Math 241A
 Instructor: Guofang Wei

Fall 2000

The basic idea of this course is that curvature bounds give information about manifolds, which in turn gives topological results. A typical example is the Bonnet-Myers Theorem. Intuitively,

$$
\text { Bigger curvature } \leadsto \text { Smaller manifold }{ }^{1} \text {. }
$$

1 Volume Comparison Theorem

1.1 Volume of Riemannian Manifold

Recall: For $U \subset \mathbb{R}^{n}$,

$$
\operatorname{vol}(U)=\int_{U} 1 d v=\int_{U} 1 d x_{1} \cdots d x_{n} .
$$

Note $-d x_{1} \cdots d x_{n}$ is called the volume density element.
Change of variable formula: Suppose $\psi: V \rightarrow U$ is a diffeomorphism, with $U, V \subset \mathbb{R}^{n}$. Suppose $\psi(x)=y$. Then

$$
\int_{U} d v=\int_{U} 1 d y_{1} \cdots d y_{n}=\int_{V}|\operatorname{Jac}(\psi)| d x_{1} \cdots d x_{n}
$$

On a Riemannian manifold M^{n}, let $\psi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ be a chart. Set $E_{i p}=\left(\psi_{\alpha}^{-1}\right)_{*}\left(\frac{\partial}{\partial x_{i}}\right)$. In general, the $E_{i p}$'s are not orthonormal. Let $\left\{e_{k}\right\}$ be an orthonormal basis of $T_{p} M$. Then $E_{i p}=\sum_{k=1}^{n} a_{i k} e_{k}$. The volume of

[^0]the parallelepiped spanned by $\left\{E_{i p}\right\}$ is $\left|\operatorname{det}\left(a_{i k}\right)\right|$. Now $g_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}$, so $\operatorname{det}\left(g_{i j}\right)=\operatorname{det}\left(a_{i j}\right)^{2}$. Thus
$$
\operatorname{vol}\left(U_{\alpha}\right)=\int_{\psi\left(U_{\alpha}\right)} \sqrt{\left|\operatorname{det}\left(g_{i j}\right)\right|} \circ\left(\psi_{\alpha}^{-1}\right) d x_{1} \cdots d x_{n}
$$

Note $-d v=\sqrt{\left|\operatorname{det}\left(g_{i j}\right)\right|} \circ\left(\psi_{\alpha}^{-1}\right) d x_{1} \cdots d x_{n}$ is called a volume density element, or volume form, on M.

We have our first result, whose proof is left as an exercise.
Lemma 1.1.1 Volume is well defined.
Definition 1.1.1 Let M be a Riemannian manifold, and let $\left\{U_{\alpha}\right\}$ be a covering of M by domains of coordinate charts. Let $\left\{f_{\alpha}\right\}$ be a partition of unity subordinate to $\left\{U_{\alpha}\right\}$. The volume of M is

$$
\operatorname{vol}(M)=\int_{M} 1 d v=\sum_{\alpha} \int_{\psi\left(U_{\alpha}\right)} f_{\alpha} d v
$$

Lemma 1.1.2 The volume of a Riemannian manifold is well defined.

1.2 Computing the volume of a Riemannian manifold

Partitions of unity are not practically effective. Instead we look for charts that cover all but a measure zero set.

Example 1.2.1 For S^{2}, use stereographic projection.
In general, we use the exponential map. We may choose normal coordinates or geodesic polar coordinates. Let $p \in M^{n}$. Then $\exp _{p}: T_{p} M \rightarrow M$ is a local diffeomorphism. Let $D_{p} \subset T_{p} M$ be the segment disk. Then if C_{p} is the cut locus of $\mathrm{p}, \exp _{p}: D_{p} \rightarrow M-C_{p}$ is a diffeomorphism.

Lemma 1.2.1 C_{p} has measure zero.
Hence we may use $\exp _{p}$ to compute the volume element $d v=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x_{1} \cdots d x_{n}$. Now polar coordinates are not defined at p, but $\{p\}$ has measure zero. We have

$$
\exp _{p}: D_{p}-\{0\} \xrightarrow{\text { diffeo }} M-C_{p} \cup\{p\} .
$$

Set $E_{i}=\left(\exp _{p}\right)_{*}\left(\frac{\partial}{\partial \text { theta }_{i}}\right)$ and $E_{n}=\left(\exp _{p}\right)_{*}\left(\frac{\partial}{\partial r}\right)$. To compute $g_{i j}$'s, we want E_{i} and E_{n} explicitly. Since $\exp _{p}$ is a radial isometry, $g_{n n}=1$ and $g_{n i}=0$ for $1 \leq i<n$. Let $J_{i}(r, \theta)$ be the Jacobi field with $J_{i}(0)=0$ and $J_{i}^{\prime}(0)=\frac{\partial}{\partial \theta_{i}}$. Then $E_{i}\left(\exp _{p}(r, \theta)=J_{i}(r, \theta)\right.$.

If we write J_{i} and $\frac{\partial}{\partial r}$ in terms of an orthonormal basis $\left\{e_{k}\right\}$, we have $J_{i}=\sum_{k=1}^{n} a_{i k} e_{k}$. Thus

$$
\sqrt{\operatorname{det}\left(g_{i j}\right)(r, \theta)}=\left|\operatorname{det}\left(a_{i k}\right)\right| \stackrel{\Delta}{\xlongequal{\Delta}\left\|J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}\right\|, ~ \|}
$$

The volume density, or volume element, of M is

$$
d v=\left\|J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}\right\| d r d \theta_{n-1} \triangleq \mathcal{A}(r, \theta) d r d \theta_{n-1}
$$

Example 1.2.2 \mathbb{R}^{n} has Jacobi equation $J^{\prime \prime}=R(T, J) T$.
If $J(0)=0$ and $J^{\prime}(0)=\frac{\partial}{\partial \theta_{i}}$ then $J(r)=r \frac{\partial}{\partial \theta_{i}}$. Thus the volume element is $d v=r^{n-1} d r d \theta_{n-1}$.

Example 1.2.3 S^{n} has $J_{i}(r)=\sin (r) \frac{\partial}{\partial \theta_{i}}$. Hence $d v=\sin ^{n-1}(r) d r d \theta_{n-1}$.
Example 1.2.4 \mathbb{H}^{n} has $J_{i}(r)=\sinh (r) \frac{\partial}{\partial \theta_{i}}$. Hence $d v=\sinh ^{n-1}(r) d r d \theta_{n-1}$.
Example 1.2.5 Volume of unit disk in \mathbb{R}^{n}

$$
\omega_{n}=\int_{S^{n-1}} \int_{0}^{1} r^{n-1} d r d \theta_{n-1}=\frac{1}{n} \int_{S^{n-1}} d \theta_{n-1}
$$

Note -

$$
\int_{S^{n-1}} d \theta_{n-1}=\frac{2(\pi)^{n / 2}}{\Gamma(n / 2)}
$$

1.3 Comparison of Volume Elements

Theorem 1.3.1 Suppose M^{n} has $\operatorname{Ric}_{M} \geq(n-1) H$. Let $d v=\mathcal{A}(r, \theta) d r d \theta_{n-1}$ be the volume element of M and let $d v_{H}=\mathcal{A}_{H}(r, \theta) d r d \theta_{n-1}$ be the volume element of the model space (simply connected n-manifold with $K \equiv H$). Then

$$
\frac{\mathcal{A}(r, \theta)}{\mathcal{A}_{H}(r, \theta)}
$$

is a nonincreasing function in r.
Proof ${ }^{2}$. We show that

$$
\nabla_{\frac{\partial}{\partial r}}\left(\frac{\mathcal{A}(r, \theta)}{\mathcal{A}_{H}(r, \theta)}\right)^{2} \leq 0
$$

Since

$$
\mathcal{A}(r, \theta)^{2}=\left\langle J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}\right\rangle
$$

we wish to show that

$$
\begin{aligned}
& \left\langle J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}\right\rangle^{\prime} \mathcal{A}_{H}(r, \theta)^{2}- \\
& \quad \mathcal{A}(r, \theta)^{2}\left\langle J_{1}^{H} \wedge \cdots \wedge J_{n-1}^{H} \wedge \frac{\partial}{\partial r}, J_{1}^{H} \wedge \cdots \wedge J_{n-1}^{H} \wedge \frac{\partial}{\partial r}\right\rangle^{\prime} \leq 0 .
\end{aligned}
$$

Thus we wish to show that

$$
\begin{align*}
& 2 \sum_{i=1}^{n-1} \frac{\left\langle J_{1} \wedge \cdots \wedge J_{i}^{\prime} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}\right\rangle}{\left\langle J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_{1} \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}\right\rangle} \\
& \quad \leq 2 \sum_{i=1}^{n-1} \frac{\left\langle J_{1}^{H} \wedge \cdots \wedge\left(J_{i}^{H}\right)^{\prime} \wedge \cdots \wedge J_{n-1}^{H} \wedge \frac{\partial}{\partial r}, J_{1}^{H} \wedge \cdots \wedge J_{n-1}^{H} \wedge \frac{\partial}{\partial r}\right\rangle}{\left\langle J_{1}^{H} \wedge \cdots \wedge J_{n-1}^{H} \wedge \frac{\partial}{\partial r}, J_{1}^{H} \wedge \cdots \wedge J_{n-1}^{H} \wedge \frac{\partial}{\partial r}\right\rangle} \tag{1}
\end{align*}
$$

At $r=r_{0}$, let $\bar{J}_{i}\left(r_{0}\right)$ be orthonormal such that $\bar{J}_{n}\left(r_{0}\right)=\left.\frac{\partial}{\partial r}\right|_{r=r_{0}}$. Then for $1 \leq i<n$,

$$
\bar{J}_{i}\left(r_{0}\right)=\sum_{k=1}^{n-1} b_{i k} J_{k}\left(r_{0}\right) .
$$

[^1]Define $\bar{J}_{i}(r)=\sum_{k=1}^{n-1} b_{i k} J_{k}(r)$, where the $b_{i k}$'s are fixed. Then each \bar{J}_{i} is a linear combination of Jacobi fields, and hence is a Jacobi field.

The left hand side of (1), evaluated at $r=r_{0}$ is

$$
\begin{gathered}
\left.2 \sum_{i=1}^{n-1} \frac{\left\langle\bar{J}_{1} \wedge \cdots \wedge \bar{J}_{i}^{\prime} \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}, \bar{J}_{1} \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}\right\rangle}{\left\langle\bar{J}_{1} \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}, \bar{J}_{1} \wedge \cdots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}\right\rangle}\right|_{r=r_{0}} \\
=2 \sum_{i=1}^{n-1}\left\langle\bar{J}_{i}^{\prime}\left(r_{0}\right), \bar{J}_{i}\left(r_{0}\right)\right\rangle=2 \sum_{i=1}^{n-1} I\left(\bar{J}_{i}, \bar{J}_{i}\right)
\end{gathered}
$$

where I is the index form $I(v, v)=\int_{0}^{r_{0}}\left\langle v^{\prime}, v^{\prime}\right\rangle+\langle R(T, v) T, v\rangle d t$. Note that for a Jacobi field J,

$$
\begin{aligned}
I(J, J) & =\int_{0}^{r_{0}}\left\langle J^{\prime}, J^{\prime}\right\rangle+\langle R(T, J) T, J\rangle d t \\
& =\int_{0}^{r_{0}}\left\langle J^{\prime}, J\right\rangle^{\prime}-\left\langle J^{\prime \prime}, J\right\rangle+\langle R(T, J) T, J\rangle d t \\
& =\left.\left\langle v^{\prime}, v\right\rangle\right|_{r=r_{0}}
\end{aligned}
$$

Let E_{i} be a parallel field such that $E_{i}\left(r_{0}\right)=\bar{J}_{i}\left(r_{0}\right)$, and let $w_{i}=\frac{\sin \sqrt{H} r}{\sin \sqrt{H} r_{0}} E_{i}$. By the Index Lemma, Jacobi fields minimize the index form provided there are no conjugate points. Thus we have $2 \sum_{i=1}^{n-1} I\left(\bar{J}_{i}, \bar{J}_{i}\right) \leq 2 \sum_{i=1}^{n-1} I\left(w_{i}, w_{i}\right)$. By the curvature condition, $2 \sum_{i=1}^{n-1} I\left(w_{i}, w_{i}\right) \leq 2 \sum_{i=1}^{n-1} I\left(\bar{J}_{i}^{H}, \bar{J}_{i}^{H}\right)$, which is the right hand side of (1), evaluated at $r=r_{0}$.

Thus $\frac{\mathcal{A}(r, \theta)}{\mathcal{A}_{H}(r, \theta)}$ is nonincreasing in r.

Remarks:

1. $\lim _{r \rightarrow 0} \frac{\mathcal{A}(r, \theta)}{\mathcal{A}_{H}(r, \theta)}=1$, so $\mathcal{A}(r, \theta) \leq \mathcal{A}_{H}(r, \theta)$.
2. (Rigidity) If $\mathcal{A}\left(r_{0}, \theta\right)=\mathcal{A}_{H}\left(r_{0}, \theta\right)$ for some r_{0}, then $\mathcal{A}(r, \theta)=\mathcal{A}_{H}(r, \theta)$ for all $0 \leq r \leq r_{0}$. But then $B\left(p, r_{0}\right)$ is isometric to $B\left(r_{0}\right) \subset S_{H}^{n}$, where S_{H}^{n} is the model space. But then the Jacobi fields in M correspond to the Jacobi fields in the model space, so that M is isometric to the model space.
3. We cannot use the Index Lemma to prove an analogous result for $\operatorname{Ric}_{M} \leq(n-1) H$. In fact, there is no such result. For example, consider Einstein manifolds with Ric $\equiv(n-1) H$.
4. If $K_{M} \leq H$, we may use the Rauch Comparison Theorem to prove a similar result inside the injectivity radius.
5. (Lohkamp) $\operatorname{Ric}_{M} \leq(n-1) H$ has no topological implications. Any smooth manifold M^{n}, with $n \geq 3$, has a complete Riemannian metric with $\operatorname{Ric}_{M} \leq 0$.
6. $\operatorname{Ric}_{M} \leq(n-1) H$ may still have geometric implications. For example, if M is compact with $\operatorname{Ric}_{M}<0$ then M has a finite isometry group.

1.4 Volume Comparison Theorem

Theorem 1.4.1 (Bishop-Gromov) If M^{n} has $\operatorname{Ric}_{M} \geq(n-1) H$ then

$$
\frac{\operatorname{vol}(B(p, R))}{\operatorname{vol}\left(B^{H}(R)\right)}
$$

is nonincreasing in R.
Proof. We have

$$
\begin{aligned}
\operatorname{vol} B(p, R) & =\int_{B(p, R)} 1 d v \\
& =\int_{0}^{R} \int_{S_{p}(r)} \mathcal{A}(r, \theta) d \theta_{n-1} d r,
\end{aligned}
$$

where $S_{p}(r)=\left\{\theta \in S_{p}: r \theta \in D_{p}\right\}$. Note that $S_{p}\left(r_{1}\right) \subset S_{p}\left(r_{2}\right)$ if $r_{1} \geq r_{2}$. The theorem now follows from two lemmas:

Lemma 1.4.1 If $f(r) / g(r) \geq 0$ is nonincreasing in r, with $g(r)>0$, then

$$
\frac{\int_{0}^{R} f(r) d r}{\int_{0}^{R} g(r) d r}
$$

is nonincreasing in R.

Proof of Lemma.- The numerator of the derivative is

$$
\begin{aligned}
\left(\int_{0}^{R} g(r) d r\right)\left(\int_{0}^{R} f(r) d r\right)^{\prime} & -\left(\int_{0}^{R} f(r) d r\right)\left(\int_{0}^{R} g(r) d r\right)^{\prime} \\
& =f(R)\left(\int_{0}^{R} g(r) d r\right)-g(R)\left(\int_{0}^{R} f(r) d r\right) \\
& =g(R)\left(\int_{0}^{R} g(r) d r\right)\left[\frac{f(R)}{g(R)}-\frac{\int_{0}^{R} f(r) d r}{\int_{0}^{R} g(r) d r}\right]
\end{aligned}
$$

Now

$$
\frac{f(r)}{g(r)} \geq \frac{f(R)}{g(R)} \Rightarrow g(R) f(r) \geq f(R) g(r)
$$

so

$$
\int_{0}^{R} g(R) f(r) d r \geq \int_{0}^{R} f(R) g(r) d r
$$

Thus

$$
\frac{f(R)}{g(R)} \leq \frac{\int_{0}^{R} f(r) d r}{\int_{0}^{R} g(r) d r}
$$

so the derivative is nonpositive.
Lemma 1.4.2 (Comparison of Lower Area of Geodesic Sphere) Suppose r lies inside the injectivity radius of the model space S_{H}^{n}, so that if $H>0$, $r<\pi / \sqrt{H}$. Then

$$
\frac{\int_{S_{p}(r)} \mathcal{A}(r, \theta) d \theta_{n-1}}{\int_{S^{n-1}} \mathcal{A}^{H}(r) d \theta_{n-1}}
$$

is nonincreasing in r.
Proof of Lemma. In the model space, $\mathcal{A}^{H}(r, \theta)$ does not depend on θ, so we write $\mathcal{A}^{H}(r)$. Note that if $r \leq R$,

$$
\begin{aligned}
\frac{\int_{S_{p}(R)} \mathcal{A}(R, \theta) d \theta_{n-1}}{\int_{S^{n-1}} \mathcal{A}^{H}(R) d \theta_{n-1}} & =\frac{1}{\int_{S^{n-1}} d \theta_{n-1}} \int_{S_{p}(R)} \frac{\mathcal{A}(R, \theta)}{\mathcal{A}^{H}(R)} d \theta_{n-1} \\
& \leq \frac{1}{\int_{S^{n-1}} d \theta_{n-1}} \int_{S_{p}(r)} \frac{\mathcal{A}(r, \theta)}{\mathcal{A}^{H}(r)} d \theta_{n-1} \\
& =\frac{\int_{S_{p}(r)} \mathcal{A}(r, \theta) d \theta_{n-1}}{\int_{S^{n-1}} \mathcal{A}^{H}(r) d \theta_{n-1}},
\end{aligned}
$$

since $S_{p}(r) \supset S_{p}(R)$ and $\frac{\mathcal{A}(r, \theta)}{\mathcal{A}^{H}(r)}$ is nonincreasing in r. The theorem now follows.
Note that if R is greater than the injectivity radius then $\operatorname{vol} B(p, R)$ decreases. Thus the volume comparison theorem holds for all R.

Corollaries:

1. (Bishop Absolute Volume Comparison) Under the same assumptions, $\operatorname{vol} B(p, r) \leq \operatorname{vol} B^{H}(r)$.
2. (Relative Volume Comparison) If $r \leq R$ then

$$
\frac{\operatorname{vol} B(p, r)}{\operatorname{vol} B(p, R)} \geq \frac{\operatorname{vol} B^{H}(r)}{\operatorname{vol} B^{H}(R)}
$$

If equality holds for some r_{0} then equality holds for all $0 \leq r \leq r_{0}$, and $B\left(p, r_{0}\right)$ is isometric to $B^{H}\left(r_{0}\right)$.

Proofs:

(1) holds because $\lim _{r \rightarrow 0} \frac{\operatorname{vol} B(p, r)}{\operatorname{vol} B^{H}(r)}=1$.
(2) is a restatement of the the volume comparison theorem.

Sometimes we let $R=2 r$ in (2). Then (2) gives a lower bound on the ratio $\frac{\operatorname{vol} B(p, r)}{\operatorname{vol} B(p, R)}$, called the doubling constant. If $\operatorname{vol}(M) \geq V$ then we obtain a lower bound on the volume of small balls.

Generalizations:

1. The same proof shows that the result holds for $\operatorname{vol}^{\Gamma} B(p, R)$, where $\Gamma \subset S_{p}=S^{n-1} \subset T_{p} M$. In particular, the result holds for annuli $\left(\int_{r_{0}}^{R_{0}} \cdots\right)$ and for cones.
2. Integral Curvature
3. Stronger curvature conditions give submanifold results.

2 Applications of Volume Comparison

2.1 Cheng's Maximal Diameter Rigidity Theorem

Theorem 2.1.1 (Cheng) Suppose M^{n} has $\operatorname{Ric}_{M} \geq(n-1) H>0$. By the Bonnet-Myers Theorem, $\operatorname{diam}_{M} \leq \pi / \sqrt{H}$. If $\operatorname{diam}_{M}=\pi / \sqrt{H}$, Cheng's result states that M is isometric to the sphere S_{H}^{n} with radius $1 / \sqrt{H}$.

Proof. (Shiohama) Let $p, q \in M$ have $d(p, q)=\pi / \sqrt{H}$. Then

$$
\begin{aligned}
\frac{\operatorname{vol} B(p, \pi /(2 \sqrt{H}))}{\operatorname{vol} M} & =\frac{\operatorname{vol} B(p, \pi /(2 \sqrt{H}))}{\operatorname{vol} B(p, \pi / \sqrt{H})} \\
& \geq \frac{\operatorname{vol} B_{H}(\pi(/ 2 \sqrt{H}))}{\operatorname{vol} B_{H}(\pi / \sqrt{H})}=1 / 2
\end{aligned}
$$

Thus vol $B(p, \pi / 2 \sqrt{H}) \geq(\operatorname{vol} M) / 2$. Similarly for q. Hence vol $B(p, \pi /(2 \sqrt{H}))=$ $(\operatorname{vol} M) / 2$, so we have equality in the volume comparison. By rigidity, $B(p, \pi /(2 \sqrt{H}))$ is isometric to the upper hemisphere of S_{H}^{n}. Similarly for $B(q, \pi / 2 \sqrt{H})$, so $\operatorname{vol} M=\operatorname{vol}, S_{H}^{n}$.

Question: What about perturbation? Suppose $\operatorname{Ric}_{M} \geq(n-1) H$ and $\operatorname{diam}_{M} \geq \pi / \sqrt{H}-\varepsilon$. In general there is no result for $\varepsilon>0$. There are spaces not homeomorphic to S^{n}, provided $n \geq 4$, with Ric $\geq(n-1) H$ and $\operatorname{diam} \geq \pi / \sqrt{H}-\varepsilon$. Still, if Ric $\geq(n-1) H$ and $\operatorname{vol} M \geq \operatorname{vol} S_{H}^{n}-\varepsilon(n, H)$ then $M^{n} \stackrel{\text { diffeo }}{\sim} S_{H}^{n}$.

2.2 Growth of Fundamental Group

Suppose Γ is a finitely generated group, say $\Gamma=\left\langle g_{1}, \ldots, g_{k}\right\rangle$. Any $g \in \Gamma$ can be written as a word $g=\prod_{i} g_{k_{i}}^{n_{i}}$, where $k_{i} \in\{1, \ldots, k\}$. Define the length of this word to be $\sum_{i}\left|n_{i}\right|$, and let $|g|$ be the mininimum of the lengths of all word representations of g. Note that $|\cdot|$ depends on the choice of generators.

Fix a set of generators for Γ. The growth function of Γ is

$$
\Gamma(s)=\#\{g \in \Gamma:|g| \leq s\}
$$

Example 2.2.1 If Γ is a finite group then $\Gamma(s) \leq|\Gamma|$.

Example 2.2.2 $\Gamma=\mathbb{Z} \oplus \mathbb{Z}$. Then $\Gamma=\left\langle g_{1}, g_{2}\right\rangle$, where $g_{1}=(1,0)$ and $g_{2}=$ $(0,1)$. Any $g \in \Gamma$ can be written as $g=s_{1} g_{1}+s_{2} g_{2}$. To find $\Gamma(s)$, we want $\left|s_{1}\right|+\left|s_{2}\right| \leq s$.

$$
\begin{aligned}
\Gamma(s) & =2 s+1+\sum_{t=1}^{s} 2(2(s-t)+1) \\
& =2 s+1+\sum_{t=1}^{s}(4 s-4 t+2) \\
& =2 s+1+4 s^{2}+2 s-4 \sum_{t=1}^{2} t \\
& =4 s^{2}+4 s+1-4(s(s+1) / 2) \\
& =4 s^{2}+4 s+1-2\left(s^{2}+s\right) \\
& =2 s^{2}+2 s+1
\end{aligned}
$$

In this case we say Γ has polynomial growth.
Example 2.2.3 Γ free abelian on k generators. Then $\Gamma(s)=\sum_{i=0}^{k}\binom{k}{i}\binom{s}{i}$. Γ has polynomial growth of degree k.

Definition 2.2.1 Γ is said to have polynomial growth of degree $\leq n$ if for each set of generators the growth function $\Gamma(s) \leq a s^{n}$ for some $a>0$.
Γ is said to have exponential growth if for each set of generators the growth function $\Gamma(s) \geq e^{a s}$ for some $a>0$.

Lemma 2.2.1 If for some set of generators, $\Gamma(s) \leq a s^{n}$ for some $a>0$, then Γ has polynomial growth of degree $\leq n$. If for some set of generators, $\Gamma(s) \geq e^{a s}$ for some $a>0$, then Γ has exponential growth.

Example 2.2.4 \mathbb{Z}^{k} has polynomial growth of degree k.
Example 2.2.5 $\mathbb{Z} * \mathbb{Z}$ has exponential growth.
Note that for each group Γ there always exists $a>0$ so that $\Gamma(s) \leq e^{a s}$.
Definition 2.2.2 A group is called almost nilpotent if it has a nilpotent subgroup of finite index.

Theorem 2.2.1 (Gromov) A finitely generated group Γ has polynomial growth iff Γ is almost nilpotent.

Theorem 2.2.2 (Milnor) If M^{n} is complete with $\operatorname{Ric}_{M} \geq 0$, then any f nitely generated subgroup of $\pi_{1}(M)$ has polynomial growth of degree $\leq n$.

Proof. Let \tilde{M} have the induced metric. Then $\operatorname{Ric}_{\tilde{M}} \geq 0$, and $\pi_{1}(M)$ acts isometrically on \tilde{M}. Suppose $\Gamma=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ be a finitely generated subgroup of $\pi_{1}(M)$. Pick $p \in M$.

Let $\ell=\max _{i} d\left(g_{i} \tilde{p}, \tilde{p}\right)$. Then if $g \in \pi_{1}(M)$ has $|g| \leq s, d(g \tilde{p}, \tilde{p}) \leq s \ell$.
On the other hand, for any cover there exists $\varepsilon>0$ such that $B(g \tilde{p}, \varepsilon)$ are pairwise disjoint for all $g \in \pi_{1}(M)$. Note that $g B(\tilde{p}, \varepsilon)=B(g \tilde{p}, \varepsilon)$.

Now

$$
\bigcup_{|g| \leq s} B(g \tilde{p}, \varepsilon) \subset B(\tilde{p}, s \ell+\varepsilon)
$$

since the $B(g \tilde{p}, \varepsilon)$'s are disjoint and have the same volume,

$$
\Gamma(s) \operatorname{vol} B(\tilde{p}, \varepsilon) \leq \operatorname{vol} B(\tilde{p}, s \ell+\varepsilon)
$$

Thus

$$
\begin{aligned}
\Gamma(s) & \leq \frac{\operatorname{vol} B(\tilde{p}, s \ell+\varepsilon)}{\operatorname{vol} B(\tilde{p}, \varepsilon)} \\
& \leq \frac{\operatorname{vol} B_{\mathbb{R}^{n}}(0, s \ell+\varepsilon)}{\operatorname{vol} B_{\mathbb{R}^{n}}(0, \varepsilon)}
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{vol}\left(B_{\mathbb{R}^{n}}(0, s)\right. & =\int_{S^{n-1}} \int_{0}^{s} r^{n-1} d r d \theta_{n-1} \\
& =\frac{1}{n} s^{n} \int_{S^{n-1}} d \theta_{n-1} \\
& =s^{n} \omega_{n}
\end{aligned}
$$

so $\Gamma(s) \leq \frac{s \ell+\varepsilon^{n}}{\varepsilon^{n}}$.
Since ℓ and ε are fixed, we may choose a so that $\Gamma(s) \leq a s^{n}$.

Example 2.2.6 Let H be the Heisenberg group

$$
\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, x \in \mathbb{R}\right\}
$$

and let

$$
H_{\mathbb{Z}}=\left\{\left(\begin{array}{ccc}
1 & n_{1} & n_{2} \\
0 & 1 & n_{3} \\
0 & 0 & 1
\end{array}\right): n_{i} \in \mathbb{Z}\right\} .
$$

Then $H / H_{\mathbb{Z}}$ is a compact 3-manifold with $\pi_{1}\left(H / H_{\mathbb{Z}}\right)=H_{\mathbb{Z}}$. The growth of $H_{\mathbb{Z}}$ is polynomial of degree 4 , so $H / H_{\mathbb{Z}}$ has no metric with Ric ≥ 0.

Remarks:

1. If $\operatorname{Ric}_{M} \geq 1 / k^{2}>0$, then M is compact. Thus $\pi_{1}(M)$ is finitely generated. It is unknown whether $\pi_{1}(M)$ is finitely generated if M is noncompact.
2. Ricci curvature gives control on $\pi(M)$, while sectional curvature gives control on the higher homology groups. For example, if $K \geq 0$ then the Betti numbers of M are bounded by dimension.
3. If M is compact then growth of $\pi_{1}(M) \leftrightarrow$ volume growth of \tilde{M}.

Related Results:

1. (Gromov) If $\operatorname{Ric}_{M} \geq 0$ then any finitely generated subgroup of $\pi_{1}(M)$ is almost nilpotent.
2. (Cheeger-Gromoll, 1972) If M is compact with Ric ≥ 0 then $\pi_{1}(M)$ is abelian up to finite index.
3. (Wei, 1988; Wilking 1999) Any finitely generated almost nilpotent group can be realized as $\pi_{1}(M)$ for some M with Ric ≥ 0.
4. Milnor's Conjecture (Open) If M^{n} has $\operatorname{Ric}_{M} \geq 0$ then $\pi_{1}(M)$ is finitely generated.

In 1999, Wilking used algebraic methods to show that $\pi_{1}(M)$ is finitely generated iff any abelian subgroup of $\pi_{1}(M)$ is finitely generated (provided $\left.\operatorname{Ric}_{M} \geq 0\right)$.

Sormani showed in 1998 that if M^{n} has small linear diameter growth, i.e. if

$$
\limsup _{r \rightarrow \infty} \frac{\operatorname{diam} \partial B(p, r)}{r}<s_{n}=\frac{n}{(n-1) 3^{n}}\left(\frac{n-1}{n-2}\right)^{n-1}
$$

then $\pi_{1}(M)$ is finitely generated.

2.2.1 Basic Properties of Covering Space

Suppose $\tilde{M} \rightarrow M$ has the covering metric.

1. M compact \Rightarrow there is a compact set $K \subset \tilde{M}$ such that $\{\gamma K\}_{\gamma \in \pi_{1}(M)}$ covers $\tilde{M} . K$ is the closure of a fundamental domain.
2. $\{\gamma K\}_{\gamma \in \pi_{1}(M)}$ is locally finite.

Definition 2.2.3 Suppose $\delta>0$. Set $S=\{\gamma: d(K, \gamma K) \leq \delta\}$. Note that S is finite.

Lemma 2.2.2 If $\delta>D=\operatorname{diam}_{M}$ then S generates $\pi_{1}(M)$. In fact, for any $a \in K$, if $d(a, \gamma K) \leq(\delta-D) s+D$, then $|\gamma| \leq s$.

Proof. There exists $y \in \gamma K$ such that $d(a, y)=d(a, \gamma K)$. Connect a and y a minimal geodesic σ. Divide σ by $y_{1}, \ldots, y_{s+1}=y$, where $d\left(y_{i}, y_{i+1}\right) \leq \delta-D$ and $d\left(a, y_{i}\right)<D$.

Now $\{\gamma K\}_{\gamma \in \pi_{1}(M)}$ covers \tilde{M}, so there exist $\gamma_{i} \in \pi_{1}(M)$ and $x_{i} \in K$ such that $\gamma_{i}\left(x_{i}\right)=y_{i}$. Choose $\gamma_{s+1}=\gamma$ and $\gamma_{1}=I d$. Then $\gamma=\gamma_{1}^{-1} \gamma_{2} \cdots \gamma_{s}^{-1} \gamma_{s+1}$. But $\gamma_{i}^{-1} \gamma_{i+1} \in S$, since

$$
\begin{aligned}
d\left(x_{i}, \gamma_{i}^{-1} \gamma_{i+1} x_{i}\right) & =d\left(\gamma_{i} x_{i}, \gamma_{i+1} x_{i}\right) \\
& =d\left(y_{i}, \gamma_{i+1} x_{i}\right) \\
& \leq d\left(y_{i}, y_{i+1}\right)+d\left(y_{i+1}, \gamma_{i+1} x_{i}\right) \\
& =d\left(y_{i}, y_{i+1}\right)+d\left(x_{i+1}, x_{i}\right) \\
& \leq \delta .
\end{aligned}
$$

Thus $|\gamma| \leq s$.

Theorem 2.2.3 (Milnor 1968) Suppose M is compact with $K_{M}<0$. Then $\pi_{1}(M)$ has exponential growth.

Note that $K_{M} \leq-H<0$ since M is compact. The volume comparison holds for $K \leq-H$, but only for balls inside the injectivity radius. Since $K_{M}<0$, though, the injectivity radius is infinite.

Proof of Theorem. By the lemma,

$$
\bigcup_{|\gamma| \leq s} \gamma K \supset B(a,(\delta-D) s+D)
$$

so $\Gamma(s) \operatorname{vol}(K) \geq \operatorname{vol} B(a,(\delta-d) s+D)$. Note that

$$
\operatorname{vol} B(a,(\delta-D) s+D) \geq \operatorname{vol} B^{-H}(a,(\delta-D) s+D)
$$

since $K_{\tilde{M}} \leq-H<0$.
Now

$$
\begin{aligned}
\operatorname{vol} B^{-H}(r) & =\int_{S^{n-1}} \int_{0}^{r}\left(\frac{\sinh \sqrt{H} r}{\sqrt{H}}\right)^{n-1} d r d \theta_{n-1} \\
& =n \omega_{n} \int_{0}^{r}\left(\frac{\sinh \sqrt{H} r}{\sqrt{H}}\right)^{n-1} d r d \theta_{n-1} \\
& \geq \frac{n \omega_{n}}{2(2 \sqrt{H})^{n-1}(n-1) \sqrt{H}} e^{\sqrt{H} r}
\end{aligned}
$$

for r large.
Thus

$$
\Gamma(s) \geq \frac{\operatorname{vol} B(a,(\delta-D) s+D)}{\operatorname{vol}(K)} \geq C(n, H) e^{(\delta-D) \sqrt{H} s}
$$

where $C(n, H)$ is constant.
Corollary The torus does not admit a metric with negative sectional curvature.

2.3 First Betti Number Estimate

Suppose M is a manifold. The first Betti number of M is

$$
b_{1}(M)=\operatorname{dim} H_{1}(M, \mathbb{R})
$$

Now $H_{1}(M, \mathbb{Z})=\pi_{1}(M) /\left[\pi_{1}(M), \pi_{1}(M)\right]$, which is the fundamental group of M made abelian. Let T be the group of torsion elements in $H_{1}(M, \mathbb{Z})$. Then $T \triangleleft H_{1}(M, \mathbb{Z})$ and $\Gamma=H_{1}(M, \mathbb{Z}) / T$ is a free abelian group. Moreover,

$$
b_{1}(M)=\operatorname{rank}(\Gamma)=\operatorname{rank}\left(\Gamma^{\prime}\right),
$$

where Γ^{\prime} is any subgroup of Γ with finite index.
Theorem 2.3.1 (Gromov, Gallot) Suppose M^{n} is a compact manifold with $\operatorname{Ric}_{M} \geq(n-1) H$ and $\operatorname{diam}_{M} \leq D$. There is a function $C\left(n, H D^{2}\right)$ such that $b_{1}(M) \leq C\left(n, H D^{2}\right)$ and $\lim _{x \rightarrow 0^{-}} C(n, x)=n$ and $C(n, x)=0$ for $x>0$. In particular, if $H D^{2}$ is small, $b_{1}(M) \leq n$.

Proof. First note that if M is compact and $\operatorname{Ric}_{M}>0$ then $\pi_{1}(M)$ is finite. In this case $b_{1}(M)=0$. Also, by Milnor's result, if M is compact with $\operatorname{Ric}_{M} \geq 0$ then $b_{1}(M) \leq n$.

As above, $b_{1}(M)=\operatorname{rank}(\Gamma)$, where $\Gamma=\pi_{1}(M) /\left[\pi_{1}(M), \pi_{1}(M)\right] / T$. Set $\bar{M}=\tilde{M} /\left[\pi_{1}(M), \pi_{1}(M)\right] / T$ be the covering space of M corresponding to Γ. Then Γ acts isometrically as deck transformations on \bar{M}.

Lemma 2.3.1 For fixed $\tilde{x} \in \bar{M}$ there is a subgroup $\Gamma^{\prime} \leq \Gamma,\left[\Gamma: \Gamma^{\prime}\right]$ finite, such that $\Gamma^{\prime}=\left\langle\gamma_{1}, \ldots, \gamma_{2}\right\rangle$, where:

1. $d\left(x, \gamma_{i}(x)\right) \leq 2 \operatorname{diam}_{M}$ and
2. For any $\gamma \in \Gamma^{\prime}-\{e\}, d(x, \gamma(x))>\operatorname{diam}_{M}$.

Proof of Lemma. For each $\varepsilon \geq 0$ let $\Gamma_{\varepsilon} \leq \Gamma$ be generated by

$$
\left\{\gamma \in \Gamma: d(x, \gamma(x)) \leq 2 \operatorname{diam}_{M}+\varepsilon\right\} .
$$

Then Γ_{ε} has finite index. For if $\bar{M} / \Gamma_{\varepsilon}$ is a covering space corresponding to $\Gamma / \Gamma_{\varepsilon}$. Then $\left[\Gamma: \Gamma_{\varepsilon}\right]$ is the number of copies of M in $\bar{M} / \Gamma_{\varepsilon}$. We show that $\operatorname{diam}\left(\bar{M} / \Gamma_{\varepsilon}\right) \leq 2 \operatorname{diam}_{M}+2 \varepsilon$ so that $\bar{M} / \Gamma_{\varepsilon}$.

Suppose not, so there is $z \in \bar{M}$ such that $d(x, z)=\operatorname{diam}_{M}+\varepsilon$. Then there is $\gamma \in \Gamma$ that $d(\gamma(x), z) \leq \operatorname{diam}_{M}$. Then if π_{ε} is the covering $\bar{M} \rightarrow \bar{M} / \Gamma_{\varepsilon}$,

$$
\begin{aligned}
d\left(\pi_{\varepsilon} x, \pi_{\varepsilon} \gamma(x)\right) & \geq d\left(\pi_{\varepsilon} x, \pi_{\varepsilon} z\right)-d\left(\pi_{\varepsilon} z, \pi_{\varepsilon} \gamma(x)\right) \\
& \geq \operatorname{diam}_{M}+\varepsilon-\operatorname{diam}_{M} \\
& =\varepsilon .
\end{aligned}
$$

Thus $\gamma \notin \Gamma_{\varepsilon}$. But

$$
\begin{aligned}
d(x, \gamma(x)) & \leq d(x, z)+d(z, \gamma(x)) \\
& \leq 2 \operatorname{diam}_{M}+\varepsilon
\end{aligned}
$$

Thus $\bar{M} / \Gamma_{\varepsilon}$ is compact, so Γ_{ε} has finite index. Moreover,

$$
\left\{\gamma \in \Gamma: d(x, \gamma(x)) \leq 3 \operatorname{diam}_{M}\right\}
$$

is finite, Γ_{ε} is finitely generated. Also, note that for ε small,

$$
\left\{\gamma \in \Gamma: d(x, \gamma(x)) \leq 2 \operatorname{diam}_{M}\right\}=\left\{\gamma \in \Gamma: d(x, \gamma(x)) \leq 2 \operatorname{diam}_{M}+\varepsilon\right\} .
$$

Pick such an $\varepsilon>0$.
Since $\Gamma_{\varepsilon} \leq \Gamma$ has finite index, $b_{1}(M)=\operatorname{rank}\left(\Gamma_{\varepsilon}\right)$. Now Γ_{ε} is finitely generated, say $\Gamma_{\varepsilon}=\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle$; pick linearly independent generators $\gamma_{1}, \ldots, \gamma_{b_{1}}$ so that $\Gamma^{\prime \prime}=\left\langle\gamma_{1}, \ldots, \gamma_{b_{1}}\right\rangle$ has finite index in Γ_{ε}.

Let $\Gamma^{\prime}=\left\langle\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{b_{1}}\right\rangle$, where $\tilde{\gamma}_{k}=\ell_{k 1} \gamma_{1}+\cdots+\ell_{k k} \gamma_{k}$ and the coefficients $\ell_{k i}$ are chosen so that $\ell_{k k}$ is maximal with respect to the constraints:

1. $\tilde{\gamma}_{k} \in \Gamma^{\prime \prime} \cap\left\{\gamma \in \Gamma: d(x, \gamma(x)) \leq 2 \operatorname{diam}_{M}\right\}$ and
2. $\operatorname{span}\left\{\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{k}\right\} \leq \operatorname{span}\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}$ with finite index.

Then $\Gamma^{\prime} \leq \Gamma^{\prime \prime}$ has finite index, and $d\left(x, \tilde{\gamma}_{i}(x)\right) \leq 2 \operatorname{diam}_{M}$ for each i.
Finally, suppose there exists $\gamma \in \Gamma^{\prime}-\{e\}$ with $d(x, \gamma(x)) \leq \operatorname{diam}_{M}$, write

$$
\gamma=m_{1} \tilde{\gamma}_{1}+\cdots+\tilde{\gamma}_{k},
$$

with $m_{k} \neq 0$. Then $d\left(x, \gamma^{2}(x)\right) \leq 2 d(x, \gamma(x)) \leq 2 \operatorname{diam}_{M}$, but

$$
\begin{aligned}
\gamma^{2} & =2 m_{1} \tilde{\gamma}_{1}+\cdots+2 m_{k} \tilde{\gamma}_{k} \\
& =\left(\text { terms involving } \gamma_{i}, i<k\right)+2 m_{k} \ell_{k k} \gamma_{k},
\end{aligned}
$$

which contradicts the choice of the coefficients $\ell_{k i}$.
Proof of Theorem. Let $\Gamma^{\prime}=\left\langle\gamma_{1}, \ldots, \gamma_{b_{1}}\right\rangle$ be as in the lemma. Then $d\left(\gamma_{i}(x), \gamma_{j}(x)\right)=d\left(x, \gamma_{i}^{-1} \gamma_{j}(x)\right)>D=\operatorname{diam}_{M}$, where $i \neq j$. Thus

$$
B\left(\gamma_{i}(x), D / 2\right) \cap B\left(\gamma_{j}(x), D / 2\right)=\emptyset
$$

for $i \neq j$. Also

$$
B\left(\gamma_{i}(x), D / 2\right) \subset B(x, 2 D+D / 2)
$$

for all i, so that

$$
\bigcup_{i=1}^{b_{1}} B\left(\gamma_{i}(x), D / 2\right) \subset B(x, 2 D+D / 2)
$$

Hence

$$
b_{1} \leq \frac{\operatorname{vol} B(x, 2 D+D / 2)}{\operatorname{vol} B(x, D / 2)} \leq \frac{\operatorname{vol} B^{H}(2 D+D / 2)}{\operatorname{vol} B^{H}(D / 2)}
$$

Since the result holds for $H \geq 0$, assume $H<0$. Then

$$
\begin{aligned}
\frac{\operatorname{vol} B^{H}(2 D+D / 2)}{\operatorname{vol} B^{H}(D / 2)} & =\frac{\int_{S^{n-1}} \int_{0}^{5 D / 2}\left(\frac{\sinh \sqrt{-H t} t}{\sqrt{-H}}\right)^{n-1} d t d \theta}{\int_{S^{n-1}} \int_{0}^{D / 2}\left(\frac{\sinh \sqrt{-H} t}{\sqrt{-H}}\right)^{n-1} d t d \theta} \\
& =\frac{\int_{0}^{5 D / 2}(\sinh \sqrt{-H} t)^{n-1} d t}{\int_{0}^{D / 2}(\sinh \sqrt{-H} t)^{n-1} d t} \\
& =\frac{\int_{0}^{5 D \sqrt{-H} / 2}(\sinh r)^{n-1} d r}{\int_{0}^{D \sqrt{-H} / 2}(\sinh r)^{n-1} d r}
\end{aligned}
$$

Let $U(s)=\left\{\gamma \in \Gamma^{\prime}:|\gamma| \leq s\right\}$. Then

$$
\bigcup_{\gamma \in U(s)} B(\gamma x, D / 2) \subset B(x, 2 D s+D / 2)
$$

whence

$$
\begin{aligned}
\# U(s) & \leq \frac{\operatorname{vol} B(x, 2 D s+D / 2)}{\operatorname{vol} B(x, D / 2)} \\
& \leq \frac{\operatorname{vol} B^{H}(2 D s+D / 2)}{\operatorname{vol} B^{H}(D / 2)} \\
& =\frac{\int_{0}^{\left(2 s+\frac{1}{2}\right) D \sqrt{-H}}(\sinh r)^{n-1} d r}{\int_{0}^{D \sqrt{-H} / 2}(\sinh r)^{n-1} d r} \\
& \leq \frac{2\left(2 s+\frac{1}{2}\right)^{n}(D \sqrt{-H})^{n}}{\left(\frac{1}{2}\right)^{n}(D \sqrt{-H})^{n}} \\
& =2^{n+1}\left(2 s+\frac{1}{2}\right)^{n}
\end{aligned}
$$

Thus $b_{1}(M)=\operatorname{rank}\left(\Gamma^{\prime}\right) \leq n$, so that for $H D^{2}$ small, $b_{1}(M) \leq n$.
Conjecture: For M^{n} with $\operatorname{Ric}_{M} \geq(n-1) H$ and $\operatorname{diam}_{M} \leq D$, the number of generators of $\pi_{1}(M)$ is uniformly bounded by $C(n, H, D)$.

2.4 Finiteness of Fundamental Groups

Lemma 2.4.1 (Gromov, 1980) For any compact M^{n} and each $\tilde{x} \in \tilde{M}$ there are generators $\gamma_{1}, \ldots, \gamma_{k}$ of $\pi_{1}(M)$ such that $d\left(\tilde{x}, \gamma_{i} \tilde{x}\right) \leq 2 \operatorname{diam}_{M}$ and all relations of $\pi_{1}(M)$ are of the form $\gamma_{i} \gamma_{j}=\gamma_{\ell}$.

Proof. Let $0<\varepsilon<$ injectivty radius. Triangulate M so that the length of each adjacent edge is less than ε. Let x_{1}, \ldots, x_{k} be the vertices of the triangulation, and let $e_{i j}$ be minimal geodesics connecting x_{i} and x_{j}.

Connect x to each x_{i} by a minimal geodesic σ_{i}, and set $\sigma_{i j}=\sigma_{j}^{-1} e_{i j} \sigma_{i}$. Then $\ell\left(\sigma_{i j}\right)<2 \operatorname{diam}_{M}+\varepsilon$, so $d\left(\tilde{x}, \sigma_{i j} \tilde{x}\right)<2 \operatorname{diam}_{M}+\varepsilon$.

We claim that $\left\{\sigma_{i j}\right\}$ generates $\pi_{1}(M)$. For any loop at x is homotopic to a 1 -skeleton, while $\sigma_{j k} \sigma_{i j}=\sigma_{i k}$ as adjacent vertices span a 2 -simplex. In addition, if $1=\sigma \in \pi_{1}(M), \sigma$ is trivial in some 2-simplex. Thus $\sigma=1$ can be expressed as a product of the above relations.

Theorem 2.4.1 (Anderson, 1990)) In the class of manifolds M with $\operatorname{Ric}_{M} \geq$ $(n-1) H, \operatorname{vol}_{M} \geq V$ and $\operatorname{diam}_{M} \leq D$ there are only finitely many isomorphism types of $\pi_{1}(M)$.

Remark: The volume condition is necessary. For example, S^{3} / \mathbb{Z}_{n} has $K \equiv 1$ and diam $=\pi / 2$, but $\pi_{1}\left(S^{3} / \mathbb{Z}_{n}\right)=\mathbb{Z}_{n}$. In this case, $\operatorname{vol}\left(S^{3} / \mathbb{Z}_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof of Theorem. Choose generators for $\pi_{1}(M)$ as in the lemma; it is sufficient to bound the number of generators.

Let F be a fundamental domain in \tilde{M} that contains \tilde{x}. Then

$$
\bigcup_{i=1}^{k} \gamma_{i}(F) \subset B(\tilde{x}, 3 D)
$$

Also, $\operatorname{vol}(F)=\operatorname{vol}(M)$, so

$$
k \leq \frac{\operatorname{vol} B(\tilde{x}, 3 D)}{\operatorname{vol} M} \leq \frac{\operatorname{vol} B^{H}(3 D)}{V}
$$

This is a uniform bound depending on H, D and V.
Theorem 2.4.2 (Anderson, 1990) For the class of manifolds M with $\operatorname{Ric}_{M} \geq$ $(n-1) H, \operatorname{vol}_{M} \geq V$ and $\operatorname{diam}_{M} \leq D$ there are $L=L(n, H, V, D)$ and $N=N(n, H, V, D)$ such that if $\Gamma \subset \pi_{1}(M)$ is generated by $\left\{\gamma_{i}\right\}$ with each $\ell\left(\gamma_{i}\right) \leq L$ then the order of Γ is at most N.

Proof. Let $\Gamma=\left\langle\gamma_{1}, \ldots, \gamma_{k}\right\rangle \subset \pi_{1}(M)$, where each $\ell\left(\gamma_{i}\right) \leq L$. Set

$$
U(s)=\{\gamma \in \Gamma:|\gamma| \leq s\}
$$

and let $F \subset \tilde{M}$ be a fundamental domain of M. Then $\gamma_{i}(F) \cap \gamma_{j}(F)$ has measure zero for $i \neq j$. Now

$$
\bigcup_{\gamma \in U(s)} \gamma(F) \subset B(\tilde{x}, s L+D)
$$

so

$$
\# U(s) \leq \frac{\operatorname{vol} B^{H}(s L+D)}{V}
$$

Note that if $U(s)=U(s+1)$, then $U(s)=\Gamma$. Also, $U(1) \geq 1$. Thus, if Γ has order greater than N, then $U(N) \geq N$.

Set $L=D / N$ and $s=N$. Then

$$
N \leq U(N) \leq \frac{\operatorname{vol} B^{H}(2 D)}{V}
$$

Hence $|\Gamma| \leq N=\frac{\operatorname{vol} B^{H}(2 D)}{V}+1$, so Γ is finite.

3 Laplacian Comparison

3.1 What is the Laplacian?

We restrict our attention to functions, so the Laplacian is a function

$$
\Delta: \mathcal{C}^{\infty}(M) \rightarrow \mathcal{C}^{\infty}(M)
$$

3.1.1 Invariant definition of the Laplacian

Suppose $f \in \mathcal{C}^{\infty}(M)$. The gradient of f is defined by $\langle\nabla f, X\rangle=X f$. Note that the gradient depends on the metric. We may also define the Hessian of f to be the symmetric bilinear form Hess $f: \chi(M) \times \chi(M) \rightarrow \mathcal{C}^{\infty}(M)$ by

$$
\text { Hess } f(X, Y)=\nabla_{X, Y}^{2} f=X(Y f)-\left(\nabla_{X} Y\right) f=\left\langle\nabla_{X} \nabla f, Y\right\rangle
$$

The Laplacian of f is the trace of Hess $f, \Delta f=\operatorname{tr}(\operatorname{Hess} f)$. Note that if $\left\{e_{i}\right\}$ is an orthonormal basis, we have

$$
\begin{aligned}
\Delta f & =\operatorname{tr}\left\langle\nabla_{X} \nabla f, Y\right\rangle \\
& =\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \nabla f, e_{i}\right\rangle \\
& =\operatorname{div} \nabla f .
\end{aligned}
$$

3.1.2 Laplacian in terms of geodesic polar coordinates

Fix $p \in M$ and use geodesic polar coordinates about p. For any $x \in M-C_{p}$, $x \neq p$, connect p to x by a normalized minimal geodesic γ so $\gamma(0)=p$ and $\gamma(r)=x$. Set $N=\gamma^{\prime}(r)$, the outward pointing unit normal of the geodesic sphere. Let e_{2}, \ldots, e_{n} be an orthonormal basis tangent to the geodesic sphere, and extend N, e_{2}, \ldots, e_{n} to an orthonormal frame in a neighborhood of x. Then if $e_{1}=N$,

$$
\Delta f=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} \nabla f, e_{i}\right\rangle=\sum_{i=1}^{n}\left(e_{i}\left(e_{i} f\right)-\left(\nabla_{e_{i}} e_{i}\right) f\right) .
$$

Note that

$$
\begin{aligned}
\nabla_{e_{i}} e_{i} & =\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle N+\left(\nabla_{e_{i}} e_{i}\right)^{T} \\
& =\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle N+\left(\bar{\nabla}_{e_{i}} e_{i}\right),
\end{aligned}
$$

where $\bar{\nabla}$ is the induced connection on $\partial B(p, r)$. Thus

$$
\begin{aligned}
\Delta f & =N(N f)-\left(\nabla_{N} N\right) f+\sum_{i=2}^{n}\left(e_{i}\left(e_{i} f\right)-\left(\nabla_{e_{i}} e_{i}\right) f\right) \\
& =\frac{\partial^{2} f}{\partial r^{2}}+\sum_{i=2}^{n}\left(e_{i}\left(e_{i} f\right)-\left(\bar{\nabla}_{e_{i}} e_{i}\right) f\right)-\left(\sum_{i=2}^{n}\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle N\right) f \\
& =\bar{\Delta} f+m(r, \theta) \frac{\partial}{\partial r} f+\frac{\partial^{2} f}{\partial r^{2}}
\end{aligned}
$$

where $\bar{\Delta}$ is the induced Laplacian on the sphere and $m(r, \theta)=-\sum_{i=2}^{n}\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle$ is the mean curvature of the geodesic sphere in the inner normal direction.

3.1.3 Laplacian in local coordinates

Let $\varphi: U \subset M^{n} \rightarrow \mathbb{R}^{n}$ be a chart, and let $e_{i}=\left(\varphi^{-1}\right)_{*}\left(\frac{\partial}{\partial x_{i}}\right)$ be the corresponding coordinate frame on U. Then

$$
\Delta f=\sum_{k, \ell} \frac{1}{\sqrt{\operatorname{det} g_{i j}}} \partial_{k}\left(\sqrt{\operatorname{det} g_{i j}} g^{k \ell} \partial_{\ell}\right) f
$$

where $g_{i j}=\left\langle e_{i}, e_{j}\right\rangle$ and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$.
Notes:

1. $\Delta f=\frac{\partial^{2}}{\partial r^{2}} f+m(r, \theta) \frac{\partial}{\partial r}+\bar{\Delta} f$. Let $m_{H}(r)$ be the mean curvature in the inner normal direction of $\partial B_{H}(x, r)$. Then

$$
m_{H}(r)=(n-1)\left\{\begin{array}{ll}
\frac{1}{r} & \text { if } H=0 \\
\sqrt{H} \cot \sqrt{H} r & \text { if } H>0 \\
\sqrt{-H} \operatorname{coth} \sqrt{-H} r & \text { if } H<0
\end{array} .\right.
$$

2. We have

$$
m(r, \theta)=\frac{\mathcal{A}^{\prime}(r, \theta)}{\mathcal{A}(r, \theta)},
$$

where $\mathcal{A}(r, \theta) d r d \theta$ is the volume element.
3. We also have

$$
m(r, \theta)=-\sum_{k=0}^{n}\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle
$$

In

$$
\begin{array}{ll}
\mathbb{R}^{n}, & g=d r^{2}+r^{2} d \theta_{n-1}^{2} \\
S_{H}^{n}, & g=d r^{2}+\left(\frac{\sin \sqrt{H} r}{\sqrt{H}}\right)^{2} d \theta_{n-1}^{2} \\
\mathbb{H}_{H}^{n}, & g=d r^{2}+\left(\frac{\sinh \sqrt{-H} r}{\sqrt{-H}}\right)^{2} d \theta_{n-1}^{2} .
\end{array}
$$

By Koszul's formula,

$$
\left\langle\nabla_{e_{i}} e_{i}, N\right\rangle=-\left\langle e_{i},\left[e_{i}, N\right]\right\rangle .
$$

In Euclidean space, $N=\frac{\partial}{\partial r}, \frac{1}{r} e_{i}$ are orthonormal. In S_{H}^{n},

$$
N=\frac{\partial}{\partial r}, \frac{\sqrt{H}}{\sin \sqrt{H} r} e_{i}
$$

are orthonormal, while

$$
N=\frac{\partial}{\partial r}, \frac{\sqrt{-H}}{\sinh \sqrt{-H r}} e_{i}
$$

are orthonormal in \mathbb{H}_{H}^{n}.

3.2 Laplacian Comparison

On a Riemannian manifold M^{n}, the most natural function to consider is the distance function $r(x)=d(x, p)$ with $p \in M$ fixed. Then $r(x)$ is continuous, and is smooth on $M-\left(\{p\} \cup C_{p}\right)$. We consider Δr where r is smooth.

If $x \in M-\left(\{p\} \cup C_{p}\right)$, connect p and x with a normalized, minimal geodesic γ. Then $\gamma(0)=p, \gamma(r(x))=x$ and $\nabla r=\gamma^{\prime}(r)$. In polar coordinates,

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+m(r, \theta) \frac{\partial}{\partial r}+\bar{\Delta} .
$$

Thus $\Delta r=m(r, \theta)$.

Theorem 3.2.1 (Laplacian Comparison, Mean Curvature Comparison)

Suppose M^{n} has $\operatorname{Ric}_{M} \geq(n-1) H$. Let Δ_{H} be the Laplacian of S_{H}^{n} and $m_{H}(r)$ be the mean curvature of $\partial B_{H}(r) \subset M_{H}^{n}$. Then:

1. $\Delta r \leq \Delta_{H} r$ (Laplacian Comparison)
2. $m(r, \theta) \leq m_{H}(r)$ (Mean Curvature Comparison)

Proof. We first derive an equation. Let N, e_{2}, \ldots, e_{n} be an orthonormal basis at p, and extend to an orthonormal frame N, e_{2}, \ldots, e_{n} by parallel translation along N. Then $\nabla_{N} e_{i}=0$, so $\left\langle\nabla_{N} \nabla_{e_{i}} N, e_{i}\right\rangle=N\left\langle\nabla_{e_{i}} N, e_{i}\right\rangle$. Also, $\nabla_{e_{i}} \nabla_{N} N=0$. Thus

$$
\begin{aligned}
\operatorname{Ric}(N, N) & =\sum_{i=2}^{n}\left\langle R\left(e_{i}, N\right) N, e_{i}\right\rangle \\
& =\sum_{i=2}^{n}\left\langle\nabla_{e_{i}} \nabla_{N} N-\nabla_{N} \nabla_{e_{i}} N-\nabla_{\left[e_{i}, N\right]} N, e_{i}\right\rangle \\
& =-\sum_{i=2}^{n} N\left\langle\nabla_{e_{i}} N, e_{i}\right\rangle-\sum_{i=2}^{n}\left\langle\nabla_{\left[e_{i}, N\right]} N, e_{i}\right\rangle .
\end{aligned}
$$

Now

$$
\begin{aligned}
\sum_{i=2}^{n}\left\langle\nabla_{e_{i}} N, e_{i}\right\rangle & =\sum_{i=2}^{n} e_{i}\left\langle N, e_{i}\right\rangle-\left\langle N, \nabla_{e_{i}} e_{i}\right\rangle \\
& =-\sum_{i=2}^{n}\left\langle N, \nabla_{e_{i}} e_{i}\right\rangle \\
& =m(r, \theta),
\end{aligned}
$$

so

$$
\operatorname{Ric}(N, N)=-m^{\prime}(r, \theta)-\sum_{i=2}^{n}\left\langle\nabla_{\left[e_{i}, N\right]} N, e_{i}\right\rangle .
$$

In addition,

$$
\nabla_{e_{i}} N=\sum_{j}\left\langle\nabla_{e_{i}} N, e_{j}\right\rangle e_{j}+\left\langle\nabla_{e_{i}} N, N\right\rangle N .
$$

But

$$
2\left\langle\nabla_{e_{i}} N, N\right\rangle=e_{i}\langle N, N\rangle=0
$$

so

$$
\nabla_{e_{i}} N=\sum_{j}\left\langle\nabla_{e_{i}} N, e_{j}\right\rangle e_{j} .
$$

Thus

$$
\begin{aligned}
\sum_{i=2}^{n}\left\langle\nabla_{\left[e_{i}, N\right]} N, e_{i}\right\rangle & =\sum_{i=2}^{n} \sum_{j=2}^{n}\left\langle\nabla_{e_{i}} N, E_{j}\right\rangle\left\langle\nabla_{e_{j}} N, e_{i}\right\rangle \\
& =\|\operatorname{Hess}(r)\|^{2},
\end{aligned}
$$

where $\|A\|^{2}=\operatorname{tr}\left(A A^{t}\right)$. Hence $\operatorname{Ric}(N, N)=-m^{\prime}(r, \theta)-\|\operatorname{Hess}(r)\|^{2}$.
Now $\|A\|^{2}=\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}$, where the λ_{i} 's are the eigenvalues of A. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of Hess r; since $\nabla_{N} N=0$ we may assume $\lambda_{1}=0$. Then

$$
\begin{aligned}
\|\operatorname{Hess}(r)\|^{2} & =\lambda_{2}^{2}+\cdots+\lambda_{n}^{2} \\
& \geq\left(\lambda_{2}+\cdots+\lambda_{n}\right)^{2} /(n-1)
\end{aligned}
$$

since $\langle A, I\rangle^{2} \leq\|A\|^{2}\|I\|^{2}$ with A diagonal and $\langle A, B\rangle=\operatorname{tr}\left(A B^{t}\right)$. But $\lambda_{2}+$ $\cdots+\lambda_{n}=m(r, \theta)$, so

$$
\|\operatorname{Hess}(r)\|^{2} \geq \frac{m(r, \theta)^{2}}{(n-1)}
$$

Since $\operatorname{Ric}(N, N) \geq(n-1) H$, we have

$$
(n-1) H+m(r, \theta)^{2} /(n-1) \leq-m^{\prime}(r, \theta)
$$

Set $u=(n-1) / m(r, \theta)$, so $m(r, \theta)=(n-1) / u$. Then

$$
H+1 / u^{2} \leq\left(1 / u^{2}\right) u^{\prime}
$$

so

$$
H u^{2}+1 \leq u^{\prime},
$$

which is

$$
\frac{u^{\prime}}{H u^{2}+1} \geq 1
$$

Thus

$$
\int_{0}^{r} \frac{u^{\prime}}{H u^{2}+1} \geq \int_{0}^{r} 1=r .
$$

If $H=0$, we have $u \geq r$. In this case $(n-1) / r \geq m(r, \theta)$, so

$$
m(r, \theta) \leq m_{H}(r)
$$

If $H>0,\left(\tan ^{-1}(\sqrt{H} u)\right) / \sqrt{h} \geq r$. Now as $r \rightarrow 0, m(r, \theta) \rightarrow(n-1) / r$. Thus $u \rightarrow 0$ as $r \rightarrow 0$. Hence $\sqrt{H} u \geq \tan (\sqrt{h} r)$. Thus $\sqrt{H}(n-1) / m(r, \theta) \geq$ $\tan (\sqrt{H} r)$, so

$$
m(r, \theta) \leq \frac{\sqrt{H}(n-1)}{\tan (\sqrt{H} r)}=m_{H}(r)
$$

Note that inside the cut locus of M, the mean curvature is positive, so the inequality is unchanged when we may multiply by $m(r, \theta)$.

If $H<0$, similar arguments show that

$$
m\left(r, \theta \leq \frac{(n-1) \sqrt{-H}}{\operatorname{coth}(\sqrt{-H} r)}=m_{H}(r) .\right.
$$

3.3 Maximal Principle

We first define the Laplacian for continuous functions, and then relate the Laplacian to local extrema.

Lemma 3.3.1 Suppose $f, h \in \mathcal{C}^{2}(M)$ and $p \in M$. Then if

1. $f(p)=h(p)$
2. $f(x) \geq h(x)$ for all x in some neighborhood of p
then
3. $\nabla f(p)=\nabla h(p)$
4. $\operatorname{Hess}(f)(p) \geq \operatorname{Hess}(h)(p)$
5. $\Delta f(p) \geq \Delta h(p)$.

Proof. Suppose $v \in T_{p} M$. Pick $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ so that $\gamma(0)=p$ and $\gamma^{\prime}(0)=v$. Then $(f-h) \circ \gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$, so the result follows from the real case.

Definition 3.3.1 Suppose $f \in \mathcal{C}^{0}(M)$. We say that $\Delta f(p) \geq a$ in the barrier sense if for any $\varepsilon>0$ there exists a function f_{ε}, called a support function, such that

1. $f_{\varepsilon} \in \mathcal{C}^{2}(U)$ for some neighborhood U of p
2. $f_{\varepsilon}(p)=f(p)$ and $f(x) \geq f_{\varepsilon}(x)$ for all $x \in U$
3. $\Delta f_{\varepsilon}(p) \geq a-\varepsilon$.

Note that f_{ε} is also called support from below, or a lower barrier, for f at p. A similar definition holds for upper barrier.

Theorem 3.3.1 (Maximal Principle) If $f \in \mathcal{C}^{0}(M)$ and $\Delta f \geq 0$ then f is constant is a neighborhood of each local maximum. In particular, if f has a global maximum, then f is constant.

Proof. If $\Delta f>0$ then f cannot have a local maximum. Suppose $\Delta f \geq 0$, f has a local maximum at p, but f is not constant at p. We perturb f so that $\Delta F>0$.

Consider the geodesic sphere $\partial B(p, r)$. For r sufficiently small, there is $z \in \partial B(p, r)$ with $f(z)<f(p)$. We define h in a neighborhood of p such that

1. $\Delta h>0$
2. $h<0$ on $V=\{x: f(x)=p\} \cap \partial B(p, r)$
3. $h(p)=0$

To this end, set $h=e^{\alpha \psi}-1$. Then

$$
\begin{aligned}
\nabla h & =\alpha e^{\alpha \psi} \nabla \psi \\
\Delta h & =\alpha^{2} e^{\alpha \psi}\langle\nabla \psi, \nabla \psi\rangle+\alpha e^{\alpha \psi} \Delta \psi \\
& =\alpha e^{\alpha \phi}\left(\alpha|\nabla \psi|^{2}+\Delta \psi\right.
\end{aligned}
$$

We want ψ such that

1. $\psi(p)=0$
2. $\psi(x)<0$ on some neighborhood containing V
3. $\nabla \psi \neq 0$

Choose coordinates so $p \mapsto 0$ and $z \mapsto(r, 0, \ldots, 0)$. Set

$$
\psi=x_{1}-\beta\left(x_{2}^{2}+\cdots+x_{n}^{2}\right),
$$

where β is chosen large enough that $\psi<0$ on some open set in $S_{r}^{n-1}-z$. Then ψ satisfies the above conditions.

Since $|\nabla \psi|^{2} \geq 1$ and $\Delta \psi$ is continuous, we may choose α large enough that $\Delta h>0$. Now consider $f_{\delta}=f+\delta h$ on $B(p, r)$. For δ small,

$$
f_{\delta}(p)=f(p)>\max _{\partial B(p, r)} f_{\delta}(x) .
$$

Thus, for δ small, f_{δ} has a local maximum in the interior of $B(p, r)$. Call this point q, and set $N=\Delta h(q)>0$. Since $\Delta f(q) \geq 0$, there is a lower barrier function for f at q, say g, with $\Delta g>-\delta N / 2$. Then

$$
\Delta(g+\delta h)(q)=\Delta g+\delta \Delta h>\delta N / 2
$$

and $g+\delta h$ is a lower barrier function for f_{δ} at q. Thus $\Delta f_{\delta}(q)>0$, which is a contradiction.

Theorem 3.3.2 (Regularity) If $f \in \mathcal{C}^{0}(M)$ and $\Delta f \equiv 0$ in the barrier sense, then f is \mathcal{C}^{∞}.

If $\Delta f \equiv 0, f$ is called harmonic.

3.4 Splitting Theorem

Definition 3.4.1 A normalized geodesic $\gamma:[0, \infty) \rightarrow M$ is called a ray if $d(\gamma(0), \gamma(t))=t$ for all t. A normalized geodesic $\gamma:(-\infty, \infty)$ is called a line if $d(\gamma(t), \gamma(s))=s-t$ for all $s \geq t$.

Definition 3.4.2 M is called connected at infinity if for all $K \subset M, K$ compact, there is a compact $\tilde{K} \supset K$ such that every two points in $M-\tilde{K}$ can be connected in $M-K$.

Lemma 3.4.1 If M is noncompact then for each $p \in M$ there is a ray γ with $\gamma(0)=p$.

If M is disconnected at infinity then M has a line.
Example 3.4.1 A Paraboloid has rays but no lines.
Example 3.4.2 \mathbb{R}^{2} has lines.
Example 3.4.3 A cylinder has lines.
Example 3.4.4 A surface of revolution has lines.
The theorem that we seek to prove is:
Theorem 3.4.1 (Splitting Theorem: Cheeger Gromoll 1971) Suppose that M^{n} is noncompact, $\operatorname{Ric}_{M} \geq 0$, and M contains a line. Then M is isometric to $N \times \mathbb{R}$, with the product metric, where N is a smooth ($n-1$)manifold with $\operatorname{Ric}_{N} \geq 0$. Thus, if N contains a line we may apply the result to N.

To prove this theorem, we introduce Busemann functions.
Definition 3.4.3 If $\gamma:[0, \infty) \rightarrow M$ is a ray, set $b_{t}^{\gamma}(x)=t-d(x, \gamma(t))$.
Lemma 3.4.2 We have

1. $\left|b_{t}^{\gamma}(x)\right| \leq d(x, \gamma(0))$.
2. For x fixed, $b_{t}^{\gamma}(x)$ is nondecreasing in t.
3. $b_{t}^{\gamma}(x)-b_{t}^{\gamma}(y) \mid \leq d(x, y)$.

Proof. (1) and (3) are the triangle inequality. For (2), suppose $s<t$. Then

$$
\begin{aligned}
b_{s}^{\gamma}(x)-b_{t}^{\gamma}(x) & =(s-t)-d(x, \gamma(s))+d(x, \gamma(t)) \\
& =d(x, \gamma(t))-d(x, \gamma(s))-d(\gamma(s), \gamma(t)) \\
& \leq 0
\end{aligned}
$$

Definition 3.4.4 If $\gamma:[0, \infty) \rightarrow M$ is a ray, the Busemann function associated to γ is

$$
\begin{aligned}
b^{\gamma}(x) & =\lim _{t \rightarrow \infty} b_{t}^{\gamma}(x) \\
& =\lim _{t \rightarrow \infty} t-d(x, \gamma(t))
\end{aligned}
$$

By the above, Busemann functions are well defined and Lipschitz continuous. Intuitively, $b^{\gamma}(x)$ is the distance from $\gamma(\infty)$. Also, since

$$
\begin{aligned}
b^{\gamma}(\gamma(s)) & =\lim _{t \rightarrow \infty} t-d(\gamma(s), \gamma(t)) \\
& =\lim _{t \rightarrow \infty} t-(t-s)=s
\end{aligned}
$$

$b^{\gamma}(x)$ is linear along $\gamma(t)$.
Example 3.4.5 In \mathbb{R}^{n}, the rays are $\gamma(t)=\gamma(0)+\gamma^{\prime}(0) t$. In this case, $b^{\gamma}(x)=$ $\left\langle x-\gamma(0), \gamma^{\prime}(0)\right\rangle$. The level sets of b^{γ} are hyperplanes.

Lemma 3.4.3 If M has $\operatorname{Ric}_{M} \geq 0$ and γ is a ray on M then $\Delta\left(b^{\gamma}\right) \geq 0$ in the barrier sense.

Proof. For each $p \in M$, we construct a support function of b^{γ} at p. We first construct asymptotic rays of γ at p.

Pick $t_{i} \rightarrow \infty$. For each i, connect p and $\gamma\left(t_{i}\right)$ by a minimal geodesic σ_{i}. Then $\left\{\sigma_{i}^{\prime}(0)\right\} \subset S^{n-1}$, so there is a subsequential limit $\tilde{\gamma}^{\prime}(0)$. The geodesic $\tilde{\gamma}$ is called an asymptotic ray of γ at p; note that $\tilde{\gamma}$ need not be unique.

We claim that $b^{\tilde{\gamma}}(x)+b^{\gamma}(p)$ is a support function of b^{γ} at p. For $b^{\tilde{\gamma}}(p)=0$, so the functions agree at p. In addition, $\tilde{\gamma}$ is a ray, so $\tilde{\gamma}(t)$ is not a cut point of $\tilde{\gamma}$ along p. Hence $d(\tilde{\gamma}(t), *)$ is smooth at p, so $b^{\tilde{\gamma}}(x)$ is smooth in a neighborhood of p.

Now

$$
\begin{aligned}
b^{\tilde{\gamma}}(x) & =\lim _{t \rightarrow \infty} t-d(x, \tilde{\gamma}(t)) \\
& \leq \lim _{t \rightarrow \infty} t-d(x, \gamma(s))+d(\tilde{\gamma}(t), \gamma(s)) \\
& =\lim _{t \rightarrow \infty} t+s-d(x, \gamma(s))-s+d(\tilde{\gamma}(t), \gamma(s)) \\
& =\lim _{t \rightarrow \infty} t+b_{s}^{\gamma}(x)-b_{s}^{\gamma}(\tilde{\gamma}(t)) ;
\end{aligned}
$$

letting $s \rightarrow \infty$, we obtain

$$
b^{\tilde{\gamma}}(x) \leq \lim _{t \rightarrow \infty} t+b^{\gamma}(x)-b^{\gamma}(\tilde{\gamma}(t)) .
$$

We also have

$$
\begin{aligned}
b^{\gamma}(p) & =\lim _{i \rightarrow \infty} t_{i}-d\left(p, \gamma\left(t_{i}\right)\right) \\
& =\lim _{i \rightarrow \infty} t_{i}-d\left(p, \sigma_{i}(t)\right)-d\left(\sigma_{i}(t), \gamma\left(t_{i}\right)\right) \\
& =-d(p, \tilde{\gamma}(t))+\lim _{i \rightarrow \infty} t_{i}-d\left(\sigma_{i}(t), \gamma\left(t_{i}\right)\right) \\
& =-d(p, \tilde{\gamma}(t))+b^{\gamma}(\tilde{\gamma}(t)) \\
& =-t+b^{\gamma}(\tilde{\gamma}(t)) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
b^{\tilde{\gamma}}(x)+b^{\gamma}(p) & \leq \lim _{t \rightarrow \infty} t+b^{\gamma}(x)-b^{\gamma}(\tilde{\gamma}(t))-t+b^{\gamma}(\tilde{\gamma}(t)) \\
& =b^{\gamma}(x)
\end{aligned}
$$

so $b^{\hat{\gamma}}(x)+b^{\gamma}(p)$ is a support function for b^{γ} at p. By a similar argument, each $b_{t}^{\gamma}(x)+b^{\gamma}(p)$ is a support function for b^{γ} at p.

Finally, since $\operatorname{Ric}_{M} \geq 0$,

$$
\begin{aligned}
\Delta\left(b_{t}^{\tilde{\gamma}}(x)+b^{\gamma}(p)\right) & =\Delta(t-d(x, \tilde{\gamma}(t))) \\
& =-\Delta(x, \tilde{\gamma}(t)) \\
& \geq-\frac{n-1}{d(x, \tilde{\gamma}(t))}
\end{aligned}
$$

which tends to 0 as $t \rightarrow \infty$. Thus $\Delta\left(b^{\gamma}\right) \geq 0$ in the barrier sense.
The level sets of b_{t}^{γ} are geodesic spheres at $\gamma(t)$. The level sets of b_{t}^{γ} are geodesic spheres at $\gamma(\infty)$.

Lemma 3.4.4 Suppose γ is a line in $M, \operatorname{Ric}_{M} \geq 0$. Then γ defines two rays, γ^{+}and γ^{-}. Let b^{+}and b^{-}be the associated Busemann functions. Then:

1. $b^{+}+b^{-} \equiv 0$ on M.
2. b^{+}and b^{-}are smooth.
3. Given any point $p \in M$ there is a unique line passing through p that is perpendicular to $v_{0}=\left\{x: b^{+}(x)=0\right\}$ and consists of asymptotic rays.

Proof. For

1. Observe that

$$
\begin{aligned}
b^{+}(x)+b^{-}(x) & =\lim _{t \rightarrow \infty}\left(t-d\left(x, \gamma^{+}(t)\right)\right)+\lim _{t \rightarrow \infty}\left(t-d\left(x, \gamma^{-}(t)\right)\right) \\
& =\lim _{t \rightarrow \infty} 2 t-\left(d\left(x, \gamma^{+}(t)\right)-d\left(x, \gamma^{-}(t)\right)\right) \\
& \leq 2 t-d\left(\gamma^{+}(t), \gamma^{-}(t)\right)=0 .
\end{aligned}
$$

Since $b^{+}(\gamma(0))+b^{-}(\gamma(0))=0,0$ is a global maximum. But

$$
\Delta\left(b^{+}+b^{-}\right)=\Delta b^{+}+\Delta b^{-} \geq 0
$$

so $b^{+}+b^{-} \equiv 0$.
2. We have $b^{+}=-b^{-}$. Thus

$$
0 \leq \Delta b^{+}=-\Delta b^{-} \leq 0
$$

so both b^{+}and b^{-}are smooth by regularity.
3. At p there are asymptotic rays $\tilde{\gamma}^{+}$and $\tilde{\gamma}^{-}$. We first show that $\tilde{\gamma}^{+}+\tilde{\gamma}^{-}$ is a line. Since

$$
\begin{aligned}
d\left(\tilde{\gamma}^{+}\left(s_{1}\right), \tilde{\gamma}^{-}\left(s_{2}\right)\right) & \geq d\left(\tilde{\gamma}^{-}\left(s_{2}\right), \gamma^{+}(t)\right)-d\left(\tilde{\gamma}^{+}\left(s_{1}\right), \gamma^{+}(t)\right) \\
& =\left(t-d\left(\tilde{\gamma}^{+}\left(s_{1}\right), \gamma^{+}(t)\right)\right)-\left(t-d\left(\tilde{\gamma}^{-}\left(s_{2}\right), \gamma^{+}(t)\right)\right)
\end{aligned}
$$

holds for all t, we have

$$
\begin{aligned}
d\left(\tilde{\gamma}^{+}\left(s_{1}\right), \tilde{\gamma}^{-}\left(s_{2}\right)\right) & \geq b^{+}\left(\tilde{\gamma}^{+}\left(s_{1}\right)\right)-b^{+}\left(\tilde{\gamma}^{-}\left(s_{2}\right)\right) \\
& =b^{+}\left(\tilde{\gamma}^{+}\left(s_{1}\right)\right)+b^{-}\left(\tilde{\gamma}^{-}\left(s_{2}\right)\right) \\
& \geq \tilde{b}^{+}\left(\tilde{\gamma}^{+}\left(s_{1}\right)\right)+b^{+}(p)+\tilde{b}^{-}\left(\tilde{\gamma}^{-}\left(s_{2}\right)\right)+b^{-}(p) \\
& =s_{1}+s_{2} .
\end{aligned}
$$

Thus $\tilde{\gamma}^{+}+\tilde{\gamma}^{-}$is a line. But our argument shows that any two asymptotic rays form a line, so the line is unique.
Set $\tilde{v}_{t_{0}}=\left(\tilde{b}^{+}\right)^{-1}\left(t_{0}\right)$. Then if $y \in \tilde{v}_{t_{0}}$ we have

$$
\begin{aligned}
d\left(y, \tilde{\gamma}^{+}(t)\right) & \geq\left|\tilde{b}^{+}(y)-\tilde{b}^{+}\left(\tilde{\gamma}^{+}(t)\right)\right| \\
& =\left|t_{0}-t\right| \\
& =d\left(\tilde{\gamma}^{+}\left(t_{0}\right), \tilde{\gamma}^{+}(t)\right),
\end{aligned}
$$

which shows $\tilde{\gamma} \perp \tilde{v}_{t_{0}}$.
Finally, since $\tilde{b}^{+}(x)+b^{+}(p) \leq b^{+}(x)$,

$$
-\left(\tilde{b}^{+}(x)+b^{+}(p)\right) \geq-b^{+}(x) .
$$

But $\tilde{b}^{+}=-\tilde{b}^{-}$and $b^{+}=-b^{-}$, so

$$
\tilde{b}^{-}(x)+b^{-}(p) \geq b^{-}(x)
$$

Since $\tilde{b}^{-}(x)+b^{-}(p) \leq b^{-}(x)$ as well,

$$
\tilde{b}^{-}(x)+b^{-}(p)=b^{-}(x)
$$

Thus the level sets of b^{+}are the level sets of \tilde{b}^{+}, which proves the result.
Note that $b^{+}: M \rightarrow \mathbb{R}$ is smooth. Since b^{+}is linear on γ with a Lipschitz constant $1,\left\|\nabla b^{+}\right\|=1$. Thus $v_{0}=\left(b^{+}\right)^{-1}(0)$ is a smooth ($\mathrm{n}-1$) submanifold of M.

Proof of Splitting Theorem. Let $\phi: \mathbb{R} \times v_{0} \rightarrow M$ be given by $(t, p) \mapsto$ $\gamma(t)=\exp _{p} t \gamma^{\prime}(0)$, where γ is the unique line passing through p, perpendicular to v_{0}. By the existence and uniqueness of γ, ϕ is bijective. Since $\exp _{p}$ is a local diffeomorphism and $\gamma^{\prime}(0)=\left(\nabla b^{+}\right)(v)$ smooth, ϕ is a diffeomorphism.

To show that ϕ is an isometry, set $v_{t}=\left(b^{+}\right)^{-1}(t)$ and let $m(t)$ be the mean curvature of v_{t}. Then $m(t)=\Delta b^{+}=0$. In the proof of the Laplacian comparison, we derived

$$
\operatorname{Ric}(N, N)+\|\operatorname{Hess}(r)\|^{2}=m^{\prime}(r, \theta)
$$

where $N=\nabla \gamma$. Note that γ is the integral curve of ∇b^{+}passing through p, so $\Delta \gamma=m(t)$ and $\nabla b^{+}=N$.

In our case, $\operatorname{Ric}(N, N) \geq 0$ and $m^{\prime}(r, \theta)=0$, so

$$
\left\|\operatorname{Hess}\left(b^{+}\right)\right\|=\|\operatorname{Hess}(r)\| \leq 0 .
$$

Thus $\left\|\operatorname{Hess}\left(b^{+}\right)\right\|=0$, so that ∇b^{+}is a parallel vector field.
Now ϕ is an isometry in the t direction since $\exp _{p}$ is a radial isometry. Suppose X is a vector field on v_{0}. Then

$$
R(N, X) N=\nabla_{N} \nabla_{X} N-\nabla_{X} \nabla_{N} N-\nabla_{[X, N]} N .
$$

But $\nabla_{N} N=0$, and we may extend X in the coordinate direction so that $[X, N]=0$. Since

$$
\nabla_{X} N=\nabla_{X} \nabla b^{+}=0,
$$

we have $R(N, X) N=0$.
Let $J(t)=\phi_{*}(x)=\left.\frac{d}{d s}(\phi(c(s)))\right|_{s=t}$, where $c:(-\varepsilon, \varepsilon) \rightarrow v_{0}$ has $c^{\prime}(t)=X$. Then $J(t)$ is a Jacobi field, $J^{\prime \prime}(t)=0$ and $J \perp N$. Thus $J(t)$ is constant. Hence $\left\|\phi_{*}(X)\right\|=\|X\|$, so ϕ is an isometry.

Remark: Since $\left\|\operatorname{Hess}\left(b^{+}\right)\right\|=0$, we have $\nabla_{X} \nabla b^{+}=0$ for all vector fields X. By the de Rham decomposition, ϕ is a locally isometric splitting.

Summary of Proof of Splitting Theorem.

1. Laplcaian Comparison in Barrier Sense
2. Maximal Principle
3. Bochner Formula: Generalizes $\operatorname{Ric}(N, N)+\|\operatorname{Hess}(r)\|=m^{\prime}(r, \theta)$
4. de Rham Decomposition

Also, the Regularity Theorem was used.

3.5 Applications of the Splitting Theorem

Theorem 3.5.1 (Cheeger-Gromoll 1971) If M^{n} is compact with $\operatorname{Ric}_{M} \geq$ 0 then the universal cover $\tilde{M} \stackrel{\text { iso }}{\sim} N \times \mathbb{R}^{k}$, where N is a compact $(n-k)$ manifold. Thus $\pi_{1}(M)$ is almost π_{1} (Flat Manifold), i.e.

$$
0 \rightarrow F \rightarrow \pi_{1}(M) \rightarrow B_{k} \rightarrow 0
$$

where F is a finite group and B_{k} is the fundamental group of some compact flat manifold.
B_{k} is called a Bieberbach group.
Proof. By the splitting theorem, $\tilde{M} \simeq N \times \mathbb{R}^{k}$, where N has no line. We show N is compact.

Note that isometries map lines to lines. Thus, if $\psi \in \operatorname{Iso}(\tilde{M})$, then $\psi=$ $\left(\psi_{1}, \psi_{2}\right)$, where $\psi_{1}: N \rightarrow N$ and $\psi_{2}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ are isometries. Suppose N is not compact, so N contains a ray $\gamma:[0, \infty) \rightarrow N$. Let F be a fundamental domain of M, so \bar{F} is compact, and let p_{1} be the projection $\tilde{M} \rightarrow N$.

Pick $t_{i} \rightarrow \infty$. For each i there is $g_{i} \in \pi_{1}(M)$ such that $g_{i}\left(\gamma\left(t_{i}\right)\right) \in p_{1}(F)$. But $p_{1}(\bar{F})$ is compact, so we may assume $g_{i}\left(\gamma\left(t_{i}\right)\right) \rightarrow p \in N$. Set $\gamma_{i}(t)=$ $g_{i}\left(\gamma\left(t+t_{i}\right)\right)$. Then $\gamma_{i}:\left[-t_{i}, \infty\right) \rightarrow N$ is minimal, and $\left\{\gamma_{i}\right\}$ converges to a line σ in N.

Thus N is compact. For the second statement, let $p_{2}: \pi_{1}(M) \rightarrow I s o\left(\mathbb{R}^{k}\right)$ be the map $\psi=\left(\psi_{1}, \psi_{2}\right) \mapsto \psi_{2}$. Then

$$
0 \rightarrow \operatorname{Ker}\left(p_{2}\right) \rightarrow \pi_{1}(M) \rightarrow \operatorname{Im}\left(p_{2}\right) \rightarrow 0
$$

is exact. Now $\operatorname{Ker}\left(p_{2}\right)=\left\{\left(\psi_{1}, 0\right)\right\}$, while $\operatorname{Im}\left(\psi_{2}\right)=\left\{\left(0, \psi_{2}\right)\right\}$. Since $\operatorname{Ker}\left(p_{2}\right)$ gives a properly discontinuous group action on a compact manifold, $\operatorname{Ker}\left(p_{2}\right)$ is finite. On the other hand, $\operatorname{Im}\left(p_{2}\right)$ is an isometry group on \mathbb{R}^{k}, so $\operatorname{Im}\left(p_{2}\right)$ is a Bieberbach group.

Remark: The curvature condition is only used to obtain the splitting $\tilde{M} \simeq N \times \mathbb{R}^{k}$. Thus, if the conclusion of the splitting theorem holds, the curvature condition is unnecessary.

Corollary If M^{n} is compact with $\operatorname{Ric}_{M} \geq 0$ and $\operatorname{Ric}_{M}>0$ at one point, then $\pi_{1}(M)$ is finite.

Remark: This corollary improves the theorem of Bonnet-Myers. The corollary can also be proven using the Bochner technique. In fact, Aubin's deformation gives another metric that has $\operatorname{Ric}_{M}>0$ everywhere.

Corollary If M^{n} has $\operatorname{Ric}_{M} \geq 0$ then $b_{1}(M) \leq n$, with equality if and only if $M^{n} \stackrel{\text { iso }}{\sim} T^{n}$, where T^{n} is a flat torus.

Definition 3.5.1 Suppose M^{n} is noncompact. Then M is said to have the geodesic loops to infinity property if for any ray γ in M, any $g \in \pi_{1}(M, \gamma(0))$ and any compact $K \subset M$ there is a geodesic loop c at $\gamma_{t_{0}}$ in $M-K$ such that $g=[c]=\left[\left.\left(\left.\gamma\right|_{0} ^{t_{0}}\right)^{-1} \circ c \circ \gamma\right|_{0} ^{t_{0}}\right]$.

Example 3.5.1 $M=N \times \mathbb{R}$ If the ray γ is in the splitting direction, then any $g \in \pi_{1}(M, \gamma)$ is homotopic to a geodesic loop at infinity along γ.

Theorem 3.5.2 (Sormani, 1999) If M^{n} is complete and noncompact with $\operatorname{Ric}_{M}>0$ then M has the geodesic loops to infinity property.

Theorem 3.5.3 (Line Theorem) If M^{n} does not have the geodesic loops to infinity property then there is a line in \tilde{M}.

Application:(Shen-Sormani) If M^{n} is noncompact with $\operatorname{Ric}_{M}>0$ then $H_{n-1}(M, \mathbb{Z})=0$.

3.6 Excess Estimate

Definition 3.6.1 Given $p, q \in M$, the excess function associated to p and q is

$$
e_{p, q}(x)=d(p, x)+d(q, x)-d(p, q) .
$$

For fixed $p, q \in M$, write $e(x)$.If γ is a minimal geodesic connecting p and q with $\gamma(0)=p$ and $\gamma(1)=q$, let $h(x)=\min _{0 \leq t \leq 1} d(x, \gamma(t))$. Then

$$
0 \leq e(x) \leq 2 h(x)
$$

Let y be the point along γ between p and q with $d(x, y)=h(x)$.
Set

$$
\begin{array}{lr}
s_{1}=d(p, x), & t_{1}=d(p, y) \\
s_{2}=d(q, x), & t_{2}=d(q, y)
\end{array}
$$

We consider triangles pqx for which h / t_{1} is small; such triangles are called thin.

Example 3.6.1 In \mathbb{R}^{n},

$$
s_{1}=\sqrt{h^{2}+t_{1}^{2}}=t_{1} \sqrt{1+\left(h / t_{1}\right)^{2}} .
$$

For a thin triangle, we may use a Taylor expansion to obtain $s_{1} \leq t_{1}(1+$ $\left.\left(h / t_{1}\right)^{2}\right)$. Thus

$$
\begin{aligned}
e(x) & =s_{1}+s_{2}-t_{1}-t_{2} \\
& \leq h^{2} / t_{1}+h^{2} / t_{2} \\
& =h\left(h / t_{1}+h / t_{2}\right) \\
& \leq 2 h(h / t),
\end{aligned}
$$

where $t=\min \left\{t_{1}, t_{2}\right\}$. Thus $e(x)$ is small is h^{2} / t is small.

If M has $K \geq 0$ then the Toponogov comparison shows that $s_{1} \leq$
$\sqrt{h^{2}+t_{1}^{2}}$, so the same estimate holds.
Lemma 3.6.1 $e(x)$ has the following basic properties:

1. $e(x) \geq 0$.
2. $\left.e\right|_{\gamma}=0$.
3. $|e(x)-e(y)| \leq 2 d(x, y)$.
4. If M has $\operatorname{Ric} \geq 0$,

$$
\begin{aligned}
\Delta(e(x)) & \leq(n-1)\left(1 / s_{1}+1 / s_{2}\right) \\
& \leq(n-1)(2 / s)
\end{aligned}
$$

where $s=\min \left\{s_{1}, s_{2}\right\}$.
Proof. (1), (2) and (3) are clear. (4) is a consequence of the following Laplacian comparison.

Lemma 3.6.2 Suppose M has Ric $\geq(n-1) H$. Set $r(x)=d(p, x)$, and let $f: \mathbb{R} \rightarrow \mathbb{R}$. Then, in the barrier sense,

1. If $f^{\prime} \geq 0$ then $\Delta f(r(x)) \leq\left.\Delta_{H} f\right|_{r=r(x)}$.
2. If $f^{\prime} \leq 0$ then $\Delta f(r(x)) \geq\left.\Delta_{H} f\right|_{r=r(x)}$.

Proof. Recall that $\Delta=\frac{\partial^{2}}{\partial r^{2}}+m(r, \theta) \frac{\partial}{\partial r}+\tilde{\Delta}$, where $\tilde{\Delta}$ is the Laplacian on the geodesic sphere. Hence

$$
\begin{aligned}
\Delta f(r(x)) & =f^{\prime \prime}+m(r, \theta) f^{\prime} \\
& =f^{\prime \prime}+\Delta r f^{\prime},
\end{aligned}
$$

so we need only show $\Delta r \leq \Delta_{H} r$ in the barrier sense.
We have proved the result where r is smooth, so need only prove at cut points. Suppose q is a cut point of p. Let γ be a minimal geodesic with $\gamma(0)=p$ and $\gamma(\ell)=q$. We claim that $d(\gamma(\varepsilon), x)+\varepsilon$ is an upper barrier function of $r(x)=d(p, x)$ at q, as

1. $d(\gamma(\varepsilon), x)+\varepsilon \geq d(p, x)$,
2. $d(\gamma(\varepsilon), q)+\varepsilon=d(p, q)$ and
3. $d(\gamma(\varepsilon), x)+\varepsilon$ is smooth near q, since q is not a cut point of $\gamma(\varepsilon)$ for $\varepsilon>0$.

Since

$$
\begin{aligned}
\Delta(d(\gamma(\varepsilon), x)+\varepsilon) & \leq \Delta_{H}(d(\gamma(\varepsilon), x)) \\
& =m_{H}(d(\gamma(\varepsilon), x)) \\
& \leq m_{H}(d(p, x))+c \varepsilon=\Delta_{H}(r(x))+c \varepsilon,
\end{aligned}
$$

we have the result.
Definition 3.6.2 The dilation of a function is

$$
\operatorname{dil}(f)=\min _{x, y} \frac{|f(x)-f(y)|}{d(x, y)}
$$

By property (2) of $e(x)$, we have $\operatorname{dil}(e(x)) \leq 2$.
Theorem 3.6.1 Suppose $U: B(y, R+\eta) \rightarrow \mathbb{R}$ is a Lipschitz function on $M, \operatorname{Ric}_{M} \geq(n-1) H$ and

1. $U \geq 0$,
2. $\operatorname{dil}(U) \leq a$,
3. $u\left(y_{0}\right)=0$ for some $y_{0} \in B(\bar{y}, R)$ and
4. $\Delta U \leq b$ in the barrier sense.

Then $U(y) \leq a c+G(c)$ for all $0<c<R$, where $G(r(x))$ is the unique function on M_{H} such that:

1. $G(r)>0$ for $0<r<R$.
2. $G^{\prime}(r)<0$ for $0<r<R$.
3. $G(R)=0$.
4. $\Delta_{H} G \equiv b$.

Proof. Suppose $H=0, n \geq 3$. We want $\Delta_{H} G=b$. Since $\Delta_{H}=\frac{\partial^{2}}{\partial r^{2}}+$ $m_{H}(r, \theta) \frac{\partial}{\partial r}+\tilde{\Delta}$, we solve

$$
\begin{aligned}
G^{\prime \prime}+(n-1) G^{\prime} / r & =b \\
G^{\prime \prime} r^{2}+(n-1) G^{\prime} r & =b r^{2}
\end{aligned}
$$

which is an Euler type O.D.E. The solutions are $G=G_{p}+G_{h}$, where $G_{p}=$ $b / 2 n r^{2}$ and $G_{h}=c_{1}+c_{2} r^{-(n-2)}$.

Now $G(R)=0$ gives

$$
\frac{b}{2 n} R^{2}+c_{1}+c_{2} R^{-(n-2)}=0
$$

while $G^{\prime}<0$ gives

$$
\frac{b}{n} r-(n-2) c_{2} r^{-(n-1)}>-0
$$

for all $0<r<R$. Thus $c_{2} \geq \frac{b}{n(n-2)} R^{n}$.
Hence $G(r)=\frac{b}{2 n}\left(r^{2}+\frac{2}{n-2} r^{-(n-2)}-\frac{n}{n-2} R^{2}\right.$. Note that $G>0$ follows from $G(R)=0$ and $G^{\prime}<0$.

For general $H<0$,

$$
G(r)=b \int_{r}^{R} \int_{r}^{t}\left(\frac{\sinh \sqrt{-H} t}{\sinh \sqrt{-H} s}\right)^{n-1} d s d t
$$

Note that $\Delta_{H} G \geq b$ by the Laplacian comparison.
To complete the proof, fix $0<c<R$. If $d\left(y, y_{0}\right) \leq c$,

$$
\begin{aligned}
U(y) & =U(y)-U\left(y_{0}\right) \\
& \leq a d\left(y, y_{0}\right) \\
& \leq a c \\
& \leq a c+G(c) .
\end{aligned}
$$

If $d\left(y, y_{0}\right)>c$ then consider G defined on $B(y, R+\varepsilon)$, where $0<\varepsilon<\eta$. Letting $\varepsilon \rightarrow 0$ gives the result.

Consider $V=G-U$. Then $\Delta V=\Delta G-\Delta U \geq 0,\left.V\right|_{\partial B(R+\varepsilon)} \leq 0$ and $V\left(y_{0}\right)>0$. Now y_{0} is in the interior of $B(y, \bar{R}+\varepsilon)-B(y, c)$, so $V\left(y^{\prime}\right)>0$ for some $y^{\prime} \in \partial B(y, c)$. Since

$$
U(y)-U\left(y^{\prime}\right) \leq a d\left(y, y^{\prime}\right)=a c
$$

and

$$
G(c)-U\left(y^{\prime}\right)=V\left(y^{\prime}\right)>0
$$

we have

$$
U(y) \leq a c+U\left(y^{\prime}\right)<a c+G(c) .
$$

We now apply this result to $e(x)$. Here $e(x) \geq 0, a=2$ and $R=h(x)$. We assume $s(x) \geq 2 h(x)$. On $B(x, R)$,

$$
\Delta e \leq \frac{4(n-1)}{s(x)}
$$

so $b=4(n-1) / s(x)$. Thus

$$
\begin{aligned}
e(x) & \leq 2 c+G(c) \\
& =2 c+\frac{2(n-1)}{n s}\left(c^{2}+f r a c 2 n-2 h^{n} c^{-(n-2)}+\frac{n}{n-2} h^{2}\right)
\end{aligned}
$$

for all $0<c<h$.
To find the minimal value for $a r+G(r), 0<r<R$, consider

$$
a+G^{\prime}(r)=a+\frac{b}{2 n}\left(2 r-2 R^{n} r^{1-n}\right)=0
$$

This gives $r\left(R^{n} / r^{n}-1\right)=a n / b$. To get an estimate, choose r small. Then R^{n} / r^{n} is large, so $R^{n} / r^{n-1} \approx a n / b$. Hence

$$
r=\left(\frac{R^{n} b}{a n}\right)^{\frac{1}{n-1}}
$$

is close to a minimal point.
For the excess function, choose

$$
c=\left(\frac{2 h^{n}}{s}\right)^{\frac{1}{n-1}} \approx\left(\frac{h^{n} \frac{4(n-1)}{s}}{2 n}\right)^{\frac{1}{n-1}} .
$$

Then

$$
G(c)=\frac{2(n-1)}{n s}\left(\left(\frac{2 h^{n}}{s}\right)^{2 /(n-1)}+\frac{2}{n-2} h^{n}\left(\frac{2 h^{n}}{s}\right)^{-\frac{n-2}{n-1}}-\frac{n}{n-2} h^{2}\right)
$$

Now

$$
\begin{gathered}
\left(\frac{2 h^{n}}{s}\right)^{\frac{2}{n-1}}=h^{2}\left(\frac{2 h}{s}\right)^{\frac{2}{n-1}}, \\
\frac{2 h}{s} \leq 1
\end{gathered}
$$

and

$$
\frac{n}{n-2}>1
$$

so

$$
\begin{aligned}
G(c) & \leq \frac{2(n-1)}{n} \frac{2}{n-2} \frac{h^{n}}{s}\left(\frac{2 h^{n}}{s}\right)^{\frac{1}{n-1}-1} \\
& \leq \frac{2(n-1)}{n(n-2)}\left(\frac{2 h^{n}}{s}\right)^{\frac{1}{n-1}} \\
& \leq 2 c .
\end{aligned}
$$

Thus

$$
\begin{aligned}
e(x) & \leq 2 c+G(c) \\
& =2 c+2 c \\
& =\left(\frac{2 h^{n}}{s}\right)^{\frac{1}{n-1}} \\
& \leq 8\left(\frac{h^{n}}{s}\right)^{\frac{1}{n-1}}
\end{aligned}
$$

Remarks:

1. A more careful estimate is

$$
e(x) \leq 2\left(\frac{n-1}{n-2}\right)\left(\frac{c_{3} h^{n}}{2}\right)^{\frac{1}{n-1}}=8 h\left(\frac{h}{s}\right)^{\frac{1}{n-1}}
$$

where $c_{3}=\frac{n-1}{n}\left(\frac{1}{s_{1}-h}+\frac{1}{s_{2}-h}\right)$ and $h<\min \left(s_{1}, s_{2}\right)$.
2. In general, if $\operatorname{Ric}_{M} \geq(n-1) H$ then $e(x) \leq h F\left(\frac{h / s}{)}\right.$ for some continuous F satisfying $F(0)=0 . F$ is given by an integral; consider the proof of the estimate in the case $\operatorname{Ric}_{M} \geq 0$.

3.7 Applications of the Excess Estimate

Theorem 3.7.1 (Sormani, 1998) Suppose M^{n} complete and noncompact with $\operatorname{Ric}_{M} \geq 0$. If, for some $p \in M$,

$$
\limsup _{r \rightarrow \infty} \frac{\operatorname{diam}(\partial B(p, r))}{r}<4 s_{n},
$$

where

$$
s_{n}=\frac{1}{2} \frac{1}{3^{n}} \frac{1}{4^{n-1}},
$$

then $\pi_{1}(M)$ is finitely generated.
Compare this result with:
Theorem 3.7.2 (Abresch and Gromoll) If M is noncompact with $\operatorname{Ric}_{M} \geq$ $0, K \geq-1$ and diameter growth $o\left(r^{\frac{1}{n}}\right)$, then M has finite topological type.

Note: Diameter growth is the growth of $\operatorname{diam} \partial B(p, r)$. When Ric ≥ 0, diam $\partial B(p, r) \leq r$. To say M has finite topological type is to say that each $H_{i}(M, \mathbb{Z})$ is finite.

To prove Sormani's result we choose a desirable set of generators for $\pi_{1}(M)$.

Lemma 3.7.1 For M^{n} complete we may choose a set of generators $g_{1}, \ldots, g_{n}, \ldots$ of $\pi_{1}(M)$ such that:

1. $g_{i} \in \operatorname{span}\left\{g_{1}, \ldots, g_{i-1}\right\}$.
2. Each g_{i} can be represented by a minimal geodesic loop γ_{i} based at p such that if $\ell\left(\gamma_{i}\right)=d_{i}$ then $d\left(\gamma(0), \gamma\left(d_{i} / 2\right)\right)=d_{i} / 2$, and the lift $\tilde{\gamma}_{i}$ based at \tilde{p} is a minimal geodesic.

Proof. Fix $\tilde{p} \in \tilde{M}$. Let $G=\pi_{1}(M)$. Choose $g_{1} \in G$ such that $d\left(\tilde{p}, g_{1}(\tilde{p})\right) \leq$ $d(\tilde{p}, g(\tilde{p}))$ for all $g \in G-\{e\}$. Note that since G acts discretely on \tilde{M}, only finitely many elements of G satisfy a given distance restraint.

Let $G_{i}=\left\langle g_{1}, \ldots, g_{i-1}\right\rangle$. Choose $g_{i} \in G-G_{i}$ such that $d\left(\tilde{p}, g_{i}(\tilde{p})\right) \leq$ $d(\tilde{p}, g(\tilde{p}))$ for all $g \in G-G_{i}$. If $\pi_{1}(M)$ is finitely generated, we have a sequence $g_{1}, \ldots, g_{n}, \ldots$; otherwise we have a list. The g_{i} 's satisfy (1). Let $\tilde{\gamma}_{i}$ be the minimal geodesic connecting \tilde{p} to $g_{i}(\tilde{p})$. Set $\gamma_{i}=\pi\left(\tilde{\gamma}_{i}\right)$, where is the covering $\pi: \tilde{M} \rightarrow M$. We claim that if $\ell\left(\gamma_{i}\right)=d_{i}$ then $d\left(\gamma(0), \gamma\left(d_{i} / 2\right)\right)=d_{i} / 2$.

Otherwise, for some i and some $T<d_{i} / 2, \gamma_{i}(T)$ is a cut point of p along γ_{i}. Since M and \tilde{M} are locally isometric, and $\tilde{\gamma}_{i}(T)$ is not conjugate to \tilde{p} along $\tilde{\gamma}, \gamma_{i}(T)$ is not conjugate to p along γ. Hence we can connect p to $\gamma_{i}(T)$ with a second minimal geodesic σ. Set

$$
h_{1}=\left.\sigma^{-1} \circ \gamma_{i}\right|_{[0, T]}
$$

and

$$
h_{2}=\left.\gamma_{i}\right|_{\left[T, d_{i}\right]} \circ \sigma .
$$

Now h_{1} is not a geodesic, so

$$
d\left(\tilde{p}, h_{1}(\tilde{p})\right)<2 T<d_{i} .
$$

Similarly,

$$
d\left(\tilde{p}, h_{2}(\tilde{p})\right)<T+d_{i}-T=d_{i} .
$$

Hence $h_{1}, h_{2} \in G_{i}$. But then $\gamma_{i}=h_{2} \circ h_{1} \in G_{i}$, which is a contradiction.
Lemma 3.7.2 Suppose M^{n} has Ric $\geq 0, n \geq 3$ and γ is a geodesic loop based at p. Set $D=\ell(\gamma)$. Suppose

1. $\left.\gamma\right|_{[0, D / 2]}$, and $\left.\gamma\right|_{[D / 2, D]}$ are minimal.
2. $\ell(\gamma) \leq \ell(\sigma)$ for all $[\sigma]=[\gamma]$.

Then for $x \in \partial B(p, R D), R \geq 1 / 2+s_{n}$, we have $d(x, \gamma(D / 2)) \geq(R-$ $1 / 2) D+2 s_{n} D$.

Remark: $\gamma(D / 2)$ is a cut point of p along γ. Since $d(p, x)>D / 2$, any minimal geodesic connecting p and x cannot pass through $\gamma(D / 2)$. Thus

$$
\begin{aligned}
d(\gamma(D / 2), x) & >d(p, x)-d(p, \gamma(D / 2)) \\
& =R D-D / 2=(R-1 / 2) D .
\end{aligned}
$$

The lemma gives a bound on how much larger $d(\gamma(D / 2), x)$ is.
Proof. It is enough to prove for $R=1 / 2+s_{n}$. For if $R>1 / 2+s_{n}$, we may choose $y \in \partial B\left(p,\left(1 / 2+s_{n}\right)\right)$ such that

$$
d(x, \gamma(D / 2))=d(x, y)+d(y, \gamma(D / 2)) .
$$

Then

$$
\begin{aligned}
d(x, \gamma(D / 2)) & \geq d(x, y)+3 s_{n} D \\
& \geq\left(R-\left(1 / 2+s_{n}\right)\right) D+3 s_{n} D \\
& =(R-1 / 2) D+s_{n} D .
\end{aligned}
$$

Suppose there exists $x \in \partial B\left(p,\left(1 / 2+s_{n}\right) D\right)$ such that

$$
d(x, \gamma(D / 2))=H<3 s_{n} D
$$

Let c be a minimal geodesic connecting x and $\gamma(D / 2)$. Let \tilde{p} be a lift of p, and lift γ to $\tilde{\gamma}$ starting at \tilde{p}. If $g=[\gamma]$, then $\tilde{\gamma}$ connects \tilde{p} and $g(\tilde{p})$.

Lift c to \tilde{c} starting at $\tilde{\gamma}(D / 2)$, and lift $\left.c \circ \gamma\right|_{[0, D / 2]}$ to $\left.\tilde{c} \circ \tilde{\gamma}\right|_{[0, D / 2]}$. Then

$$
\begin{aligned}
d(\tilde{p}, \tilde{x}) & \geq d(p, x) \\
& =\left(1 / 2+s_{n}\right) D
\end{aligned}
$$

and

$$
d(g(\tilde{p}), \tilde{x}) \geq\left(1 / 2+s_{n}\right) D
$$

Thus

$$
\begin{aligned}
e_{\tilde{p}, g(\tilde{p})}(\tilde{x}) & =d(\tilde{p}, \tilde{x})+d(g(\tilde{p}), \tilde{x})-d(\tilde{p}, g(\tilde{p})) \\
& \geq\left(1 / 2+s_{n}\right) D+\left(1 / 2+s_{n}\right) D-D=2 s_{n} D .
\end{aligned}
$$

But, by the excess estimate, if $s \geq 2 h$,

$$
e(\tilde{x}) \leq 8\left(\frac{h^{n}}{s}\right)^{\frac{1}{n-1}}
$$

In this case, $h \leq H<3 s_{n} D$. Also,

$$
s \geq\left(1 / 2+s_{n}\right) D>D / 2
$$

Since $s_{n}<1 / 12$ for $n \geq 2$, we have $s \geq 2 h$. Thus

$$
e(\tilde{x}) \leq 8\left(\frac{\left(3 s_{n} D\right)^{n}}{D / 2}\right)^{\frac{1}{n-1}}
$$

But this gives

$$
2 s_{n} D \leq 8 D\left(2\left(3 s_{n}\right)^{n}\right)^{\frac{1}{n-1}},
$$

whence

$$
s_{n}>\frac{1}{2} \frac{1}{3^{n}} \frac{1}{4^{n-1}} .
$$

We may now prove Sormani's result.
Proof of Theorem. Pick a set of generators $\left\{g_{k}\right\}$ as in the lemma, where g_{k} is represented by γ_{k}. If $x_{k} \in \partial B\left(p,\left(1 / 2+s_{n}\right) d_{k}\right)$, where $d_{k}=\ell\left(\gamma_{k}\right) \rightarrow \infty$, we showed that $d\left(x_{k}, \gamma\left(d_{k} / 2\right)\right) \geq 3 s_{n} d_{k}$.

Let $y_{k} \in \partial B\left(p, d_{k} / 2\right)$ be the point on a minimal geodesic connecting p and x_{k}. Then

$$
\begin{aligned}
\limsup _{r \rightarrow \infty} \frac{\operatorname{diam}(\partial B(p, r))}{r} & \geq \lim _{k \rightarrow \infty} \frac{d\left(y_{k}, \gamma_{k}\left(d_{k} / 2\right)\right)}{d_{k} / 2} \\
& \geq \lim _{k \rightarrow \infty} \frac{2 s_{n} d_{k}}{d_{k} / 2}=4 s_{n}
\end{aligned}
$$

so we have a contradiction if there are infinitely many generators.
The excess estimate can also be used for compact manifolds.
Lemma 3.7.3 Suppose M^{n} with $\operatorname{Ric}_{M} \geq(n-1)$. Then given $\delta>0$ there is $\varepsilon(n, \delta)>0$ such that if $d(p, q) \geq \pi-\varepsilon$ then $e_{p, q}(x) \leq \delta$.

This lemma can be used to prove the following:
Theorem 3.7.3 There is $\varepsilon(n, H)$ such that if M^{n} has $\operatorname{Ric}_{M} \geq(n-1)$, $\operatorname{diam}_{M} \geq \pi-\varepsilon$ and $K_{M} \geq H$ then M is a twisted sphere.

Proof of Lemma. Fix x and set $e=e_{p, q}(x)$. Then $B(x, e / 2), B(p, d(p, x)-$ $e / 2)$ and $B(q, d(x, q)-e / 2)$ are disjoint. Thus

$$
\begin{aligned}
\operatorname{vol}(M) & \geq \operatorname{vol}(B(x, e / 2))+\operatorname{vol}(B(p, d(p, x)-e / 2))+\operatorname{vol}(B(q, d(q, x)-e / 2)) \\
& =\operatorname{vol}(M)\left(\frac{\operatorname{vol}(B(x, e / 2))}{\operatorname{vol}(B(x, \pi))}+\frac{\operatorname{vol}(B(p, d(p, x)-e / 2))}{\operatorname{vol}(B(p, \pi))}+\frac{\operatorname{vol}(B(q, d(q, x)-e / 2))}{\operatorname{vol}(B(q, \pi))}\right) \\
& \geq \operatorname{vol}(M)\left(\frac{v(n, 1, e / 2)+v(n, 1, d(p, x)-e / 2)+v(n, 1, d(q, x)-e / 2)}{v(n, 1, \pi)}\right),
\end{aligned}
$$

where $v(n, H, r)=\operatorname{vol}(B(r)), B(r) \subset M_{H}^{n}$.

Now in $S^{n}(1), \operatorname{vol}(B(r))=\int_{0}^{r} \sin ^{n-1} t d t$ is a convex function of r. Thus we have

$$
\begin{aligned}
v(n, 1, \pi) & \geq v(n, 1, e / 2)+v(n, 1, d(p, x)-e / 2)+v(n, 1, d(q, x)-e / 2) \\
& \geq v(n, 1, e / 2)+2 v\left(n, 1, \frac{d(p, x)+d(q, x)-e}{2}\right) \\
& =v(n, 1, e / 2)+2 v\left(n, 1, \frac{d(p, q)}{2}\right) .
\end{aligned}
$$

Hence

$$
v(n, 1, e / 2) \leq v(n, 1, \pi)-2 v\left(n, 1, \frac{d(p, q)}{2}\right)
$$

which tends to 0 as $\varepsilon \rightarrow 0$. Thus $e \rightarrow 0$.

[^0]: ${ }^{1}$ This quarter we use that bigger curvature \Rightarrow smaller volume

[^1]: ${ }^{2}$ Compare to the proof of the Rauch Comparison Theorem.

