ ∂tu−Aj∂ju− νB∆u = N(u,∇u), (2.2a)

together with the constraints
∂ju

k = ∂ku
j . (2.2b)

The coefficients are given by

Aj = e0 ⊗ ej + ej ⊗ e0, j = 1, 2, 3; B = e0 ⊗ e0 (2.2c)

and the nonlinearity has the form

N(u,∇u) = N0(u,∇u)e0, with N0(u,∇v) = C`α,βu
α∂`v

β . (2.2d)

Conversely, given a solution u of (2.2a)-(2.2d), we can recover a solution of ϕ of
(1.1) with ∂ϕ> = u using

ϕ(t, x) = c+

∫ 1

0

〈(t, x), u(st, sx)〉R4ds.

The system (2.2a)-(2.2d) can be written more explicitly as

∂tu
0 −∇ · ū− ν∆u0 = N0(u,∇u) (2.3a)

∂tū− (∇u0)> = 0 (2.3b)
∇∧ ū = 0, (2.3c)

in which ū = ujej is viewed as an element of R3.

3. Notation. We shall employ the vector fields

∇, Ω = x ∧∇, S = t∂t + r∂r, S0 = r∂r. (3.1)

We avoid the vector field ∂t because in order to control ∂kt u(0), the second order
operator L forces the initial data to have 2k derivatives, which clashes with the
hyperbolic case ν = 0. The Lorentz rotations x∂t + t∇ are likewise unsuitable.
Although the system (2.2a), (2.2b) is not scale invariant, it is possible to effectively
use the scaling operator S. However, its usage will be indexed separately (see the
space Xp,q and the energy Ep,q defined below). The rotational operators Ω are
modified in the usual way when used with vector-valued functions, consistent with
the rotational invariance of the linear system. Thus, we take

Ω̃i = IΩi + Zi

in which

Z1 = e2 ⊗ e3 − e3 ⊗ e2, Z2 = e3 ⊗ e1 − e1 ⊗ e3, Z3 = e1 ⊗ e2 − e2 ⊗ e1.
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This definition is dictated by the fact that

∂(Ωiϕ) = Ω̃i∂ϕ,

for scalar functions ϕ. We emphasize that these operators are vectorial, and we
use the notation (Ω̃iu)α to denote the α-th component of the vector Ω̃iu ∈ R4.
However, notice that

(Ω̃iu)0 = Ωiu
0,

and so all of the vector fields act as scalars on the 0-th component of vectors u ∈ R4.
We shall frequently rely on the decomposition

∇ = ω∂r −
ω

r
∧ Ω, ω =

x

r
, r = |x|, ∂r = ωj∂j . (3.2)

It will be convenient to use the abbreviation

Γ = {∇, Ω̃},

however, the fields S0 and S will always be tracked individually. Thus for example,
given integers 0 ≤ q ≤ p, we define the space

Xp,q = {u ∈ Hp(R3;R4) : ‖Sk0 Γau‖L2 <∞,
for all |a|+ k ≤ p, k ≤ q}.

This is a Hilbert space with the inner product

〈u, v〉Xp,q =
∑
|a|+k≤p

k≤q

〈Sk0 Γau, Sk0 Γav〉L2 .

The index p indicates the total number of allowable derivatives while the index q
limits the number of occurrences of S0 which, in practice, could be strictly less than
the total p. These spaces characterize the initial data that we shall consider, and
they may be used to establish local well-posedness for our system for appropriate
pairs (p, q), see Section 12.

Given a solution of (2.2a)-(2.2d), our main objective will be to obtain a priori
estimates for the energy

Ep,q[u](t) =
∑
|a|+k≤p

k≤q

[
1

2
‖SkΓau(t)‖2L2 + ν

∫ t

0

‖∇Sk(Γau)0(s)‖2L2 ds

]
,

for two sets of pairs (p, q), informally referred to as high and low. If u(0) = u0, it
will be convenient to write

Ep,q[u0] ≡ Ep,q[u](0) =
1

2
‖u0‖2Xp,q ,

(with a slight abuse of notation). Hidano [2] has also used energy norms with a
limitation on the scaling operator.

To get a priori bounds for the energy, it will be necessary to also obtain dispersive
estimates. These will be derived using weighted L2-estimates in two space-time
regions which we shall refer to as the interior and exterior regions.

We now define cut-off functions which determine these regions and the quantities
which in Section 9 will be shown to have good decay properties. Given a function

ψ ∈ C∞(R), ψ(s) =

{
1, s ≤ 1/2

0, s ≥ 1
, ψ′ ≤ 0, (3.3a)
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we define

ζ(t, x) = ψ

(
|x|
σ〈t〉

)
and η(t, x) = 1− ψ

(
2|x|
σ〈t〉

)
, (3.3b)

where we have used the common notation 〈t〉 = (1 + t2)1/2. The parameter σ � 1
will be chosen in Lemma 8.1. We have

ζ(t, x) =

{
1, |x| ≤ σ〈t〉/2
0, |x| ≥ σ〈t〉

and η(t, x) =

{
0, |x| ≤ σ〈t〉/4
1, |x| ≥ σ〈t〉/2

.

This is not a partition of unity. We can say that

1 ≤ ζ + η and 1− η ≤ ζ2. (3.3c)

We shall frequently rely on the property that

〈r + t〉
[
|∂ζ(t, x)|+ |∂η(t, x)|

]
. 1. (3.3d)

In the interior region, we shall derive estimates in L1(〈t〉θdt), with 0 ≤ θ ≤ 1, for
the quantities

Y int
p,q[u](t) =

∑
|a|+k≤p−1

k≤q

‖ζ∇SkΓau(t)‖2L2

and

Z int
p,q[u](t) =

∑
|a|+k≤p−1

k≤q

‖ζ∆Sk(Γau)0(t)‖2L2 ,

for q < p, see Theorem 9.1.
In the exterior region, it is critical to decompose the solution into its orthogonal

and tangential components along the light cone, Pu and Qu, respectively. These
projections are defined as follows:

Pu(t, x) =
1

2
ω̂ ⊗ ω̂ u(t, x) =

1

2

[
u0(t, x)− ω · ū(t, x)

]
ω̂ (3.4a)

Qu(t, x) = (I − P)u(t, x),

in which

ω̂ =

[
1
−ω

]
∈ R4, ω =

x

|x|
, 0 6= x ∈ R3. (3.4b)

Thanks to the fact that Ω̃jω = 0 and ∂rω = 0, we obtain

[Ω̃j ,P] = [∂r,P] = 0 and [Ω̃j ,Q] = [∂r,Q] = 0. (3.5)

The quantities to be bounded in Theorem 9.2 are

Yext
p,q [u](t) =

∑
|a|+k≤p−1

k≤q

3∑
j=1

[
‖η 〈t− r〉 P∂jSkΓau(t)‖2L2

+‖η 〈t+ r〉 Q∂jSkΓau(t)‖2L2

]
and

Zext
p,q [u](t) = t2

∑
|a|+k≤p−1

k≤q

‖η∆Sk(Γau)0(t)‖2L2 ,

again with q < p.
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Given a quadratic nonlinearity N of the form (2.2d), we associate to it a cubic
polynomial

PN (y) = C`α,βy
αyβy`, y ∈ R4.

We say that N is null if

PN (y) = 0, for all y ∈ N = {y ∈ R4 : y2
0 − y2

1 − y2
2 − y2

3 = 0},

where N is the collection of null vectors in R4.
As a final notational remark, we shall write A . B if there exists a generic

constant C, independent of the initial data and the parameters ν, ε2, δ (the lat-
ter two defined in Theorem 4.1) such that A ≤ CB. Constants may depend on
maxα,β,` |C`α,β |. The symbol O(B) denotes any quantity such that O(B) . B.

4. Main Results.

Theorem 4.1 (Global existence). Choose (p, q) such that p ≥ 11, and p ≥ q > p∗,
where p∗ =

[
p+5

2

]
. Define

δ = max{|ΩaPN (y)| : y ∈ N , ‖y‖ = 1, |a| ≤ p∗} (4.1)

and assume that δ ≤ 1.
There are positive constants C0, C1 > 1 with the property that if the initial data

u0 satisfies

C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
< ε2, (4.2a)

for some ε2 � 1, and

C3
0

(
δ

ν

)2

Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
< 1, (4.2b)

then (2.2a)-(2.2d) has a unique global solution

u ∈ C(R+;Xp,q)

with u(0, x) = u0(x),

sup
0≤t<∞

Ep,q[u](t) ≤ C1Ep,q[u0]〈t〉C1ε (4.3a)

and
sup

0≤t<∞
Ep∗,p∗ [u](t) < ε2. (4.3b)

Remarks.
• The assumption (4.2a) only requires the norm ‖u0‖Xp,q to be finite, but
‖u0‖Xp∗,p∗ must be correspondingly small.

• The parameter δ measures the deviation of the nonlinearity from the null
condition, see the remark following Lemma 5.3. If δ = 0, then (4.2a), (4.2b)
hold for all 0 < ν ≤ 1, and the existence criterion is uniform in ν, consistent
with the hyperbolic case ν = 0.

• The restriction p ≥ 11 is made so that p∗ + 3 ≤ p holds, see Proposition 11.1.
• Successive restrictions on the size of the parameter ε arise in Theorem 9.1 and

in Propositions 10.1 and 11.1. Generic constants are not permitted to depend
on ε, so it will be possible to decrease the size of ε when necessary.
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• As soon as the initial data u0 meets the criterion (4.2a) for a single sufficiently
small ε, one can take the infimum over all such ε. As a consequence, the
bounds (4.3a), (4.3b) hold with ε2 replaced by

C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
.

Outline of Proof. Given data u0 ∈ Xp,q satisfying (2.2b), it can be shown using Pi-
card iteration that the IVP for (2.2a)-(2.2d) has a local solution u ∈ C([0, T );Xp,q)
where T depends only on ‖u0‖Xp,q , and the fixed constants ν and C`α,β , see Section
12.

To establish global existence, it is enough to prove that ‖u(t)‖Xp,q remains finite.
This norm can not be directly bounded by E1/2

p,q [u](t) because the Xp,q norm is based
on S0 while E1/2

p,q [u](t) uses S. However, the norm ‖u(t)‖Xp,q can be controlled by
a function which depends only on ‖u0‖Xp,q , ‖u(t)‖Xp,0 , and T , see Section 12. By
definition,

1

2
‖u(t)‖2Xp,0 ≤ Ep,0[u](t) ≤ Ep,q[u](t).

Thus, it is enough to show that the energy Ep,q[u](t) remains finite.
Given fixed initial data u0 for which (2.2b), (4.2a), and (4.2b) hold, let T be the

set of times T ∈ (0,∞) satisfying the properties:
(P1) Equations (2.2a)-(2.2d) have a unique local solution u ∈ C([0, T );Xp,q), with

u(0) = u0, and
(P2) Ep∗,p∗ [u](t) < ε2, for 0 ≤ t < T .

If T ∈ T , then (0, T ) ⊂ T , so the set T is connected. Since C0 > 1, the local
existence result and (4.2a) imply that the set T is nonempty. The set T is relatively
closed in (0,∞).

If T ∈ T , then by Proposition 10.1 and (P2)

sup
0≤t<T

Ep,q[u](t) ≤ C1Ep,q[u0]〈T 〉C1ε <∞,

so by the local existence theorem, (P1) holds for some T ′ > T . Using the assump-
tions (4.2a), (4.2b), and (P2) with Proposition 11.1, we get

sup
0≤t<T

Ep∗,p∗ [u](t) ≤ C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
< ε2,

and so we have by continuity that (P2) holds for 0 ≤ t < T ′′, with T < T ′′ ≤ T ′.
This shows that (0, T ′′) ⊂ T , and so T is open. The nonempty connected set T is
both open and closed in (0,∞), and therefore equal to (0,∞).

Corollary 4.2. The solution given in Theorem 4.1 satisfies the estimates∫ ∞
0

〈t〉θ
[
Y int
p∗,p∗−1[u](t) + ν2Z int

p∗,p∗−1[u](t)
]
dt . ε2,

for all 0 < θ < 1, and

sup
0≤t<∞

[
Yext
p∗,p∗−1[u](t) + ν2Zext

p∗,p∗−1[u](t)
]
. ε2.

Proof. The first inequality follows from Theorem 9.1 and Proposition 10.1, and the
second follows from Theorem 9.2.

The next result establishes “almost global” existence of small solutions in the case
where the second smallness condition (4.2b) does not hold.
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Theorem 4.3 (Almost global existence). Choose (p, q) with p ≥ 11 and p ≥ q > p∗,
where p∗ =

[
p+5

2

]
. Define δ ≤ 1 by (4.1).

There are positive constants C0, C1 > 1 with the property that if the initial data
u0 satisfies (4.2a), for some ε2 � 1, then (2.2a)-(2.2d) has a unique solution

u ∈ C([0, T0);Xp,q)

with T0 defined by

C1〈T0〉C1ε =

(
2 max {ν, C1ε}
C0 δ E1/2

p∗,p∗ [u0]

)2

and

sup
0≤t<T0

Ep∗,p∗ [u](t) < ε2.

Proof. Suppose that u0 satisfies (4.2a), for ε2 � 1. Consider the set

T = {T ∈ (0, T0) : (P1) and (P2) hold}.

The set T is nonempty, connected, and closed relative to (0, T0).
If T ∈ T , then Proposition 11.2 and (4.2a) imply that

sup
0≤t<T

Ep∗,p∗ [u](t) ≤ C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
< ε2.

Thus, T is open relative to (0, T0). By connectness, T = (0, T0).

Remarks.

• The following table summarizes the results of the Theorems. The basic small-
ness restriction (4.2a) must always be enforced.

ε δ

ν
<

1

C0
Global existence (4.5a)

1

C0
<
ε δ

ν
<

δ

C1

Almost global existence with
diffusion enhanced lifespan (4.5b)

δ

C1
<
ε δ

ν
Almost global existence with
hyperbolic lifespan (4.5c)

• The cases (4.5a), (4.5b) show that diffusive effects are important when ν ≥
C1ε. The constants C0, C1, depend on max |C`α,β |, and we have not verified
that the parameter range in (4.5b) is nontrivial. In any case, it is clear from
(4.5a)–(4.5c) that the quantity εδ/ν controls the transition from global to
almost global existence.

For the remainder of the article, we assume that properties (P1) and (P2) hold.
In the following sections, we are going to establish a series of a priori estimates
culminating in Propositions 10.1, 11.1, and 11.2.
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5. Commutation. Recall the linear operator defined in (2.2a), (2.2c)

L = I∂t −Aj∂j − νB∆.

For any multi-index a and any integer k ≥ 0, we have

LSkΓau = (S + 1)kΓaLu− νB∆[Sk − (S − 1)k]Γau, (5.1a)

∇∧ SkΓaū = (S + 1)kΓa∇∧ ū. (5.1b)

The appearance of additional Laplacian terms on the right-hand side of (5.1a) re-
flects the lack of scaling invariance for the operator L.

For the nonlinear form (2.2d), we define the commutators

[∂i, N ](u,∇v) = ∂iN(u,∇v)−N(∂iu,∇v)−N(u,∇∂iv)

[(S + 1), N ](u,∇v) = SN(u,∇v)−N(Su,∇v)−N(u,∇Sv)

[Ωi, N ](u,∇v) = ΩiN(u,∇v)−N(Ω̃iu,∇v)−N(u,∇Ω̃iv).

Lemma 5.1. The nonlinear commutators satisfy the relations

[∂,N ] = [S,N ] = 0

and

[Ωi, N ](u,∇v) = C̃i,jα,βu
α∂jv

β , (5.2)

with

C̃i,jα,β = Cjλ,β(Zi)αλ + Cjα,λ(Zi)βλ + Cλα,β(Zi)jλ.

Remark. The rotationally invariant case is characterized by the conditions [Ωi, N ] =
0, i = 1, 2, 3.

The higher order commutators [(S + 1)kΓa, N ] are defined inductively, each be-
ing a nonlinear form of the type (2.2d). Of course, by Lemma 5.1 a nonlinear
commutator could be nonzero only for pure Ω̃ derivatives. Using the higher order
commutators, we have a Leibnitz-type formula:

Lemma 5.2.

(S + 1)kΓaN(u,∇v)

=
∑

a1+a2+a3=a
k1+k2=k

a!

a1! a2! a3!

k!

k1! k2!
[Γa3 , N ](Sk1Γa1u,∇Sk2Γa2v).

Remark. Here again we emphasize that [Γa3 , N ] = 0, unless the derivative Γa3

involves only Ω̃.

Lemma 5.3. For any quadratic nonlinearity of the form (2.2d)

ΩiPN (y) = P[Ωi,N ](y), i = 1, 2, 3.

If N is null, then [Ωi, N ] is also null.

Proof. We have Ω̃iy = Ωiy+Ziy = 0, for all y ∈ R4. Thus, from the chain rule and
(5.2) we obtain the first statement:

ΩiPN (y) = DyPN (y)[Ωiy] = DyPN (y)[−Ziy] = P[Ωi,N ](y).
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Suppose that N is null. The one-parameter family of rotations U(s) = exp(−sZi)
leaves the set of null vectors N invariant. Thus, for any y ∈ N , we have

0 =
d

ds
PN (U(s)y)

∣∣∣∣
s=0

= DyPN (y)[−Ziy] = P[Ωi,N ](y).

This shows that P[Ωi,N ] is also null.

Remark. If N is null, then since the operators Ωi act tangentially along N , we
have ΩaPN (y) = 0, for all a, and the parameter δ defined in Theorem 4.1 vanishes.

Lemma 5.4. For any |a| ≤ p∗, we have

〈[Ω̃a, N ](u(x),∇v(x)), w(x)〉R4

= 1
4P[Ω̃a,N ](ω̂) 〈ω̂, u(x)〉R4 〈ω̂, ∂rv(x)〉R4 w0(x) +O(R), (5.3a)

with

R =
[
|Qu(x)| |∂rv(x)|+ |u(x)| |Q∂rv(x)|+ r−1|u(x)| |Ωv(x)|

]
|w0(x)|,

and also∣∣∣ 14P[Ω̃a,N ](ω̂) 〈ω̂, u(x)〉R4 〈ω̂, ∂rv(x)〉R4 w0(x)
∣∣∣
. δ |u(x)| |∂rv(x)| |w0(x)|, (5.3b)

with δ defined in (4.1).

Proof. By (2.2d), N = N0e0, so using (3.2), we can write

〈[Ω̃a, N ](u(x),∇v(x)), w0(x)〉R4

= 〈[Ω̃a, N ](u(x), ω ⊗ ∂rv(x)), w(x)〉R4

+O
(
r−1|u(x)||Ωv(x)||w0(x)|

)
.

With the projections defined in (3.4a), (3.4b), we obtain

[Ω̃a, N ](u(x), ω ⊗ ∂rv(x)) = [Ω̃a, N ](Pu(x), ω ⊗ P∂rv(x))

+ [Ω̃a, N ](Qu(x), ω ⊗ P∂rv(x)) + [Ω̃a, N ](u(x), ω ⊗Q∂rv(x)).

The key term is

[Ω̃a, N ](Pu(x), ω ⊗ P∂rv(x)) =
1

4
P[Ω̃a,N ](ω̂)〈ω̂, u(x)〉R4〈ω̂, ∂rv(x)〉R4 ,

from which (5.3a) now easily follows.
Notice that Lemma 5.3 gives

P[Ω̃a,N ](ω̂) = ΩaPN (ω̂).

Now ω̂/
√

2 belongs to {‖y‖R4 = 1} ∩ N , so by homogeneity we have

|ΩaPN (ω̂)| ≤ 23/2δ,

and (5.3b) follows.
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6. Sobolev Inequalities.

Lemma 6.1. Suppose that u ∈ X2,0. Set r = |x|. Then

‖u‖L∞ .
∑
|a|≤2

‖∇au‖L2 (6.1a)

‖r−1u‖L2 . ‖∂ru‖L2 (6.1b)

‖r1/2u‖L∞ .
∑
|a|≤1

‖∇Ω̃au‖L2 (6.1c)

sup
|x|=r

r|u(x)| .

∑
|a|≤1

‖∂rΩ̃au‖L2(|y|≥r)
∑
|a|≤2

‖Ω̃au‖L2(|y|≥r)

1/2

. (6.1d)

Proof. The inequality (6.1a) is the standard Sobolev lemma, and (6.1b) is Hardy’s
inequality. Inequalities (6.1c) and (6.1d) were proven in Lemma 3.3 of [9].

Proposition 6.2. Suppose that u : [0, T )× R3 → R4 satisfies

Y int
2,0[u](t) + Yext

2,0 [u](t) + E2,0[u](t) <∞.
Then using the weights (3.3b), we have

‖ ζ u(t) ‖L∞ .
(
Y int

2,0[u](t)
)1/2

+ 〈t〉−1E1/2
1,0 [u](t) (6.2a)

‖ rζ ∇u(t) ‖L∞ .
(
Y int

3,0[u](t)
)1/2

+ 〈t〉−1E1/2
2,0 [u](t) (6.2b)

‖ r−1ζ u(t) ‖L2 .
(
Y int

1,0[u](t)
)1/2

+ 〈t〉−1E1/2
0,0 [u](t) (6.2c)

‖ η u(t)‖L∞ . 〈t〉−1E1/2
2,0 [u](t) (6.2d)

‖ η Qu(t)‖L∞ . 〈t〉−3/2
((
Yext

2,0 [u](t)
)1/2

+ E1/2
1,0 [u](t)

)
. (6.2e)

Proof. Using the cutoff function ψ defined in (3.3a), apply (6.1a) to ψu(t). This
produces

‖ψu(t)‖L∞ .
∑
|a|=1,2

‖∇au(t)‖L2 + ‖u(t)‖L2(|y|≤1).

We apply (6.1c) to the second integral

‖u(t)‖L2(|y|≤1) . ‖r1/2u(t)‖L∞‖r−1/2‖L2(|y|≤1) .
∑
|a|≤1

‖∇Ω̃au(t)‖L2 .

Thus, we see that
‖ψu(t)‖L∞ .

∑
|a|≤1

‖∇Γau(t)‖L2 .

On the other hand, we have using (6.1c) again

‖(1− ψ)u(t)‖L∞ . ‖r1/2u(t)‖L∞ .
∑
|a|≤1

‖∇Ω̃au(t)‖L2 .

This shows that
‖u(t)‖L∞ .

∑
|a|≤1

‖∇Γau(t)‖L2 . (6.3)

(Clearly, the same bound holds for ‖〈r〉1/2u(t)‖L∞ , but we do not need it.)
To prove (6.2a), apply (6.3) to the function ζu(t), and use (3.3d).
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Applying (6.1d) to ζ∇u(t) yields (6.2b).
The inequality (6.2c) follows by applying (6.1b) to ζu(t).
Since

〈t〉‖ηu(t)‖L∞ . ‖rηu(t)‖L∞ ,
we can get (6.2d), by applying (6.1d) to ηu(t).

Finally, we prove (6.2e). By (6.1d) applied to ηQu(t), we have

〈t〉‖ηQu(t)‖L∞ . ‖rηQu‖L∞

.

∑
|a|≤1

‖∂rΩ̃aηQu(t)‖L2

∑
|a|≤2

‖Ω̃aηQu(t)‖L2

1/2

. (6.4)

Using (3.3d) and the commutation property (3.5), we see that∑
|a|≤1

‖∂rΩ̃aηQu(t)‖L2 .
∑
|a|≤1

‖ηQ∂rΩ̃au(t)‖L2 + 〈t〉−1
∑
|a|≤1

‖QΩ̃au(t)‖L2 .

By linearity, we have Q∂r = Qωj∂j = ωjQ∂j , so∑
|a|≤1

‖ηQ∂rΩ̃au(t)‖L2 .
∑
|a|≤1

3∑
j=1

‖ηQ∂jΩ̃au(t)‖L2 . 〈t〉−1Yext
2,0 [u](t)1/2.

Since ∑
|a|≤1

‖QΩ̃au(t)‖L2 .
∑
|a|≤1

‖Ω̃au(t)‖L2 ≤ E1/2
1,0 [u](t),

we obtain the bound∑
|a|≤1

‖∂rΩ̃aηQu(t)‖L2 . 〈t〉−1(Yext
2,0 [u](t)1/2 + E1/2

1,0 [u](t)).

Noting that∑
|a|≤2

‖Ω̃aηQu(t)‖L2 =
∑
|a|≤2

‖ηQΩ̃au(t)‖L2 .
∑
|a|≤2

‖Ω̃au(t)‖L2 . E1/2
2,0 [u](t),

we deduce from (6.4)

〈t〉‖ηQu(t)‖L∞ .
(
〈t〉−1

(
Yext

2,0 [u](t)1/2 + E1/2
2,0 [u](t)

)
E1/2

2,0 [u](t)
)1/2

,

from which (6.2e) follows by Young’s inequality.

7. Calculus Inequalities.

Lemma 7.1. Suppose that u : [0, T )× R3 → R4. If

k1 + k2 + |a1|+ |a2| ≤ p̄ and k1 + k2 ≤ q̄,
then for α, β = 0, . . . , 3, we have1

‖ζ(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

.

((
Y int

[ p̄+5
2 ],[ p̄

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p̄+3
2 ],[ p̄

2 ]
[u](t)

)
E1/2
p̄+1,q̄[u](t),

provided the right-hand side is finite.

1We remind the reader that (Sk1Γa1u(t))α denotes the α-th component of the vector
Sk1Γa1u(t).



NONLINEAR DISSIPATIVE WAVE EQUATIONS 13

In the special case when k2 + |a2| < p̄, we have

‖ζ(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

.

((
Y int

[ p̄+5
2 ],[ p̄

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p̄+3
2 ],[ p̄

2 ]
[u](t)

)
E1/2
p̄,q̄ [u](t),

provided the right-hand side is finite.

Proof. In the case k1 + |a1| < k2 + |a2|+ 1, i.e. k1 + |a1| ≤
[
p̄
2

]
, using the Sobolev

inequality (6.2a) we have the following bound:

‖ζ(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

. ‖ζSk1Γa1u(t)‖L∞‖Sk2Γa2+1u(t)‖L2

.

((
Y int

[ p̄+4
2 ],[ p̄

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p̄+2
2 ],[ p̄

2 ]
[u](t)

)
E1/2
p̄+1,q̄[u](t).

And in the case k2 + |a2|+ 1 ≤ k1 + |a1|, i.e. k2 + |a2| ≤
[
p̄−1

2

]
, we likewise have

‖ζ(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

. ‖Sk2Γa2+1u(t)‖L∞‖Sk1Γa1u(t)‖L2

.

((
Y int

[ p̄+5
2 ],[ p̄−1

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p̄+3
2 ],[ p̄−1

2 ]
[u](t)

)
E1/2
p̄,q̄ [u](t).

The second statement of the lemma follows similarly from the preceding arguments.

Lemma 7.2. Suppose that u : [0, T )× R3 → R4. If

k1 + k2 + |a1|+ |a2| ≤ p̄ and k1 + k2 ≤ q̄,

then for α, β = 0, . . . , 3, we have

‖η(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

. 〈t〉−1E1/2

[ p̄+5
2 ],[ p̄

2 ]
[u](t)E1/2

p̄+1,q̄[u](t),

provided the right-hand side is finite.
In the special case when k2 + |a2| < p̄, we have

‖η(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

. 〈t〉−1E1/2

[ p̄+5
2 ],[ p̄

2 ]
[u](t)E1/2

p̄,q̄ [u](t),

provided the right-hand side is finite.

Proof. In the case k1 + |a1| < k2 + |a2|+ 1, i.e. k1 + |a1| ≤
[
p̄
2

]
, using the Sobolev

inequality (6.2d) we have the following bound:

‖η(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

. ‖ηSk1Γa1u(t)‖L∞‖Sk2Γa2+1u(t)‖L2

. 〈t〉−1E1/2

[ p̄+4
2 ],[ p̄

2 ]
[u](t)E1/2

p̄+1,q̄[u](t).



14 BOYAN JONOV AND THOMAS C. SIDERIS

And in the case k2 + |a2|+ 1 ≤ k1 + |a1|, i.e. k2 + |a2| ≤
[
p̄−1

2

]
, we similarly have:

‖η(Sk1Γa1u(t))α(Sk2Γa2+1u(t))β‖L2

. ‖ηSk2Γa2+1u(t)‖L∞‖Sk1Γa1u(t)‖L2

. 〈t〉−1E1/2

[ p̄+5
2 ],[ p̄−1

2 ]
[u](t)E1/2

p̄,q̄ [u](t).

The second statement of the lemma follows analogously.

Two slightly more specialized instances of this basic argument occur in the proof
of Proposition 11.1.

8. Estimates for the Linear Equation. In this section, we focus on the estima-
tion of solutions of the linear version of the system (2.3a), (2.3b), (2.3c):

∂tu
0 −∇ · ū− ν∆u0 = G (8.1a)

∂tū− (∇u0)> = 0 (8.1b)
∇∧ ū = 0. (8.1c)

Lemma 8.1. Assume that σ in (3.3b) is sufficiently small and that ν ≤ 1. Let
G ∈ L2([0, T ];L2(R3)), for some 0 < T <∞. If u = (u0, ū) is a solution of (8.1a),
(8.1b), (8.1c) such that

sup
0≤t≤T

E1,1[u](t) <∞,

then for any 0 ≤ θ ≤ 1,∫ T

0

〈t〉θ
[
‖ζ∇u(t)‖2L2 + ν2‖ζ∆u0(t)‖2L2

]
dt

. ν〈T 〉θ−2E1,0[u](T ) +

∫ T

0

〈t〉θ−2E1,1[u](t)dt

+

∫ T

0

〈t〉θ‖ζG(t)‖2L2dt.

Proof. By definition (3.1), the PDEs (8.1a), (8.1b) can be written as

t(∇ · ū+ ν∆u0) = Su0 − r∂ru0 − tG0

t∇u0 = Sū− r∂rū.

Squaring and integrating with respect to ζ2dx, we obtain

t2
[
‖ζ∇ · ū‖2L2 + 2ν〈ζ∇ · ū, ζ∆u0〉L2 + ν2‖ζ∆u0‖2L2 + ‖ζ∇u0‖2L2

]
. ‖ζr∂ru‖2L2 + E1,1[u](t) + t2‖ζG‖2L2 , (8.2)

where for notational convenience, we have suppressed the t dependence of the inte-
grated terms.

Thanks to (8.1b), the cross term can be rewritten as

2ν〈ζ∇ · ū, ζ∆u0〉L2 = 2ν〈ζ∇ · ū, ζ∂t(∇ · ū)〉L2

= ν∂t‖ζ∇ · ū‖2L2 − 2ν‖∂t(ζ2)∇ · ū‖2L2 ,

which can be estimated below by

ν∂t‖ζ∇ · ū‖2L2 −
1

2
‖ζ∇ · ū‖2L2 −

Cν2

〈t〉2
E1,0[u](t),
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using (3.3d) and Young’s inequality. With this, (8.2) yields

t2
[
ν∂t‖ζ∇ · ū‖2L2 +

1

2
‖ζ∇ · ū‖2L2 + ν2‖ζ∆u0‖2L2 + ‖ζ∇u0‖2L2

]
. ‖ζr∂ru‖2L2 + E1,1[u](t) + t2‖ζG‖2L2 .

Choose 0 ≤ θ ≤ 1, multiply the preceding inequality by 〈t〉θ−2, integrate in time,
and rearrange the result:∫ T

0

t2〈t〉θ−2

[
1

2
‖ζ∇ · ū‖2L2 + ν2‖ζ∆u0‖2L2 + ‖ζ∇u0‖2L2

]
dt

.
∫ T

0

〈t〉θ−2
[
‖ζr∂ru‖2L2 + E1,1[u](t) + t2‖ζG‖2L2

]
dt (8.3)

−
∫ T

0

t2〈t〉θ−2ν∂t‖ζ∇ · ū‖2L2dt.

We now focus on time derivative term on the right. A simple calculation reveals
that

d

dt
νt2〈t〉θ−2 = νt〈t〉θ−4(2 + θt2) ≤ 2νt〈t〉θ−2 ≤ 1

4
t2〈t〉θ−2 + 4ν2〈t〉θ−2,

and so, using integration by parts, we get

−
∫ T

0

t2〈t〉θ−2ν∂t‖ζ∇ · ū‖2L2dt

≤
∫ T

0

(
1

4
t2〈t〉θ−2 + 4ν2〈t〉θ−2

)
‖ζ∇ · ū‖2L2dt

≤
∫ T

0

1

4
t2〈t〉θ−2‖ζ∇ · ū‖2L2dt+ C

∫ T

0

〈t〉θ−2E1,0[u](t)dt.

Combining this with the inequality (8.3), we obtain∫ T

0

t2〈t〉θ−2

[
1

4
‖ζ∇ · ū‖2L2 + ν2‖ζ∆u0‖2L2 + ‖ζ∇u0‖2L2

]
dt

.
∫ T

0

〈t〉θ−2
[
‖ζr∂ru‖2L2 + E1,1[u](t) + t2‖ζG‖2L2

]
dt.

Next, thanks to Lemma 8.2 (to follow), we gain control of the full gradient on
the left:∫ T

0

t2〈t〉θ−2
[
‖ζ∇u‖2L2 + ν2‖ζ∆u0‖2L2

]
dt

.
∫ T

0

〈t〉θ−2
[
‖ζr∂ru‖2L2 + E1,1[u](t) + t2‖ζG‖2L2

]
dt.

Then, inserting t2 = 〈t〉2 − 1 on the left, we may write∫ T

0

〈t〉θ
[
‖ζ∇u‖2L2 + ν2‖ζ∆u0‖2L2

]
dt

.
∫ T

0

〈t〉θ−2
[
‖ζr∂ru‖2L2 + ν2‖ζ∆u0‖2L2 + E1,1[u](t) + t2‖ζG‖2L2

]
dt.
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According to definition (3.3b), we have r ≤ σ〈t〉 on the support of ζ, so for σ
sufficiently small, the term∫ T

0

〈t〉θ−2‖ζr∂ru‖2L2dt .
∫ T

0

σ2〈t〉θ‖ζ∂ru‖2L2dt

can be absorbed on the left. This key step yields∫ T

0

〈t〉θ
[
‖ζ∇u‖2L2 + ν2‖ζ∆u0‖2L2

]
dt

.
∫ T

0

〈t〉θ−2
[
ν2‖ζ∆u0‖2L2 + E1,1[u](t) + t2‖ζG‖2L2

]
dt. (8.4)

Finally, consider the first term on the right. We have∫ T

0

〈t〉θ−2ν2‖ζ∆u0‖2L2dt =

∫ T

0

〈t〉θ−2ν2 d

dt

∫ t

0

‖ζ∆u0‖2L2dsdt

= 〈T 〉θ−2ν2

∫ T

0

‖ζ∆u0‖2L2dt

+ (2− θ)
∫ T

0

t〈t〉θ−4ν2

∫ t

0

‖ζ∆u0‖2L2dsdt

. ν〈T 〉θ−2E1,0[u](T ) + ν

∫ T

0

〈t〉θ−2E1,0[u](t)dt.

Insert this into (8.4). The desired estimate follows immediately since ν ≤ 1.

Remark. Notice that the time integration used in this lemma arises from the
dissipative term in the equation.

In the proof of Lemma 8.1, we used the following simple coercivity estimate:

Lemma 8.2. If w ∈ H1(R3,R3) and ∇∧ w = 0, then

1

2
‖ζ∇w‖2L2 − ‖ζ∇ · w‖2L2 . 〈t〉−2‖w‖2L2 .

Proof. The constraint ∇∧ w = 0 implies that

|∇w|2 − (∇ · w)2 = ∂i(w
j∂jw

i)− ∂j(wj∂iwi).

Using integration by parts and the property (3.3d), we may write

‖ζ∇w‖2L2 − ‖ζ∇ · w‖2L2 . 〈t〉−1‖ζ∇w‖L2‖w‖L2 .

The result follows by an application of Young’s inequality.

We now establish a higher order version of Lemma 8.1.

Proposition 8.3. Assume that σ in (3.3b) is sufficiently small and that ν ≤ 1. Fix
0 ≤ q < p. Suppose that

SkG ∈ L2([0, T ];Xp−k−1,0), k = 0, . . . , q

for some 0 < T <∞. If u is a solution of (8.1a), (8.1b), (8.1c) such that

sup
0≤t≤T

Ep,q+1[u](t) <∞,
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then for any 0 ≤ θ ≤ 1,

∫ T

0

〈t〉θ
[
Y int
p,q[u](t) + ν2Z int

p,q[u](t)
]
dt

. ν〈T 〉θ−2Ep,q[u](T ) +

∫ T

0

〈t〉θ−2Ep,q+1[u](t)dt

+
∑

|a|+k≤p−1
k≤q

∫ T

0

〈t〉θ‖ζSkΓaG(t)‖2L2dt.

Proof. We shall prove this by induction on q. Fix a multi-index |a| ≤ p− 1. By the
commutation relations (5.1a), (5.1b), we have that Γau solves (8.1a), (8.1b) with
ΓaG on the right. Apply Lemma 8.1 to get

∫ T

0

〈t〉θ
[
‖ζ∇Γau(t)‖2L2 + ν2‖ζ∆Γau0(t)‖2L2

]
dt

. ν〈T 〉θ−2E1,0[Γau](T ) +

∫ T

0

〈t〉θ−2E1,1[Γau](t)dt

+

∫ T

0

〈t〉θ‖ζΓaG(t)‖2L2dt.

Summing over |a| ≤ p− 1 gives the result for q = 0.
Now take any 1 ≤ r < p, and assume that the result holds when q = r − 1.

Choose a and k such that k 6= 0, |a|+ k ≤ p− 1, and k ≤ r. By (5.1a), (5.1b), we
have that SkΓau solves (8.1a), (8.1b) with

(S + 1)kΓaG− νB∆[Sk − (S − 1)k]Γau

on the right. Apply Lemma 8.1 again:

∫ T

0

〈t〉θ
[
‖ζ∇SkΓau(t)‖2L2 + ν2‖ζ∆SkΓau0(t)‖2L2

]
dt

. ν〈T 〉θ−2E1,0[SkΓau](T ) +

∫ T

0

〈t〉θ−2E1,1[SkΓau](t)dt

+

∫ T

0

〈t〉θ
[
ν2‖ζ∆[Sk − (S − 1)k](Γau)0‖2L2 + ‖ζSkΓaG(t)‖2L2

]
dt

. ν〈T 〉θ−2E1,0[SkΓau](T ) +

∫ T

0

〈t〉θ−2E1,1[SkΓau](t)dt

+

∫ T

0

〈t〉θ
[
ν2Z int

p,r−1[u](t) + ‖ζSkΓaG(t)‖2L2

]
dt.
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Notice that this inequality holds for k = 0, as well, by the result for q = 0. Perform
a summation over |a|+ k ≤ p− 1, k ≤ r. This yields∫ T

0

〈t〉θ
[
Y int
p,r[u](t) + ν2Z int

p,r[u](t)
]
dt

. ν〈T 〉θ−2Ep,r[u](T ) +

∫ T

0

〈t〉θ−2Ep,r+1[u](t)dt

+
∑

|a|+k≤p−1
k≤r

∫ T

0

〈t〉θ
[
ν2Z int

p,r−1[u](t) + ‖ζSkΓaG(t)‖2L2

]
dt.

The result now follows by the induction hypothesis.

Next, we turn our attention to the exterior region.

Lemma 8.4. Let G ∈ C([0, T ];L2(R3)), for some 0 < T < ∞. If u = (u0, ū) is a
solution of (8.1a), (8.1b), (8.1c) such that

sup
0≤t≤T

E1,1[u](t) <∞,

then for all 0 ≤ t ≤ T ,

‖η(r∂ru
0 + t∇ · ū)‖2L2 + ‖η(r∂rū+ t∇u0)‖2L2 + (νt)2‖η∆u0‖2L2

. E1,1[u](t) + t2‖ηG‖2L2 .

Proof. As in the proof of Lemma 8.1, write

r∂ru
0 + t∇ · ū+ tν∆u0 = Su0 − tG0

r∂rū+ t∇u0 = Sū,

square, and integrate with respect to η2dx

‖η(r∂ru
0 + t∇ · ū)‖2L2 + ‖η(r∂rū+ t∇u0)‖2L2 + (νt)2‖η∆u0‖2L2

+ 2〈η(r∂ru
0 + t∇ · ū), ηtν∆u0〉L2

. ‖ηSu‖2L2 + t2‖ηG‖2L2 . (8.5)

We focus on the cross term on the left. Write

I = 2〈η(r∂ru
0 + t∇ · ū), ηtν∆u0〉L2 = 2νt

∫
η2(r∂ru

0 + t∇ · ū)∆u0dx.

The result will follow from (8.5) once we verify that

|I| ≤ µ(νt)2‖η∆u0‖2L2 + CE1,1[u](t), (8.6)

with say µ ≤ 1/2.
Using (3.1), (3.2), (8.1b), we have

∇ · ū = ω · ∂rū−
(ω
r
∧ Ω

)
· ū

= ω ·
(

1

r
Sū− t

r
∂tū

)
−
(ω
r
∧ Ω

)
· ū (8.7)

= − t
r
∂ru

0 +O
(

1

r
(|Ωu|+ |Su|)

)
.
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So we may write

I = 2νt

∫
η2

[(
1− t2

r2

)
r∂ru

0∆u0 +O
(
t

r
(|Ωu|+ |Su|)

)
∆u0

]
dx.

Insertion of the identity

r∂ru
0∆u0 = ∇ ·

[
r∂ru

0∇u0 − 1
2x|∇u

0|2
]

+ 1
2 |∇u

0|2,

followed by integration by parts yields

I = −2νt

∫
∇
[
η2

(
1− t2

r2

)]
·
[
r∂ru

0∇u0 − 1

2
x|∇u0|2

]
dx

+ 2νt

∫
η2

[
1

2
|∇u0|2 +O

(
t

r
(|Ωu|+ |Su|)

)
∆u0

]
dx.

By (3.3d) and the fact that r & 〈t〉 on the support of η, we see that

r

∣∣∣∣∇ [η2

(
1− t2

r2

)]∣∣∣∣ . η

and hence

|I| . νt

∫
η|∇u0|2dx+ νt

∫
η(|Ωu|+ |Su|)|∆u0|dx.

Using integration by parts and (3.3d), we get

νt

∫
η|∇u0|2dx = −νt

∫
(ηu0∆u0 + u0∇η · ∇u0) dx

. νt

∫
η|u0∆u0|dx+ νE1,1[u](t),

so

|I| . νt

∫
η(|u0|+ |Ωu|+ |Su|)|∆u0|dx+ CE1,1[u](t).

The estimate (8.6) for I now follows by Young’s inequality.

Proposition 8.5. Fix 0 ≤ q ≤ p. Suppose that

SkG ∈ C([0, T ], Xp−k−1,0), k = 0, . . . , q − 1,

for some 0 < T <∞. If u = (u0, ū) is a solution of (8.1a), (8.1b), (8.1c) such that

sup
0≤t≤T

Ep,q+1[u](t) <∞,

then for all 0 ≤ t ≤ T ,

Yext
p,q [u](t) + ν2Zext

p,q [u](t) . Ep,q+1[u](t) +
∑

|a|+k≤p−1
k≤q

t2‖ηSkΓaG‖2L2 .

Proof. First, we note that from (3.4a), and (3.2), we have for each j,

|P∂ju|2R4 =
1

2
(∂ju

0 − ω · ∂j ū)2 ≤ 1

2
(∂ru

0 − ω · ∂rū)2 +O(
1

r2
|Ωu|2),
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and by (8.1c),

|Q∂ju|2R4 = |(I − P)∂ju|2R4

=
1

2
(∂ju

0 + ω · ∂j ū)2 + |ω ∧ ∂j ū|2R3

=
1

2
(∂ju

0 + ω · ∂j ū)2 + |ω ∧∇uj |R3

≤ 1

2
(∂ru

0 + ω · ∂rū)2 +O(
1

r2
|Ωu|2).

Therefore, since r & 〈t+ r〉 ≥ 〈t− r〉 on supp η, we obtain

Yext
1,0 [u](t) =

3∑
j=1

[‖η〈t− r〉P∂ju‖2L2 + ‖η〈t+ r〉Q∂ju‖2L2 ]

≤1

2
‖η〈t− r〉(∂ru0 − ω · ∂rū)‖2L2

+
1

2
‖η〈t+ r〉(∂ru0 + ω · ∂rū)‖2L2 + C‖Ωu‖2L2

≤1

2
‖η(t− r)(∂ru0 − ω · ∂rū)‖2L2

+
1

2
‖η(t+ r)(∂ru

0 + ω · ∂rū)‖2L2 + C[‖∇u‖2L2 + ‖Ωu‖2L2 ].

A bit of algebraic manipulation produces the relation

1

2
(t− r)2(∂ru

0 − ω · ∂rū)2 +
1

2
(t+ r)2(∂ru

0 + ω · ∂rū)2

= (r∂ru
0 + tω · ∂rū)2 + (rω · ∂rū+ t∂ru

0)2.

Thanks to (3.2), we have

η|r∂ru0 + tω · ∂rū| ≤ η|r∂ru0 + t∇ · ū|+O(|Ωū|)
and

η|rω · ∂rū+ t∂ru
0| ≤ η|r∂rū+ t∇u0|R3 +O(|Ωu0|).

Combining the preceding estimates gives us the bound

Yext
1,0 [u](t) . ‖η(r∂ru

0 + t∇ · ū)‖2L2 + ‖η(r∂rū+ t∇u0)‖2L2 + E1,0[u](t).

By Lemma 8.4, we conclude that

Yext
1,0 [u](t) + ν2Zext

1,0 [u](t) . E1,1[u](t) + t2‖ηG‖2L2 .

Now take any multi-index a with |a| ≤ p − 1. By (5.1a), we can apply the
preceding inequality to Γau to get

Yext
1,0 [Γau](t) + ν2Zext

1,0 [Γau](t) . E1,1[Γau](t) + t2‖ηΓaG‖2L2 .

Summation over |a| ≤ p− 1 yields

Yext
p,0 [u](t) + ν2Zext

p,0 [u](t) . Ep,1[u](t) +
∑
|a|≤p−1

t2‖ηΓaG‖2L2 ,

which proves the result in the case q = 0.
The result for 0 < q < p follows from (5.1b) and induction, as in the proof of

Propostion 8.3.
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9. Decay Estimates. The next two results establish the dispersive estimates for
the nonlinear equation, using a bootstrap argument in connection with Propositions
8.3 and 8.5.

Theorem 9.1. Choose (p, q) so that p∗ =
[
p+5

2

]
< q ≤ p. Suppose that u ∈

C([0, T );Xp,q) is a solution of (2.2a), (2.2b) with

sup
0≤t≤T

Ep,q[u](t) <∞,

and
sup

0≤t≤T
Ep∗,p∗ [u](t) ≤ ε2 � 1. (9.1)

Then∫ T

0

〈t〉θ
[
Y int
p∗,p∗−1[u](t) + ν2Z int

p∗,p∗−1[u](t)
]
dt

.


sup

0≤t≤T
〈t〉−γEp∗,p∗ [u](t), 0 < θ + γ < 1

log(e+ T ) sup
0≤t≤T

Ep∗,p∗ [u](t), θ = 1

, (9.2a)

and∫ T

0

〈t〉θ
[
Y int
p∗+1,p∗ [u](t) + ν2Z int

p∗+1,p∗ [u](t)
]
dt

. sup
0≤t≤T

〈t〉−γEp,q[u](t), 0 < θ + γ < 1. (9.2b)

Proof. Fix a pair (p̄, q̄) = (p̄, p̄− 1) with 2 ≤ p̄ ≤ p. Choose a multi-index a and an
integer k, with |a|+ k ≤ p̄− 1 and k ≤ q̄ = p̄− 1. Then, using Lemmas 5.2 and 5.1,
we have that ‖ζSkΩaN(u,∇u)‖2L2 is bounded by a sum of terms of the form

‖ζSk1Γa1u Sk2Γa2+1u‖2L2 , (9.3)

with |a1|+ |a2| ≤ |a| and k1 + k2 ≤ k. Thus,

k1 + k2 + |a1|+ |a2| ≤ k + |a| ≤ p̄− 1 and k1 + k2 ≤ p̄− 1.

Lemma 7.1 implies that the terms in (9.3) can be bounded by (a multiple of)[
Y int
p̄′,q̄′ [u](t) + 〈t〉−2Ep̄′−1,q̄′ [u](t)

]
Ep̄,q̄[u](t),

where p̄′ = [ (p̄−1)+5
2 ] = [ p̄2 ] + 2 and q̄′ = [ p̄−1

2 ].
Therefore, an application of Proposition 8.3 with G = N(u,∇u) yields∫ T

0

〈t〉θ[Y int
p̄,q̄[u](t) + ν2Z int

p̄,q̄[u](t)]dt

. ν〈T 〉θ−2Ep̄,q̄[u](T ) +

∫ T

0

〈t〉θ−2Ep̄,q̄+1[u](t)dt (9.4)

+

∫ T

0

〈t〉θ
[
Y int
p̄′,q̄′ [u](t) + 〈t〉−2Ep̄′−1,q̄′ [u](t)

]
Ep̄,q̄[u](t)dt,

for any 0 < θ ≤ 1. We are going to apply this for two pairs (p̄, q̄).
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First, let (p̄, q̄) = (p∗, p∗ − 1). Since p̄ = p∗ ≥ 5, we get

p̄′ =

[
p∗

2

]
+ 2 ≤ p∗, q̄′ =

[
p∗ − 1

2

]
≤ p∗ − 1.

In this case, (9.4) yields∫ T

0

〈t〉θ
[
Y int
p∗,p∗−1[u](t) + ν2Z int

p∗,p∗−1[u](t)
]
dt

. ν〈T 〉θ−2Ep∗,p∗−1[u](T ) +

∫ T

0

〈t〉θ−2Ep∗,p∗ [u](t)dt

+

∫ T

0

〈t〉θ
[
Y int
p∗,p∗−1[u](t) + 〈t〉−2Ep∗−1,p∗−1[u](t)

]
Ep∗,p∗ [u](t)dt.

Choose γ ≥ 0 such that 0 < θ+ γ ≤ 1. By (9.1), the right-hand side is bounded by

sup
0≤t≤T

〈t〉−γEp∗,p∗ [u](t)

[
〈T 〉θ+γ−2 +

∫ T

0

〈t〉θ+γ−2dt

]

+ ε2

∫ T

0

〈t〉θY int
p∗,p∗−1[u](t)dt.

For ε2 sufficiently small, the last term above can be absorbed on the left, and then
the inequalities (9.2a) follow immediately.

Next, we use the pair (p̄, q̄) = (p∗ + 1, p∗) in (9.4). Again since p∗ ≥ 5, we have

p̄′ =

[
p∗ + 1

2

]
+ 2 ≤ p∗ and q̄′ =

[
p∗

2

]
≤ p∗ − 1.

We obtain from (9.4)∫ T

0

〈t〉θ
[
Y int
p∗+1,p∗ [u](t) + ν2Z int

p∗+1,p∗ [u](t)
]
dt

.ν〈T 〉θ−2Ep∗+1,p∗ [u](T ) +

∫ T

0

〈t〉θ−2Ep∗+1,p∗+1[u](t)dt

+

∫ T

0

〈t〉θ
[
Y int
p∗,p∗−1[u](t) + 〈t〉−2Ep∗−1,p∗−1[u](t)

]
Ep∗+1,p∗ [u](t)dt.

Choose γ > 0 such that 0 < θ + γ < 1. Since p∗ + 1 ≤ q ≤ p, the right-hand side
can be estimated above by

sup
0≤t≤T

〈t〉−γEp,q[u](t)

[
ν〈T 〉θ+γ−2 +

∫ T

0

〈t〉θ+γ−2dt

+

∫ T

0

〈t〉θ+γ
[
Y int
p∗,p∗−1[u](t) + 〈t〉−2Ep∗−1,p∗−1[u](t)

]
dt

]
.

By (9.2a) and (9.1), the last integral is bounded (by Cε2), and so the inequality
(9.2b) now follows.

Theorem 9.2. Fix p ≥ 11. Assume that p∗ =
[
p+5

2

]
< q ≤ p. Suppose that

u ∈ C([0, T );Xp,q) is a solution of (2.2a), (2.2b) with

sup
0≤t≤T

Ep,q[u](t) <∞
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and
sup

0≤t≤T
Ep∗,p∗ [u](t) ≤ 1. (9.5)

Then
Yext
p,q−1[u](t) + ν2Zext

p,q−1[u](t) . Ep,q[u](t), 0 ≤ t ≤ T.

Proof. Choose a multi-index a and an integer k, such that |a| + k ≤ p − 1, k ≤ q.
Then, using Lemmas 5.2 and 5.1, we have that the quantity ‖ηSkΩaN(u,∇u)‖2L2

is bounded by a sum of terms of the form

‖ηSk1Γa1u Sk2Γa2+1u‖2L2 , (9.6)

with |a1|+ |a2| ≤ |a| and k1 + k2 ≤ k. Thus,

k1 + k2 + |a1|+ |a2| ≤ k + |a| ≤ p− 1 and k1 + k2 ≤ p− 1.

Lemma 7.2 implies that the terms in (9.6) can be bounded by (a multiple of)

〈t〉−2 Ep′,q′ [u](t) Ep,q[u](t),

where p′ = [ (p−1)+5
2 ] = [p2 ]+2 ≤ p∗ and q′ = [p−1

2 ] < p∗. Thus, we have Ep′,q′ [u](t) ≤
1, by (9.5). The result is now a consequence of Proposition 8.5.

10. High Energy Estimates.

Proposition 10.1. Choose (p, q) so that 5 ≤ p∗ =
[
p+5

2

]
≤ q ≤ p. Suppose that

u ∈ C([0, T0);Xp,q) is a solution of (2.2a), (2.2b) with

sup
0≤t<T0

Ep∗,p∗ [u](t) ≤ ε2 � 1. (10.1)

Then there exists a constant C1 > 1 such that

Ep,q[u](t) ≤ C1Ep,q[u0]〈t〉C1ε

Ep∗,p∗ [u](t) ≤ C1Ep∗,p∗ [u0]〈t〉C1ε,

for 0 ≤ t < T0.

Proof. Thanks to the symmetry of the coefficient matrices (2.2c), we obtain the
basic energy identity

E0,0[u](T ) = E0,0[u0] +

∫ T

0

〈Lu(t), u(t)〉L2dt, 0 ≤ T < T0.

For p ≥ q ≥ 0, we can combine this with (5.1a) to get

Ep,q[u](T ) = Ep,q[u0] + I +
∑
|a|+k≤p

k≤q

∫ T

0

〈(S + 1)kΓaLu(t), SkΓau(t)〉L2dt,

with

I = −
∑
|a|+k≤p

k≤q

∫ T

0

〈νB∆[Sk − (S − 1)k]Γau(t), SkΓau(t)〉L2dt.
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For q > 0, using the definition B = e0 ⊗ e0 and integration by parts we get the
bound

I =
∑
|a|+k≤p

k≤q

∫ T

0

〈ν∇[Sk − (S − 1)k](Γau)0(t),∇Sk(Γau)0(t)〉L2dt

. E1/2
p,q−1[u](T )E1/2

p,q [u](T ).

It follows from induction on q and Young’s inequality that

Ep,q[u](T ) . Ep,q[u0]

+
∑
|a|+k≤p

k≤q

∣∣∣∣∣
∫ T

0

〈(S + 1)kΓaLu(t), SkΓau(t)〉L2dt

∣∣∣∣∣ . (10.2)

If we combine (10.2) with Lemma 5.2, we find

Ep,q[u](T ) . Ep,q[u0]

+
∑

a1+a2+a3=a
k1+k2=k
|a|+k≤p

k≤q

∣∣∣∣∣
∫ T

0

〈[Γa3 , N ](Sk1Γa1u,∇Sk2Γa2u), SkΓau〉L2dt

∣∣∣∣∣ . (10.3)

The reader will note that we have deliberately left the absolute value signs on the
“outside” of the integrals because we will later exploit cancellations of the coefficients
of the nonlinear terms.

Special care must be taken for the terms in the sum with |a2|+ k2 = |a|+ k = p.
To simplify the notation when analyzing these terms, set v = SkΓau. Then using
the fact that ∂αvβ = ∂βv

α, we may write

〈N(u,∇SkΓau),SkΓau〉R4

=〈N(u,∇v), v〉R4

=N0(u,∇v)v0

=C`α,βu
α∂`v

βv0

=C`α,0u
α∂`v

0v0 + C`α,mu
α∂`v

mv0

=
1

2

[
C`α,0∂`[u

α(v0)2] + (C`α,m + Cmα,`)∂`(u
αvmv0)

− C`α,m∂0(uαv`vm)− C`α,0∂`uα(v0)2

− (C`α,m + Cmα,`)∂`u
αvmv0 + C`α,m∂0u

αv`vm
]

=
1

2

[
C`α,0∂`[u

α(v0)2] + (C`α,m + Cmα,`)∂`(u
αvmv0)

− C`α,m∂0(uαv`vm)
]
−O(|∂u| |v|2).
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Integration over [0, T ]× R3 yields∫ T

0

〈N(u,∇SkΓau), SkΓau〉L2dt

=− 1

2

∫
R3

C`α,mu
α(T )(SkΓau(T ))`(SkΓau(T ))mdx

+
1

2

∫
R3

C`α,mu
α(0)(SkΓau(0))`(SkΓau(0))mdx

+O

(∫ T

0

∫
R3

|∂u||SkΓau|2dxdt

)
.

(10.4)

By (6.1a) and the assumption (10.1), we have

‖u‖L∞(R3) . ‖u‖H2(R3) ≤ E
1/2
2,0 [u] < ε� 1. (10.5)

Using (2.2a) and (10.5), we have

|∂u| . |∂0u|+ |∇u| . (1 + |u|) |∇u|+ |∆u0| . |∇u|+ |∆u|. (10.6)

It follows that the right-hand side of (10.4) is bounded by

ε2

(
Ep,q[u](T ) + Ep,q[u0]

)
+O

(∫ T

0

∫
R3

(|∇u|+ |∆u|)|SkΓau|2dxdt

)
.

The remaining terms in (10.3) satisfy

∑
|a|+k≤p

k≤q

∑
a1+a2+a3=a

k1+k2=k

|a2|+k2<p

∣∣∣∣∣
∫ T

0

〈[Γa3 , N ](Sk1Γa1u,∇Sk2Γa2u), SkΓau〉L2dt

∣∣∣∣∣
.

∑
|a|+k≤p

k≤q

∑
|a1+a2|≤|a|
k1+k2≤k

|a2|+k2<p

∫ T

0

∫
R3

|Sk1Γa1u||∇Sk2Γa2u||SkΓau|dxdt.

Altogether, taking ε sufficiently small we obtain from (10.3)

Ep,q[u](T ) . Ep,q[u0] +
∑
|a|+k=p

∫ T

0

∫
R3

(|∇u|+ |∆u|)|SkΓau|2dxdt

+
∑
|a|+k≤p

k≤q

∑
|a1+a2|≤|a|
k1+k2≤k

|a2|+k2<p

∫ T

0

∫
R3

|Sk1Γa1u||∇Sk2Γa2u||SkΓau|dxdt.

This immediately leads to

Ep,q[u](T ) . Ep,q[u0] +
∑
|a|+k=p

∫ T

0

(‖∇u(t)‖L∞ + ‖∆u(t)‖L∞)Ep,q[u](t)dt

+
∑

|a1+a2|+k1+k2≤p
k1+k2≤q

|a2|+k2<p

∫ T

0

‖ |Sk1Γa1u(t)| |Sk2Γa2+1u(t)| ‖L2E1/2
p,q [u](t)dt.
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Using (3.3c), (6.2a), (6.2d), and the fact that 5 ≤
[
p+5

2

]
, we obtain

‖∇u(t)‖L∞+‖∆u(t)‖L∞
.‖ζ∇u(t)‖L∞ + ‖ζ∆u(t)‖L∞

+ ‖η∇u(t)‖L∞ + ‖η∆u(t)‖L∞

.
(
Y int

4,0[u](t)
)1/2

+ 〈t〉−1E1/2
4,0 [u](t)

.
(
Y int

[ p+5
2 ],[ p+3

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p+5
2 ],[ p+5

2 ]
[u](t).

By (3.3c) and Lemmas 7.1 and 7.2, we get the same bound∑
|a1+a2|+k1+k2≤p

k1+k2≤q

|a2|+k2<p

‖ |Sk1Γa1u(t)| |Sk2Γa2+1u(t)| ‖L2

.
∑

|a1+a2|+k1+k2≤p
k1+k2≤q

|a2|+k2<p

‖ζ |Sk1Γa1u(t)| |Sk2Γa2+1u(t)| ‖L2

+
∑

|a1+a2|+k1+k2≤p
k1+k2≤q

|a2|+k2<p

‖η |Sk1Γa1u(t)| |Sk2Γa2+1u(t)| ‖L2

.

[(
Y int

[ p+5
2 ],[ p+3

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p+5
2 ],[ p+5

2 ]
[u](t)

]
E1/2
p,q [u](t).

Inserting this into the previous energy inequality yields

Ep,q[u](T ) . Ep,q[u0]

+

∫ T

0

[(
Y int

[ p+5
2 ],[ p+3

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p+5
2 ],[ p+5

2 ]
[u](t)

]
Ep,q[u](t)dt.

An application of Gronwall’s inequality produces

Ep,q[u](T )

. Ep,q[u0] exp

∫ T

0

[(
Y int

[ p+5
2 ],[ p+3

2 ][u](t)
)1/2

+ 〈t〉−1E1/2

[ p+5
2 ],[ p+5

2 ]
[u](t)

]
dt. (10.7)

We point out that (10.7) holds for any pair (p, q) as long as p ≥ q ≥
[
p+5

2

]
≥ 5,

which requires only p ≥ 5.
Recalling the definition p∗ =

[
p+5

2

]
, we obtain using Theorem 9.1∫ T

0

(
Y int

[ p+5
2 ],[ p+3

2 ][u](t)
)1/2

dt

≤

(∫ T

0

〈t〉Y int
p∗,p∗−1[u](t)dt

)1/2(∫ T

0

〈t〉−1dt

)1/2

.

(
sup

0≤t≤T
Ep∗,p∗ [u](t) log(e+ T )

)1/2

(log(e+ T ))
1/2

. sup
0≤t≤T

E1/2
p∗,p∗ [u](t) log(e+ T ).
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Likewise, we have the bound∫ T

0

〈t〉−1E1/2

[ p+5
2 ],[ p+5

2 ]
[u](t) . sup

0≤t≤T
E1/2
p∗,p∗ [u](t) log(e+ T ).

Now thanks to the assumption (10.1), the inequality (10.7) implies that

Ep,q[u](T ) . Ep,q[u0] exp [Cε log(e+ T )] ≤ Ep,q[u0]〈T 〉C1ε.

Returning to (10.7), we can repeat this argument with the pair (p, q) = (p∗, p∗)
because p∗ ≥ 5 implies that p∗ ≥

[
p∗+5

2

]
. Therefore, we also obtain the bound

Ep∗,p∗ [u](T ) . Ep∗,p∗ [u0]〈T 〉C1ε,

after a possible increase in the size of the constant C1. Note however, that the choice
of C1 is independent of ε. The size of C1 may always be increased, while the size
of ε may always be decreased. The statement of Proposition 10.1 now follows.

Corollary 10.2. Under the hypotheses of Proposition 10.1, we have

Ep∗,p∗ [u](T ) . Ep∗,p∗ [u0]

+
∑

a1+a2+a3=a
k1+k2=k
|a|+k≤p∗

k≤p∗

∣∣∣∣∣
∫ T

0

〈[Γa3 , N ](Sk1Γa1u,∇Sk2Γa2u), SkΓau〉L2dt

∣∣∣∣∣ .
Proof. This is simply (10.3) from the proof of Proposition 10.1 in the case where
(p, q) = (p∗, p∗).

11. Low Energy Estimates.

Proposition 11.1. Choose (p, q) such that p ≥ 11, and p ≥ q > p∗, where p∗ =[
p+5

2

]
. Let δ ≤ 1 be defined as in (4.1). Suppose that u ∈ C([0, T0);Xp,q) is a

solution of (2.2a), (2.2b) with

sup
0≤t<T0

Ep∗,p∗ [u](t) ≤ ε2 � 1. (11.1)

There exists a constant C0 > 1 such that if

C3
0

(
δ

ν

)2

Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
< 1, (11.2)

then
sup

0≤t<T0

Ep∗,p∗ [u](t) ≤ C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
. (11.3)

Proof. We continue from the inequality of Corollary 10.2. Using the cut-off functions
defined in (3.3b) and recalling (3.3c), we can write:

Ep∗,p∗ [u](T ) . Ep∗,p∗ [u0] + I1 + I2, (11.4)

with

I1 =
∑

|a1+a2|≤|a|
k1+k2=k
|a|+k≤p∗

k≤p∗

∫ T

0

∫
R3

ζ2|Sk1Γa1u| |∇Sk2Γa2u| |SkΓau| dxdt
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and

I2 =
∑

a1+a2+a3=a
k1+k2=k
|a|+k≤p∗

k≤p∗

∣∣∣∣∣
∫ T

0

∫
R3

η〈[Γa3 , N ](Sk1Γa1u,∇Sk2Γa2u), SkΓau〉R4dxdt

∣∣∣∣∣ ,

for 0 ≤ T < T0.

Interior Low Energy. The first integral I1 on the right of (11.4) is bounded by

|I1| .
∑

k1+k2+|a1|+|a2|≤p∗
k1+k2≤p∗

∫ T

0

‖ ζ2|Sk1Γa1u| |∇Sk2Γa2u| ‖L2 E1/2
p∗,p∗ [u](t)dt.

To estimate this, we follow the same strategy as in Lemma 7.1.
In the case k1 + |a1| < k2 + |a2|+ 1, i.e. k1 + |a1| ≤

[
p∗

2

]
, we have using (6.2a)

‖ζ2|Sk1Γa1u||∇Sk2Γa2u| ‖L2 . ‖ζSk1Γa1u‖L∞‖ζ∇Sk2Γa2u‖L2

.

[(
Y int

[ p∗+4
2 ],[ p∗

2 ]
[u](t)

)1/2

+ 〈t〉−1E1/2

[ p∗+2
2 ],[ p∗

2 ]
[u](t)

]
×
(
Y int
p∗+1,p∗ [u](t)

)1/2
.

Next, we consider the terms in I1 with k2 + |a2|+ 1 ≤ k1 + |a1|, i.e. k2 + |a2| ≤[
p∗−1

2

]
. By Hardy’s inequality (6.2c) and the Sobolev inequality (6.2b), we can

write:

‖ζ2 |Sk1Γa1u| |∇Sk2Γa2u| ‖L2

. ‖r−1ζSk1Γa1u‖L2‖rζ∇Sk2Γa2u‖L∞

.
[(
Y int
p∗+1,p∗ [u](t)

)1/2
+ 〈t〉−1E1/2

p∗,p∗ [u](t)
]

×

[(
Y int

[ p∗+5
2 ],[ p∗−1

2 ]
[u](t)

)1/2

+ 〈t〉−1E1/2

[ p∗+3
2 ],[ p∗−1

2 ]
[u](t)

]
.
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Thanks to the assumption p ≥ 11, we have
[
p∗+5

2

]
≤ p∗, so altogether for the

interior low energy we have:

I1 .
∫ T

0

[(
Y int

[ p∗+5
2 ],[ p∗

2 ]
[u](t)

)1/2

+ 〈t〉−1E1/2

[ p∗+3
2 ],[ p∗

2 ]
[u](t)

]
×
[(
Y int
p∗+1,p∗ [u](t)

)1/2
+ 〈t〉−1E1/2

p∗,p∗ [u](t)
]
E1/2
p∗,p∗ [u](t)dt

.
∫ T

0

[(
Y int
p∗,p∗−1[u](t)

)1/2
+ 〈t〉−1E1/2

p∗,p∗ [u](t)
]

×
[(
Y int
p∗+1,p∗ [u](t)

)1/2
+ 〈t〉−1E1/2

p∗,p∗ [u](t)
]
E1/2
p∗,p∗ [u](t)dt

.
∫ T

0

(
Y int
p∗,p∗−1[u](t)

)1/2 (Y int
p∗+1,p∗ [u](t)

)1/2 E1/2
p∗,p∗ [u](t)dt

+

∫ T

0

〈t〉−1
(
Y int
p∗+1,p∗ [u](t)

)1/2 Ep∗,p∗ [u](t)dt

+

∫ T

0

〈t〉−2E3/2
p∗,p∗ [u](t)dt.

By Theorem 9.1 and Proposition 10.1, we can estimate these three integrals as
follows. Note that ε in (11.1) must again be taken small enough, 2C1ε < 1 is
sufficient, in addition to our earlier restrictions.

First integral:

∫ T

0

(
Y int
p∗,p∗−1[u](t)

)1/2 (Y int
p∗+1,p∗ [u](t)

)1/2 E1/2
p∗,p∗ [u](t)dt

.

(
sup

0≤t≤T
〈t〉−C1εEp∗,p∗ [u](t)

)1/2

×
∫ T

0

〈t〉C1ε/2
(
Y int
p∗,p∗−1[u](t)

)1/2 (Y int
p∗+1,p∗ [u](t)

)1/2
dt

. E1/2
p∗,p∗ [u0]

(∫ T

0

〈t〉C1ε/2Y int
p∗,p∗−1[u](t)dt

)1/2

×

(∫ T

0

〈t〉C1ε/2Y int
p∗+1,p∗ [u](t)dt

)1/2

. E1/2
p∗,p∗ [u0]

(
sup

0≤t≤T
〈t〉−C1εEp∗,p∗ [u](t)

)1/2

×
(

sup
0≤t≤T

〈t〉−C1εEp,q[u](t)

)1/2

. Ep∗,p∗ [u0]E1/2
p,q [u0].

Second integral:∫ T

0

〈t〉−1
(
Y int
p∗+1,p∗ [u](t)

)1/2 Ep∗,p∗ [u](t)dt
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. sup
0≤t≤T

〈t〉−C1εEp∗,p∗ [u](t)

∫ T

0

〈t〉−1+C1ε
(
Y int
p∗+1,p∗ [u](t)

)1/2
dt

. Ep∗,p∗ [u0]

(∫ T

0

〈t〉−2+C1εdt

)1/2

×

(∫ T

0

〈t〉C1εY int
p∗+1,p∗ [u](t)dt

)1/2

. Ep∗,p∗ [u0]

(
sup

0≤t≤T
〈t〉−C1εEp,q[u](t)

)1/2

. Ep∗,p∗ [u0]E1/2
p,q [u0].

Third integral:

∫ T

0

〈t〉−2E3/2
p∗,p∗ [u](t)dt

.

(
sup

0≤t≤T
〈t〉−C1εEp∗,p∗ [u](t)

)3/2 ∫ T

0

〈t〉−2+ 3
2C1εdt

. E3/2
p∗,p∗ [u0]

. Ep∗,p∗ [u0]E1/2
p,q [u0].

Combining these estimates, we have

I1 . Ep∗,p∗ [u0]E1/2
p,q [u0]. (11.5)

Exterior Low Energy. Thanks to Lemma 5.4, (5.3a), the second integral I2 on the
right of (11.4) is estimated by

I2 . I ′2 + I ′′2 , (11.6a)

with

I ′2 =
∑

a1+a2+a3=a
k1+k2=k
|a|+k≤p∗

k≤p∗

∣∣∣∣∣
∫ T

0

∫
R3

1
4 η P[Ω̃a,N ](ω̂) 〈ω̂, Sk1Γa1u〉R4

× 〈ω̂, ∂rSk2Γa2u〉R4 (SkΓau)0 dxdt

∣∣∣∣∣ (11.6b)
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and

I ′′2 =
∑

k1+k2+|a1|+|a2|≤p∗
k1+k2≤p∗

∫ T

0

[
‖ η|QSk1Γa1u| |∂rSk2Γa2u| ‖L2

+ ‖ η|Sk1Γa1u| |Q∂rSk2Γa2u| ‖L2

+ ‖ r−1η|Sk1Γa1u| |Sk2Ω̃Γa2u| ‖L2

]

× E1/2
p∗,p∗ [u](t) dt.

(11.6c)

Before estimating the main term I ′2 above, we dispatch the easiest terms I ′′2 . We
claim that within the the range of indices of the sum,

k1 + k2 + |a1|+ |a2| ≤ p∗, k1 + k2 ≤ p∗,
the quantities

Q1 = ‖ η|QSk1Γa1u| |∂rSk2Γa2u| ‖L2

Q2 = ‖ η|Sk1Γa1u| |Q∂rSk2Γa2u| ‖L2

Q3 = ‖ r−1η|Sk1Γa1u| |Sk2Ω̃Γa2u| ‖L2 ,

which appear in (11.6c), satisfy the estimate

Q1 +Q2 +Q3 . 〈t〉−3/2 E1/2
p∗,p∗ [u](t) E1/2

p,q [u](t). (11.7)

In the following, we shall make use of the fact that p ≥ 11 implies p∗ + 3 ≤ p

and
[
p∗+5

2

]
≤ p∗. Recall also that p∗ < q.

Using (6.2e) and Theorem 9.2, we have

Q1 = ‖ η|QSk1Γa1u| |∂rSk2Γa2u| ‖L2

≤ ‖ηQSk1Γa1u‖L∞‖∂rSk2Γa2u‖L2

. 〈t〉−3/2

((
Yext
k1+|a1|+2,k1

[u](t)
)1/2

+ E1/2
k1+|a1|+1,k1

[u](t)

)
× E1/2

k2+|a2|+1,k2
[u](t)

. 〈t〉−3/2 E1/2
k1+|a1|+2,k1+1[u](t) E1/2

k2+|a2|+1,k2
[u](t).

Since k1 + k2 + |a1|+ |a2| ≤ p∗, either

k1 + |a1|+ 2 ≤
[
p∗ + 3

2

]
≤ p∗ and k2 + |a2|+ 1 ≤ p∗ + 1 ≤ p

or

k1 + |a1|+ 2 ≤ p∗ + 2 ≤ p and k2 + |a2|+ 1 ≤
[
p∗ + 3

2

]
≤ p∗.

Therefore (11.7) holds for Q1.
The details are quite similar for the term Q2:

Q2 = ‖ η|Sk1Γa1u| |Q∂rSk2Γa2u| ‖L2



32 BOYAN JONOV AND THOMAS C. SIDERIS

≤ ‖Sk1Γa1u‖L2‖ηQ∂rSk2Γa2u‖L∞

. E1/2
k1+|a1|,k1

[u](t)

× 〈t〉−3/2

((
Yext
k2+|a2|+3,k2

[u](t)
)1/2

+ E1/2
k2+|a2|+2,k2

[u](t)

)
. 〈t〉−3/2 E1/2

k1+|a1|,k1
[u](t) E1/2

k2+|a2|+3,k2+1[u](t)

. 〈t〉−3/2 E1/2
p∗,p∗ [u](t) E1/2

p∗+3,p∗+1[u](t)

. 〈t〉−3/2 E1/2
p∗,p∗ [u](t) E1/2

p,q [u](t),

since p∗ + 3 ≤ p and p∗ < q. Thus, the claimed estimate (11.7) is valid for Q2, as
well.

By Lemma 7.2, we have

Q3 = ‖ r−1η|Sk1Γa1u| |Sk2Ω̃Γa2u| ‖L2

. 〈t〉−1‖ η|Sk1Γa1u| |Sk2Ω̃Γa2u| ‖L2

. 〈t〉−2E1/2
p∗,p∗ [u](t)E1/2

p∗+1,p∗ [u](t)

. 〈t〉−3/2E1/2
p∗,p∗ [u](t)E1/2

p,q [u](t),

which verifies the claim (11.7) for Q3.
Thus, from (11.6c), (11.7), we have that

I ′′2 .
∫ T

0

〈t〉−3/2 Ep∗,p∗ [u](t) E1/2
p,q [u](t) dt. (11.8)

We now turn to I ′2 given in (11.6b). By (5.3b), it is estimated by

I ′2 .
∑

a1+a2+a3=a
k1+k2=k
|a|+k≤p∗

k≤p∗

∫ T

0

δ ‖ η |Sk1Γa1u| |∂rSk2Γa2u| |Sk(Γau)0| ‖L1dt

≡
∫ T

0

Q0 dt.

(11.9)

We are going to estimate these terms for the range of indices in the sum.
First, from (2.3b) we note the simple relation (similar to (8.7))

∂ru = ∂ru
0e0 + ∂rū = ∂ru

0e0 +
1

r
Sū− t

r
∂tū = ∂ru

0e0 +
1

r
Sū− t

r
(∇u0)>,

and thus,

η|∂ru| . η(|∇u0|+ 〈t〉−1|Su|).

So for the terms under consideration, we may write

Q0 . δ‖ |Sk1Γa1u| |∇Sk2(Γa2u)0| |Sk(Γau)0| ‖L1

+ δ〈t〉−1‖ η |Sk1Γa1u| |Sk2+1Γa2u| ‖L2‖SkΓau‖L2 . (11.10a)
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Using a slight variant of Lemma 7.2 with (p̄, q̄) = (p∗, p∗), we see that the second
term in (11.10a) satisfies

δ〈t〉−1‖ η |Sk1Γa1u| |Sk2+1Γa2u| ‖L2‖SkΓau‖L2

. δ〈t〉−2 E1/2

[ p∗+5
2 ],[ p∗−1

2 ]
[u](t) E1/2

p∗+1,p∗+1[u](t)E1/2
p∗,p∗ [u](t)

. δ〈t〉−2 Ep∗,p∗ [u](t)E1/2
p∗+1,p∗+1[u](t)

. δ〈t〉−2 Ep∗,p∗ [u](t)E1/2
p,q [u](t).

(11.10b)

The first and dominant term in (11.10a) measures the deviation from the null
condition, and it will be estimated with the aid the diffusion term in the energy.
We use (6.1b) to get

‖ |Sk1Γa1u| |∇Sk2(Γa2u)0| |Sk(Γau)0| ‖L1

. ‖ r |Sk1Γa1u| |∇Sk2(Γa2u)0| ‖L2‖r−1Sk(Γau)0‖L2

. ‖ r |Sk1Γa1u| |∇Sk2(Γa2u)0| ‖L2‖∇Sk(Γau)0‖L2 .

(11.10c)

Now, we employ the usual strategy. For the terms under consideration, we have

Case (a): k1 + |a1| ≤
[
p∗

2

]
and k2 + |a2| ≤ p∗

or

Case (b): k2 + |a2| ≤
[
p∗

2

]
and k1 + |a1| ≤ p∗.

So by (6.1d), we obtain

‖ r |Sk1Γa1u| |∇Sk2(Γa2u)0| ‖L2

.

{
‖rSk1Γa1u‖L∞‖∇Sk2(Γa2u)0‖L2 , Case (a)
‖Sk1Γa1u‖L2‖r∇Sk2(Γa2u)0‖L∞ , Case (b)

.

{
‖Sk1Γa1+2u‖L2‖∇Sk2(Γa2u)0‖L2 , Case (a)
‖Sk1Γa1u‖L2‖∇Sk2(Γa2+2u)0‖L2 , Case (b)

. E1/2
p∗,p∗ [u](t)‖∇Sk2(Γbu)0‖L2 ,

(11.10d)

with k2 + |b| ≤ p∗.
Combining (11.10a), (11.10b), (11.10c), (11.10d), we end up with

Q0 . δE1/2
p∗,p∗ [u](t)‖∇Sk2(Γbu)0‖L2‖∇Sk(Γau)0‖L2

+ δ〈t〉−2 Ep∗,p∗ [u](t)E1/2
p,q [u](t),

where k2 + |b| ≤ p∗. Thus, from (11.9), we have shown that

I ′2 .
∑

k+|a|≤p∗

∫ T

0

δ E1/2
p∗,p∗ [u](t) ‖∇Sk(Γau)0‖2L2 dt

+

∫ T

0

δ〈t〉−2 Ep∗,p∗ [u](t)E1/2
p,q [u](t) dt. (11.11)
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Inserting the estimates (11.11) and (11.8) into (11.6a), we find that

I2 .
∫ T

0

〈t〉−3/2 Ep∗,p∗ [u](t) E1/2
p,q [u](t) dt

+
∑

k+|a|≤p∗

∫ T

0

δ E1/2
p∗,p∗ [u](t) ‖∇Sk(Γau)0‖2L2 dt.

By Proposition 10.1, we get

I2 . sup
0≤t≤T

(
〈t〉− 3

2C1εEp∗,p∗ [u](t)E1/2
p,q [u](t)

)∫ T

0

〈t〉− 3
2 (1−C1ε)dt

+ δ sup
0≤t≤T

E1/2
p∗,p∗ [u](t)

∑
k+|a|≤p∗

∫ T

0

‖∇Sk(Γau)0‖2L2 dt (11.12)

. Ep∗,p∗ [u0]E1/2
p,q [u0] +

δ

ν
sup

0≤t≤T
E3/2
p∗,p∗ [u](t),

provided C1ε < 1/3.
We deduce from (11.4), (11.5), (11.12) that

Ep∗,p∗ [u](T ) . Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
+
δ

ν
sup

0≤t≤T
E3/2
p∗,p∗ [u](t),

for every 0 ≤ T < T0. Thus, there exists a constant C0 > 4 such that

Ep∗,p∗ [u](T ) ≤ C0

4

[
Ep∗,p∗ [u0]

(
1 + E1/2

p,q [u0]
)

+
δ

ν
sup

0≤t≤T
E3/2
p∗,p∗ [u](t)

]
,

for every 0 ≤ T < T0. In other words, the function

S(T ) = sup
0≤t≤T

Ep∗,p∗ [u](t)

satisfies

S(T ) ≤ A0 +B0S(T )3/2, 0 ≤ T < T0, (11.13)
with

A0 =
C0

4
Ep∗,p∗ [u0]

(
1 + E1/2

p,q [u0]
)

and B0 =
C0δ

4ν
.

We now conclude the proof with a standard argument, using (11.13) to show that
(11.2) implies (11.3).

Suppose that S(T ) < 4A0. Then by (11.13), we have

S(T ) ≤ A0 + (4A0)1/2B0 S(T ).

If (4A0)1/2B0 < 1/2, i.e. (11.2) holds, then S(T ) < 2A0. Thus, since S(0) < 4A0,2
we obtain by continuity that S(T ) < 2A0 < 4A0, for all 0 ≤ T < T0, i.e. (11.3)
holds.

Remark. The reader will note that (11.12) is the only point in this paper where
ν > 0 is relied upon. In particular, we never use the estimates for ν2Z int and ν2Zext

given in Corollary 4.2.

We now consider the situation when the condition (11.2) does not hold.

2We may assume that A0 > 0, for otherwise the solution is identically zero.
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Proposition 11.2. Choose (p, q) with p ≥ 11 and p ≥ q > p∗, where p∗ =
[
p+5

2

]
.

Let δ ≤ 1 be defined by (4.1). Suppose that u ∈ C([0, T0);Xp,q) is a solution of
(2.2a), (2.2b) with

sup
0≤t<T0

Ep∗,p∗ [u](t) ≤ ε2 � 1.

There exist constants C0, C1 > 1 such that if

C1〈T0〉C1ε ≤

(
2 max {ν, C1ε}
C0 δ E1/2

p∗,p∗ [u0]

)2

, (11.14)

then

sup
0≤t<T0

Ep∗,p∗ [u](t) ≤ C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
.

Remark. The constant C0 may be assumed to be the same in Propositions 11.1
and 11.2. The constant C1 is the one given by Proposition 10.1.

Proof. We continue with the same notation as used in the proof of Proposition
11.1. All of the estimates derived there up to and including (11.13) are valid under
the current hypotheses, insofar as the assumption (11.2) is used only in the final
paragraph of the proof.

Using (11.13) with Proposition 10.1, we have

S(T ) ≤ A0 +B0(C1Ep∗,p∗ [u0]〈T0〉C1ε)1/2 S(T ) (11.15)

≤ A0 +B1(C1〈T0〉C1ε)1/2 S(T ),

with

B1 = B0E1/2
p∗,p∗ [u0] =

C0δ

4ν
E1/2
p∗,p∗ [u0].

Alternatively, we may avoid using the dissipation when estimating I ′2 in (11.6b).
Consider the terms in the sum for I ′2 with k2 + |a2| 6= p∗. By Lemma 7.2, these can
be estimated by

δ

∫ T

0

〈t〉−1E3/2
p∗,p∗ [u](t)dt. (11.16)

The remaining terms have the form

∑
k+|a|=p∗

k≤p∗

∫ T

0

∫
R3

1
4ηPN (ω̂)〈ω̂, u〉R4〈ω̂, ∂rSkΓau〉R4(SkΓau)0dxdt

=
∑

k+|a|=p∗
k≤p∗

∫ T

0

∫
R3

1
4ηPN (ω̂)ω̂γω̂µω̂juγ∂j(S

kΓau)µ(SkΓau)0dxdt.

By (5.1a), (5.1b), v = SkΓau satisfies ∂jvµ = ∂µv
j , so we can write:

∂j(S
kΓau)µ(SkΓau)0 = 1

2∂j
[
(SkΓau)µ(SkΓau)0

]
+ 1

2∂µ
[
(SkΓau)j(SkΓau)0

]
− 1

2∂0

[
(SkΓau)µ(SkΓau)j

]
.
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Using integration by parts, these terms are estimated by∫
R3

|u(T )| |SkΓau(T )|2 dx +

∫
R3

|u(0)| |SkΓau(0)|2 dx

+

∫ T

0

∫
R3

max
γ,µ,j
|∂(ηPN (ω̂)ω̂γω̂µω̂j)| |u| |SkΓau|2 dxdt

+

∫ T

0

∫
R3

η |PN (ω̂)| |∂u| |SkΓau|2 dxdt.

By (11.1), (3.3d), and (4.1), this can be bounded by

ε
[
Ep∗,p∗ [u](T ) + Ep∗,p∗ [u0]

]
+

∫ T

0

〈t〉−3/2‖r1/2u‖L∞Ep∗,p∗ [u](t)dt

+ δ

∫ T

0

‖η∂u‖L∞Ep∗,p∗ [u](t)dt.

From (6.1c), (10.6), and (6.2d), this in turn is estimated by

ε
[
Ep∗,p∗ [u](T ) + Ep∗,p∗ [u0]

]
+

∫ T

0

〈t〉−3/2E3/2
p∗,p∗ [u](t)dt

+ δ

∫ T

0

〈t〉−1E3/2
p∗,p∗ [u](t)dt.

And so, in view of (11.16), the preceding expression serves as a bound for I ′2. By
Propositions 7.2 and 10.1, we have

I ′2 . ε
[
Ep∗,p∗ [u](T ) + Ep∗,p∗ [u0]

]
+ (C1Ep∗,p∗ [u0])3/2

∫ T

0

〈t〉−3/2(1−C1ε)dt

+ δ sup
0≤t≤T

Ep∗,p∗ [u](t)(C1Ep∗,p∗ [u0])1/2

∫ T

0

〈t〉−1+C1ε/2dt

. ε
[
Ep∗,p∗ [u](T ) + Ep∗,p∗ [u0]

]
+

δ

C1ε
S(T )(C1Ep∗,p∗ [u0] 〈T 〉C1ε)1/2.

(11.17)

Combined with (11.4) and (11.6a), (11.17) leads to the bound

S(T ) ≤ A0 +B2

(
C1〈T0〉C1ε

)1/2
S(T ), (11.18)

with A0 as above and

B2 =
C0δ

4C1ε
E1/2
p∗,p∗ [u0].

Putting (11.15), (11.18) together, we have derived

S(T ) ≤ A0 + min{B1, B2}
(
C1〈T0〉C1ε

)1/2
S(T ).

If (11.14) holds, then

min{B1, B2}(C1〈T0〉C1ε)1/2 ≤ 1/2,

and we obtain the desired conclusion

S(T ) ≤ 2A0 ≤ 4A0 = C0Ep∗,p∗ [u0]
(

1 + E1/2
p,q [u0]

)
,
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for 0 ≤ T < T0.

12. Remarks on Local Existence.

Lemma 12.1. The operator

P (∇) = Aj∂ju+ νB∆u

from (2.2a), (2.2c) generates a C0 semigroup U(t) on Xp,q.

Proof. The explicit formula for the Fourier transform of U(t) is

Û(t, ξ) = exp tP (iξ)

= exp t

[
−ν|ξ|2 iξ>

iξ 0

]

=

 b′(t, ξ) iξ>b(t, ξ)

iξb(t, ξ) −ξ ⊗ ξ
∫ t

0
b(s, ξ)ds+ I

 ,
where b(t, ξ) solves the ODE

D2
t b(t, ξ) + ν|ξ|2Dtb(t, ξ) + |ξ|2b(t, ξ) = 0,

b(t, ξ) = 0, Dtb(0, ξ) = 1.

The C∞ function b(t, ξ) is given by

b(t, ξ) =
eλ1(|ξ|2)t − eλ2(|ξ|2)t

λ1(|ξ|2)− λ2(|ξ|2)

with

λ1(|ξ|2) =
1

2

(
−ν|ξ|2 +

√
ν2|ξ|4 − 4|ξ|2

)
∼ −1

ν

λ2(|ξ|2) =
1

2

(
−ν|ξ|2 −

√
ν2|ξ|4 − 4|ξ|2

)
∼ −ν|ξ|2,

as |ξ| → ∞.

Lemma 12.2. If u0 ∈ Xp,q and f = (f0, . . . , f3) = (f0, f̄) ∈ L2([0, T ], Xp,q), then
the IVP

∂tu− P (∇)u = [f0 +∇ · f̄ ]e0, u(0) = u0

has a unique solution u ∈ C0([0, T ], Xp,q) given by

u(t) = U(t)u0 +

∫ t

0

U(t− s)[f0(s) +∇ · f̄(s)]e0ds.

This solution satisfies the estimate

‖u(t)‖2Xp,q + ν

∫ t

0

‖∇u0(s)‖2Xp,qds

. 〈t〉q
[
‖u0‖2Xp,q +

∫ t

0

(‖f0(s)‖2Xp,q + ν−1‖f̄(s)‖2Xp,q )ds

]
. (12.1)

Proof. This can be shown using the Fourier transform, energy estimates, and in-
duction on q.

Theorem 12.3. If u0 ∈ Xp,q, p ≥ 4, satisfies (2.2b), then there exists a T > 0
depending only on ‖u(0)‖Xp,q , ν, and maxα,β,` |C`α,β | such that the IVP for (2.2a),
(2.2b) has a unique solution u ∈ C([0, T ], Xp,q).
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Proof. For |a|+ k ≤ p, k ≤ q, and u ∈ Xp,q, we may write (as in Proposition 10.1)

Sk0 ΓaN(u,∇u) = f0 +∇ · f̄ ,
with f = (f0, f̄) ∈ Xp,q. Thanks to the energy estimate (12.1), the map

F (u)(t) = U(t)u0 +

∫ t

0

U(t− s)N(u(s),∇u(s))ds

is a contraction on C([0, T ], B1(u(0))), provided T is sufficiently small, where B1(u0)
denotes the closed ball of radius one with center u0 in Xp,q.

Proposition 12.4. There is a continuous function Φ : R3 → R+ such that the local
solution of Theorem 12.3 satisfies

‖u(t)‖Xp,q ≤ Φ(‖u0‖Xp,q , t, sup
0≤s≤t

‖u(s)‖Xp,0), 0 ≤ t ≤ T.

Proof. This is proven by induction on q. For |a|+ k ≤ q, the equation satisfied by
v = Sk0 Γau is linear in v.
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