Math 241A

Instructor: Guofang Wei

Fall 2000

The basic idea of this course is that curvature bounds give information
about manifolds, which in turn gives topological results. A typical example
is the Bonnet-Myers Theorem. Intuitively,

Bigger curvature ~» Smaller manifold!.

1 Volume Comparison Theorem

1.1 Volume of Riemannian Manifold

Recall: For U C R",

vol(U):/ldv:/ld:c1~~dxn.
U U

Note - dx; - - - dx,, is called the volume density element.
Change of variable formula: Suppose ¢ : V' — U is a diffeomorphism,
with U,V C R™. Suppose ¢(x) = y. Then

/dv—/ldy1~~-dyn—/ |Jac(V)| dzy - - - dx,,.
U U v

On a Riemannian manifold M™, let v, : U, — R™ be a chart. Set
By, = (v7Y).(:%). In general, the E;’s are not orthonormal. Let {e;}

@ ox;

be an orthonormal basis of T,M. Then E;, = Zaikek. The volume of
k=1

IThis quarter we use that bigger curvature = smaller volume



the parallelepiped spanned by {E;,} is |det(a;)|. Now g;; = Zaikakj, SO
k=1

det(g;;) = det(a;;)?. Thus

vol(Uy) = /w(U | \/ | det(gij)| o (Y1) day - - - dxy,

Note - dv = +/|det(gi;)] o (¥ 1) dxy---dx, is called a volume density

element, or volume form, on M.
We have our first result, whose proof is left as an exercise.

Lemma 1.1.1 Volume is well defined.

Definition 1.1.1 Let M be a Riemannian manifold, and let {U,} be a cov-
ering of M by domains of coordinate charts. Let {f,} be a partition of unity
subordinate to {U,}. The volume of M is

vol(M) = /Mldv = za:/w(Ua) fa dv.

Lemma 1.1.2 The volume of a Riemannian manifold is well defined.

1.2 Computing the volume of a Riemannian manifold

Partitions of unity are not practically effective. Instead we look for charts
that cover all but a measure zero set.

Example 1.2.1 For S?, use stereographic projection.

In general, we use the exponential map. We may choose normal coordi-
nates or geodesic polar coordinates. Let p € M". Then exp, : T,M — M is
a local diffeomorphism. Let D, C T,M be the segment disk. Then if C,, is
the cut locus of p, exp, : D, — M — C}, is a diffeomorphism.

Lemma 1.2.1 Cp has measure zero.
Hence we may use exp,, to compute the volume element dv = y/det(g;;) dx - - - dx,,.

Now polar coordinates are not defined at p, but {p} has measure zero. We
have



dif feo
exp, : D, — {0} EC V- C, U{p}.

Set E; = (exp,).(g7%=) and E, = (exp,).(Z). To compute g;;’s, we

want F; and F, explicitly. Since exp, is a radial isometry, g,, = 1 and
gni = 0 for 1 < i < n. Let J;(r,8) be the Jacobi field with J;(0) = 0 and
J;'(0) = a%' Then Ej(exp,(r,0) = Ji(r,0).

7

If we write J; and % in terms of an orthonormal basis {e;}, we have

J; = Zaikek. Thus

k=1
A 0
det(gij)(r, 9) = |det(azk)| = ||J1 VANCEIVAN Jn—l N EH
The volume density, or volume element, of M is
0 A
dv=||[Ji N Ndp_1 A §|| drdf,—, = A(r,0) drdf,_,
Example 1.2.2 R" has Jacobi equation J = R(T,J)T.

If J(0) = 0 and J'(0) = B%i then J(r) = T(%i. Thus the volume element
is dv =r""tdrdf,_;.

Example 1.2.3 S" has J;(r) = sin(r)55-. Hence dv = sin"'(r) drdf,_,.

Example 1.2.4 H" has J;(r) = sinh(r)a%. Hence dv = sinh™ ' (r) drdf,,_, .

Example 1.2.5 Volume of unit disk in R™

! 1
Wy, = / / r"Ydrdb,,_, = —/ db,,_1
Ssn=1.J0 n Sgn—1

B 2(7T)n/2
/5 o1 = T(n/2)

Note -




1.3 Comparison of Volume Elements

Theorem 1.3.1 Suppose M"™ has Ricyy > (n—1)H. Let dv = A(r,0) drdf,_,
be the volume element of M and let dvy = Ag(r,0)drdf,_; be the volume
element of the model space (simply connected n-manifold with K = H). Then

A(r, )
AH(T, (9)
is a nonincreasing function in r.
Proof?. We show that
A(r,0)
—— 1 ) <.
VilZutroy) <
Since
A(r, 0 = (I A~ A J, /\2 JL A A /\Q>
) 1 n—1 8T7 1 n—1 87" )
we wish to show that
(JiA - A, /\2 JIN N /\2)’,4 (r,0)*—
1 n—1 87"’ 1 n—1 87" H\",
0 d .,
A(r,9)2<J{*’/\---/\Jf_l/\g,Jﬁ/\---/\Jﬁl/\E> < 0.

Thus we wish to show that

n—1 /
2§:<J1/\---/\Ji Ao ANy g N TN AN T A2
(I ANy g N TN ATy A2

i=1

1 ’
<2"Z:<J{IA---/\(J{J) Ao NJEGANZ TN AT AL
4 (JEN-NTE NZ TN AT AL

(1)

At r = 1y, let Ji(rg) be orthonormal such that .J,(rg) = %|T:m. Then for
1 <9< n,

n—1
Ji(ro) = Z bir.Jx (o).
=1

2Compare to the proof of the Rauch Comparison Theorem.
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Define J szka , where the b;;,’s are fixed. Then each J; is a

linear combination of J acobi fields, and hence is a Jacobi field.
The left hand side of (1), evaluated at r = rq is

2"21 (oA AT A NTd AZ A A T A L)
— (iA ANTud A TN AT A2
= r=rg
n—1 B ~ n—1 o
=2 (J, (ro), Jira)) = 2> _I(Ji, ),
i=1 i=1

where I is the index form I(v,v) = [[°(v/,v') + (R(T,v)T,v)dt. Note that
for a Jacobi field J,

I(J,J) = /TO<J’, J') + (R(T, )T, J)dt

_ / PV = 7 0) 4 (R(T, )T, TVt

= <U/7 U>|T=T0’

Let E; be a parallel field such that E;(ro) = J;(ro), and let w; = %EZ

By the Index Lemma, Jacobi fields minimize the index form provided there
n—1 n—1

are no conjugate points. Thus we have QZI ) < ZZI w;, w;). By the

=1 =1
n—1 n—1

curvature condition, 22] wy, w;) < 22] JH,JH), which is the right hand

side of (1), evaluated at r=ro.

Thus % is nonincreasing in r.
Remarks:
A(r, 0)
1. lim————— =1 < .
r—»OAH(r 9 , 80 A(r,0) < Ag(r,0)

2. (Rigidity) If A(ro,0) = Apg(re,0) for some rg, then A(r,0) = Ag(r,0)
for all 0 < r < ry. But then B(p, 1) is isometric to B(rg) C S}, where
S% is the model space. But then the Jacobi fields in M correspond
to the Jacobi fields in the model space, so that M is isometric to the
model space.



3. We cannot use the Index Lemma to prove an analogous result for
Ricyr < (n—1)H. In fact, there is no such result. For example, consider
Einstein manifolds with Ric = (n — 1)H.

4. If Ky < H, we may use the Rauch Comparison Theorem to prove a
similar result inside the injectivity radius.

5. (Lohkamp) Ricy, < (n — 1)H has no topological implications. Any
smooth manifold M™, with n > 3, has a complete Riemannian metric
with Ricy; <0.

6. Ricy < (n — 1)H may still have geometric implications. For example,
if M is compact with Ricy; < 0 then M has a finite isometry group.

1.4 Volume Comparison Theorem

Theorem 1.4.1 (Bishop-Gromov) If M" has Ricys > (n— 1)H then

vol(B(p, R))
vol(BH(R))

15 nonincreasing in R.

Proof. We have

volB(p,R) = / 1dv
B(p,R)

R
- / A(r,0)d6,_dr.
0 Sp(r)

where S,(r) ={0 € S, : v € D, }. Note that S,(r;) C Sy(r2) if 71 > ro. The
theorem now follows from two lemmas:

Lemma 1.4.1 If f(r)/g(r) > 0 is nonincreasing in r, with g(r) > 0, then

JiEFerydr

Jitg(r)dr

15 monincreasing in R.



Proof of Lemma.- The numerator of the derivative is

/ r)dr)( / f(r)dr) /f dr/ g(r)dr)
= 5[ gan) - oR( [ s

ZQWXKEWW>££yfﬁM2Z]
- 10 IR omypr) = F(R)g(r)
) o) > 9(R)
[ smswar= [ g
Thus

R) _ Jy f(r)dr
9(R) ~ fORg(r)dr’

so the derivative is nonpositive.

Lemma 1.4.2 (Comparison of Lower Area of Geodesic Sphere) Suppose
r lies inside the injectivity radius of the model space S}, so that if H > 0,
r < n/vH. Then

fs o (r) 0) dbn—

fsn 1 den 1

18 NOMINCreasing in r.

Proof of Lemma. In the model space, A (r,6) does not depend on &,
S0 we write AH(T). Note that if r < R,

fS” 1 d@n 1 fsn—l denfl Sp(R) AH(R) "
1 A(r,0)
< do,,_
= T ldenl w AH(r)
B fs ) A(r, 0 d9n 1
Jsnr AT (r) dbn

7



since S,(r) D S,(R) and jﬁ,;{jg is nonincreasing in r. The theorem now follows.

Note that if R is greater than the injectivity radius then volB(p, R) de-
creases. Thus the volume comparison theorem holds for all R.
Corollaries:

1. (Bishop Absolute Volume Comparison) Under the same assumptions,
volB(p,r) < volBH(r).

2. (Relative Volume Comparison) If » < R then

volB(p,r) _ volBH(r)
volB(p, R) ~ volBH(R)

If equality holds for some 7y then equality holds for all 0 < r < ry, and
B(p, o) is isometric to B (rg).

Proofs:

1B
(1) holds because }"%\:ZT(IQQ =

(2) is a restatement of the the volume comparison theorem.

Sometimes we let R = 2r in (2). Then (2) gives a lower bound on the ratio
volB(p, )

volB(p, R)’
lower bound on the volume of small balls.

Generalizations:

called the doubling constant. If vol(M) > V then we obtain a

1. The same proof shows that the result holds for vol' B(p, R), where
I c S, =95""C T,M. In particular, the result holds for annuli

(frfo +++) and for cones.
2. Integral Curvature

3. Stronger curvature conditions give submanifold results.



2 Applications of Volume Comparison

2.1 Cheng’s Maximal Diameter Rigidity Theorem

Theorem 2.1.1 (Cheng) Suppose M™ has Ricyy > (n — 1)H > 0. By the
Bonnet-Myers Theorem, diamy; < w/vH. If diamy, = 7/ H, Cheng’s re-
sult states that M is isometric to the sphere S with radius 1/v/H.

Proof. (Shiohama) Let p,q € M have d(p,q) = 7/vH. Then

vol B(p,x/(2VH)) vl B(p,7/(2VT))

vol M vol B(p, /v H)
vol By (7(/2vVH))
vol By (m/v/H)

Thus vol B(p, 7/2vH) > (vol M) /2. Similarly for . Hence vol B(p, 7/ (2v/H)) =
(vol M) /2, so we have equality in the volume comparison. By rigidity, B(p, 7 /(2vH))
is isometric to the upper hemisphere of S%. Similarly for B(q, 7/2vH), so
vol M = vol, 5.

Question: What about perturbation? Suppose Ricy, > (n — 1)H and
diam,; > W/\/E — ¢. In general there is no result for ¢ > 0. There are
spaces not homeomorphic to S™, provided n > 4, with Ric > (n — 1)H and
diam > 7/vH — ¢. Still, if Ric > (n — 1)H and vol M > vol S, — e(n, H)

then Mn “H St

= 1/2

2.2 Growth of Fundamental Group

Suppose I is a finitely generated group, say I' = (g1, ..., gx). Any g € T can
be written as a word g = Hng, where k; € {1,...,k}. Define the length of

this word to be Z |n;|, and let |g| be the mininimum of the lengths of all

7
word representations of g. Note that |- | depends on the choice of generators.
Fix a set of generators for I'. The growth function of I is

I'(s)=#{gel:|g| <s}.

Example 2.2.1 If ' is a finite group then I'(s) < |T'].



Example 2.2.2 I'=Z ® Z. Then I' = (g1, g2), where g = (1,0) and go =
(0,1). Any g € T can be written as g = s1g1 + S2g2. To find I'(s), we want
[s1] + |s2] < s.

['(s) = 23+1+zs:2(2(3—t)+1)

t=1

= 25+1+) (4s—4t+2)

t=1

2
= 23+1+452—|—23—4Zt
=1
4% + 45 +1—4(s(s +1)/2)
= 45’ +4s+1—2(s* + 3)
= 25 +2s+1

In this case we say I' has polynomial growth.

k
k
Example 2.2.3 T' free abelian on k generators. Then T'(s) E () (S>
i) \i
=0

1=

I’ has polynomial growth of degree k.

Definition 2.2.1 T’ is said to have polynomial growth of degree < n if for
each set of generators the growth function I'(s) < as™ for some a > 0.

I is said to have exponential growth if for each set of generators the growth
function I'(s) > e for some a > 0.

Lemma 2.2.1 If for some set of generators, T'(s) < as™ for some a > 0,
then T has polynomial growth of degree < n. If for some set of generators,
[(s) > e* for some a > 0, then I has exponential growth.

Example 2.2.4 Z* has polynomial growth of degree k.
Example 2.2.5 Z x Z has exponential growth.
Note that for each group I' there always exists a > 0 so that I'(s) < e®.

Definition 2.2.2 A group is called almost nilpotent if it has a nilpotent sub-
group of finite index.

10



Theorem 2.2.1 (Gromov) A finitely generated group T' has polynomial
growth iff T' is almost nilpotent.

Theorem 2.2.2 (Milnor) If M"™ is complete with Ricyy > 0, then any fi-
nitely generated subgroup of m (M) has polynomial growth of degree < n.

Proof. Let M have the induced metric. Then Ricy > 0, and (M)
acts isometrically on M. Suppose I' = {(g1,...,gxr) be a finitely generated
subgroup of m(M). Pick p € M.

Let ¢ = mzaxd(giﬁ,ﬁ). Then if g € m (M) has |g| < s, d(gp,p) < st.

On the other hand, for any cover there exists ¢ > 0 such that B(gp,¢)
are pairwise disjoint for all g € m(M). Note that ¢B(p,e) = B(gp, ).

Now

U B(gp,e) C B(p, sl +¢);

lgl<s

since the B(gp,e)’s are disjoint and have the same volume,
['(s) volB(p,e) < volB(p, sl + ¢).

Thus

volB(p, sl + ¢€)
volB(p, ¢)

volBgn (0, sl + €)
volBg» (0, €)

['(s)

Now

vol(Bgn(0,s) = / /r"‘ldrden_l
sn=1.Jo
1
= =3

_ 1 / i,
n Snfl

= 5"wy,

6 n
so I'(s) < i —28 :

Since ¢ and ¢ are fixed, we may choose a so that I'(s) < as™.

11



Example 2.2.6 Let H be the Heisenberg group

and let

1 » =z
01y | :z,yyzeR,,
0 01
1 ny no
HZI 0 1 ng :niEZ
0 0 1

Then H/Hy is a compact 3-manifold with m (H/Hyz) = Hz. The growth of
Hy, is polynomial of degree 4, so H/Hy has no metric with Ric > 0.

Remarks:

1.

3.

If Ricpy > 1/k* > 0, then M is compact. Thus m (M) is finitely
generated. It is unknown whether 71 (M) is finitely generated if M is
noncompact.

Ricci curvature gives control on 7(M), while sectional curvature gives
control on the higher homology groups. For example, if K > 0 then
the Betti numbers of M are bounded by dimension.

If M is compact then growth of (M) < volume growth of M.

Related Results:

1.

(Gromov) If Ricy; > 0 then any finitely generated subgroup of (M)
is almost nilpotent.

. (Cheeger-Gromoll, 1972) If M is compact with Ric > 0 then (M) is

abelian up to finite index.

(Wei, 1988; Wilking 1999) Any finitely generated almost nilpotent
group can be realized as m;(M) for some M with Ric > 0.

. Milnor’s Conjecture (Open) If M™ has Ricys > 0 then (M) is finitely

generated.

12



In 1999, Wilking used algebraic methods to show that m (M) is finitely
generated iff any abelian subgroup of m (M) is finitely generated (provided

Sormani showed in 1998 that if M™ has small linear diameter growth, i.e.
if
, diamdB(p, ) n n—1\""
1 —— <S5, = ;
Ty r = (n—1)3" \n—2

then (M) is finitely generated.

2.2.1 Basic Properties of Covering Space

Suppose M — M has the covering metric.

1. M compact = there is a compact set K C M such that {yK}, e )
covers M. K is the closure of a fundamental domain.

2. {vK},em () is locally finite.

Definition 2.2.3 Suppose 6 > 0. Set S = {v: d(K,yK) < 0}. Note that S
is finite.

Lemma 2.2.2 [fé > D = diamy, then S generates m(M). In fact, for any
a€ K, ifdla,vK) < (6§ — D)s+ D, then |y| < s.

Proof. There exists y € vK such that d(a,y) = d(a,vK). Connect a and
y a minimal geodesic o. Divide o by y1, . .., ys+1 = y, where d(y;, yiy1) < 6—D
and d(a,y;) < D.

Now {YK}, e ) covers M, so there exist v; € (M) and z; € K such
that 7;(z;) = y;. Choose y,41 = 7 and v = Id. Then v = 77 vz - 7 Ysq1.
But v; 'yi41 € S, since

d(s, v iaws) = Ay, Yi )

(Y, Yi12:)

d(Yi, Yiv1) + d(Yis1, Yir17i)
d(Yi, Yiz1) + d(Tiq1, ;)

Al
o

IN
>,

Thus |y] < s.

13



Theorem 2.2.3 (Milnor 1968) Suppose M is compact with Ky < 0. Then
w1 (M) has exponential growth.

Note that Kj); < —H < 0 since M is compact. The volume comparison
holds for K < —H, but only for balls inside the injectivity radius. Since
Ky < 0, though, the injectivity radius is infinite.

Proof of Theorem. By the lemma,

J 7K > B(a, (6 — D)s + D),

lv|<s

so I'(s)vol(K) > volB(a, (§ — d)s + D). Note that
volB(a, (0 — D)s + D) > volB™#(a, (6 — D)s + D),

since K;; < —H <0.

Now
n—1
" [sinhvH
volB~H(r) = / / sinh VAR
s do \TVE
n—1
" [ sinhvH
— nwn/ M drdf,_,
0 vVH
> nwy, e\/ﬁT’
22V H)"Y(n — 1)VH
for r large.
Thus

[(s) > volB(a, (0 — D)s + D)

> C H (6—D)VHs
= vol(K) = Cln, H)e

Y

where C'(n, H) is constant.
Corollary The torus does not admit a metric with negative sectional
curvature.

2.3 First Betti Number Estimate
Suppose M is a manifold. The first Betti number of M is

14



Now Hy(M,Z) = w1 (M) /[m (M), w1 (M)], which is the fundamental group of
M made abelian. Let T" be the group of torsion elements in Hy(M,Z). Then
T<H{(M,Z) and I' = H{(M,Z)/T is a free abelian group. Moreover,

bi(M) = rank(T") = rank(I"),
where IV is any subgroup of I' with finite index.

Theorem 2.3.1 (Gromov, Gallot) Suppose M™ is a compact manifold with

Ricys > (n—1)H and diamy; < D. There is a function C(n, HD?) such that

bi(M) < C(n,HD?) and lim C(n,z) = n and C(n,z) = 0 for xz > 0. In
z—0~

particular, if HD? is small, by (M) < n.

Proof. First note that if M is compact and Ricy, > 0 then 7 (M) is
finite. In this case by (M) = 0. Also, by Milnor’s result, if M is compact with
Ricp > 0 then b (M) < n.

As above, by(M) = rank(I'), where I' = 7 (M) /[m (M), 7 (M)]/T. Set
M = M/[xi (M), n1(M)]/T be the covering space of M corresponding to .
Then I' acts isometrically as deck transformations on M.

Lemma 2.3.1 For fived & € M there is a subgroup I" < T, [[ : I"] finite,
such that T" = (v, ...,7), where:

1. d(z,v;i(z)) < 2diamy; and

2. For any v € I" — {e}, d(x,v(x)) > diamy,.

Proof of Lemma. For each € > 0 let ' < T' be generated by
{y el d(z,v(z)) < 2diamy + e}

Then T, has finite index. For if M /T, is a covering space corresponding to
['/T.. Then [ : T.] is the number of copies of M in M /T.. We show that
diam (M /T.) < 2diam,; + 2¢ so that M/T..

Suppose not, so there is z € M such that d(z, z) = diamy; +¢. Then there
is v € I that d(y(z), 2) < diamy,. Then if 7, is the covering M — M /T,

d(mex,my(z)) > d(mex,mz) — d(mez, 7y(2))
> diamy; + ¢ — diamy,

= &.

15



Thus v ¢ I'.. But

d(z,v(z)) < d(z,2)+d(z,7(z))
< 2diamys + ¢

Thus M /T, is compact, so I has finite index. Moreover,
{y el :d(z,v(z)) < 3diamy }
is finite, I'; is finitely generated. Also, note that for e small,
{yeTl d(x,v(x)) <2diamy} = {y €' : d(z,v(z)) < 2diamy, + €}.

Pick such an ¢ > 0.

Since I'. < T has finite index, by (M) = rank(I'.). Now . is finitely gener-
ated, say I'. = (71,...,7vm); pick linearly independent generators vq,...,7,
so that I = (y1,...,7,) has finite index in T..

Let TV = (31, ..., %, ), where 4 = lg1v1 + -+ + Ly and the coefficients
ly; are chosen so that fj; is maximal with respect to the constraints:

L. eI"Nn{y el d(x,v(x)) < 2diam,, } and
2. span{#1, ..., 3k} < span{vyi, ..., Y} with finite index.

Then I'" < T has finite index, and d(z,¥;(x)) < 2diam,, for each i.
Finally, suppose there exists v € I'' — {e} with d(x,v(x)) < diam,,, write

y=man A+ T,

with my # 0. Then d(z,v*(z)) < 2d(x,v(x)) < 2diam,;, but

Y2 o= 2my A+ e+ 2my

= (terms involving v;,i < k) 4+ 2mgLp Vi,

which contradicts the choice of the coefficients ¢;;.
Proof of Theorem. Let IV = (v1,...,7,) be as in the lemma. Then
d(vi(z),vj(z)) = d(x,~v; 'y;(z)) > D = diam,y, where i # j. Thus

B(vi(x), D/2) N B(v;(x), D/2) = 0

for i # j. Also
B(vi(x),D/2) C B(z,2D + D/2)

16



for all 7, so that

UB vi(x), D/2) € B(z,2D + D/2).

Hence
b < volB(x,2D + D/2) < volBH (2D + D/2)
"= volB(z,D/2) —  volBH(D/2)
Since the result holds for H > 0, assume H < 0. Then

VOIBH(2D + D/2) S Jo (A ded
volBH (D /2) N Jgnos D/2 mni}ft)” Ldtdo

fOSD/2(31nh V—Ht)"ldt
fOD/2(sinh V—Ht)"dt

_ fOSDm/Q(sinh r)"tdr

fODm/Q (sinhr)»—1dr
Let U(s) = {y €I":|y| <s}. Then
J B(yx,D/2) € B(x,2Ds + D/2),
veU(s)

whence

volB(x,2Ds + D/2)
volB(x, D/2)

volBH (2Ds + D/2)
volBH (D /2)

f0(2s+%)Dm(sinh r)"tdr

fODm/Q(sinh r)ntdr
_ 2(2s + 3)"(Dv—H)"
~ Grov=A)"

1
= 2n+1(25 + 5)”

#U(s)

IA

IA

Thus by (M) = rank(I"”) < n, so that for HD? small, b (M) < n.
Conjecture: For M"™ with Ricyy > (n — 1)H and diamy, < D, the
number of generators of (M) is uniformly bounded by C(n, H, D).
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2.4 Finiteness of Fundamental Groups

Lemma 2.4.1 (Gromov, 1980) For any compact M™ and each T € M
there are generators i, ...,y of m (M) such that d(z,~;Z) < 2diam,; and
all relations of m (M) are of the form v;y; = .

Proof. Let 0 < ¢ < injectivty radius. Triangulate M so that the length
of each adjacent edge is less than . Let x1,..., 7, be the vertices of the
triangulation, and let e;; be minimal geodesics connecting z; and ;.

Connect x to each z; by a minimal geodesic o;, and set 0;; = aj’leijai.
Then ((0;;) < 2diamy; + €, so d(Z, 04;7) < 2diamys + €.

We claim that {o0;;} generates (M ). For any loop at x is homotopic to
a 1-skeleton, while oj,0;; = oy, as adjacent vertices span a 2-simplex. In
addition, if 1 = o € m(M), o is trivial in some 2-simplex. Thus o = 1 can
be expressed as a product of the above relations.

Theorem 2.4.1 (Anderson, 1990)) In the class of manifolds M with Ricys >
(n —1)H, volyy >V and diamy, < D there are only finitely many isomor-

phism types of w1 (M).

Remark: The volume condition is necessary. For example, S3/Z, has K = 1
and diam = 7/2, but m(5*/Z,) = Z,. In this case, vol(S®/Z,) — 0 as
n — oo.

Proof of Theorem. Choose generators for 7 (M) as in the lemma,; it is
sufficient to bound the number of generators.

Let F be a fundamental domain in M that contains #. Then

U%(F) C B(%,3D).

Also, vol(F') = vol(M), so

vol B(2,3D) _ volBH(3D)
k< < .
= volM TV

This is a uniform bound depending on H, D and V.

Theorem 2.4.2 (Anderson, 1990) For the class of manifolds M with Ricyy >
(n — 1)H, volyy > V and diamy; < D there are L = L(n,H,V,D) and
N = N(n,H,V,D) such that if ' C m (M) is generated by {7} with each
U(v;) < L then the order of T" is at most N.
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Proof. Let I' = (v, ...,7) C m (M), where each £(v;) < L. Set

U(s) ={yel: |l <s},

and let F C M be a fundamental domain of M. Then ~;(F) N ~;(F) has
measure zero for ¢ # j. Now

\J +(F) cB(z,sL+ D),

veU(s)
w0 1BH(sL + D

#U(S)SVO (sL + )

V
Note that if U(s) = U(s + 1), then U(s) =T". Also, U(1) > 1. Thus, if I has
order greater than N, then U(N) > N.
Set L = D/N and s = N. Then

volBH (2D)

N <U(N) <
<uw) < T

vol B (2D)

H I'N<N=
ence |I'] < 7

+ 1, so I is finite.

3 Laplacian Comparison

3.1 What is the Laplacian?

We restrict our attention to functions, so the Laplacian is a function
A:C®(M) — C>™(M).

3.1.1 Invariant definition of the Laplacian

Suppose f € C>®(M). The gradient of f is defined by (Vf, X) = X f. Note
that the gradient depends on the metric. We may also define the Hessian of
f to be the symmetric bilinear form Hess f : X(M) x X(M) — C>*(M) by

Hess f(X,Y) = Vi /= X(Y]) — (VxY)f = (VxV/Y).
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The Laplacian of f is the trace of Hess f, Af = tr(Hess f). Note that if {e;}
is an orthonormal basis, we have

Af = tr(VxVf,Y)

= D (Ve Vfe)

i=1

= divVf.

3.1.2 Laplacian in terms of geodesic polar coordinates

Fix p € M and use geodesic polar coordinates about p. For any x € M — C,,,
x # p, connect p to x by a normalized minimal geodesic v so v(0) = p and
v(r) = z. Set N = +/(r), the outward pointing unit normal of the geodesic

sphere. Let es, ..., e, be an orthonormal basis tangent to the geodesic sphere,
and extend N, es, ..., e, to an orthonormal frame in a neighborhood of .
Then if e; = N,

n

Af =2 (Ve Vfie) =3 (eleif) = (Ve f).

=1

Note that

veiei = <Vei€i7N>N + (Veiei)T

= <V6i€i7N>N+ (vei@),

where V is the induced connection on dB(p,r). Thus

Af = N(Nf)= (VNN 4+ (eileif) = (Vee) )

f c Y
— 8_1£ +> (eileif) = (Veer) f) = QO _ (Ve N)N)
i=2 =2
_ a., 0
= Af+m(r,0)5-f+ a_r];’

where A is the induced Laplacian on the sphere and m(r,0) = —>""" ,(V..e;, N)
is the mean curvature of the geodesic sphere in the inner normal direction.
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3.1.3 Laplacian in local coordinates

Let ¢ : U C M™ — R"™ be a chart, and let ¢; = (¢!
sponding coordinate frame on U. Then

Af= Z \/det Gij

where g;; = (e;, e;) and (97) = (gij)fl

Notes:

)u( 821_) be the corre-

O (v/det gij g™ 0y) f

L Af=4 9 f+m(r, 0)Z + Af. Let my(r) be the mean curvature in the

inner normal dlrectlon of 0By (x,r). Then

1

my(r)=(n—1) i/ﬁcot\/ﬁr
V—H coth/—Hr

2. We have
A'(r,0)

m(r,6) = A(r,0)

where A(r, 0)drdf is the volume element.

3. We also have

n

m(r,0) = — Z(Veiei, N).

k=0

In
R", g=dr*+r?df>_,

_ 2
S g=dr*+ (—Sm\/\/—ﬁr) do?_,

e

HfH=0
ifH>0.
ifH <0

Hyy, g = drt 4 (S0L0) age

By Koszul’s formula,
<Ve¢ei7 N> = —<€i, [ei, N]>
In Euclidean space, N = %, %ei are orthonormal.

o0 VH
3T’sin\/ﬁr '
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are orthonormal, while

_9 _v-H
—37“’sinh\/—Hr ’

are orthonormal in HY.

3.2 Laplacian Comparison

On a Riemannian manifold M™, the most natural function to consider is the
distance function r(z) = d(x,p) with p € M fixed. Then r(z) is continuous,
and is smooth on M — ({p} U C,). We consider Ar where r is smooth.
If v € M—({p}UC,), connect p and x with a normalized, minimal geodesic
7. Then v(0) = p, v(r(z)) = x and Vr = +/(r). In polar coordinates,
0? 0 <

Thus Ar = m(r,0).

Theorem 3.2.1 (Laplacian Comparison, Mean Curvature Comparison)
Suppose M™ has Ricyy > (n—1)H. Let Ay be the Laplacian of ST, and my(r)
be the mean curvature of 0By (r) C M},. Then:

1. Ar < Agr (Laplacian Comparison)

2. m(r,0) < mpg(r) (Mean Curvature Comparison)

Proof. We first derive an equation. Let N, es, ... e, be an orthonormal
basis at p, and extend to an orthonormal frame N, es,...,e, by parallel
translation along N. Then Vye; =0, so (VyV,N,e;) = N(V., N, e;). Also,
Ve, VNN = 0. Thus

Ric(N,N) = Z(R(% N)N, e;)

=2
n

= Y (Ve, VNN = VyVoN = Vi, N, e)
=2

= _ZN<V@Z.N7 ei) - <v[ei,N]Na ei>-

=2 =2
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Now

n n

> (Ve Noe) = Y ei(Ne) — (N, Vee)
=2 =2
- - <N= V6i6i>
=2
= m(r,0),
SO n
R,iC(N, N) = —m'(r, 9) o Z<V[ei,N]N> €i>'
=2
In addition,
Ve N =Y (Ve N,eje; + (Ve N,N)N.
J
But
2(V.,N,N) = e;(N,N) =0,
SO

veiN = Z<V€z‘N7 ej>ej'
J
Thus

n

Y (VemNe) = YD (Ve N.E) (Ve Ne)

=2 =2 j=2
= |[Hess (r)|*,
where || A]|* = tr(AA"). Hence Ric(N, N) = —m/(r,0) — ||Hess (r)||*.
Now [|A|* = X2 + --- + A2, where the \;’s are the eigenvalues of A.

Let Aq,..., A, be the eigenvalues of Hessr; since VyN = 0 we may assume
A1 = 0. Then

[Hess (r)[|> = A+ +A2
> Ao+ -+ ) (n—1),

since (A, )% < ||A||?||]|* with A diagonal and (A, B) = tr(AB?"). But \y +
oo+ Ay =m(r,0), so

[Hess (r)|* >
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Since Ric(N, N) > (n — 1)H, we have
(n—1)H +m(r,0)*/(n —1) < —m/(r,0).
Set w = (n —1)/m(r,0), so m(r,0) = (n — 1)/u. Then

H+1/u* < (1/u*)d,

SO
Hu?+1<4/,
which is
u ]
— > 1.
Hu?2+1 —

Thus

T u/ (s
—_— > 1=
/0 Hu?+1 _/0
If H=0, we have u > r. In this case (n — 1)/r > m(r, ), so

m(r,0) < mgy(r).

If H >0, (tan~*(v/Hu))/vh > r. Now as r — 0, m(r,0) — (n —1)/r.
Thus u — 0 as r — 0. Hence v Hu > tan(v/hr). Thus v H(n —1)/m(r,0) >
tan(vHr), so

VH(n —1)

m(r,0) < —————= = mpg(r).

tan(vHr)

Note that inside the cut locus of M, the mean curvature is positive, so the
inequality is unchanged when we may multiply by m(r,0).
If H <0, similar arguments show that

(- WH
m(r, 8 < m =mpy(r).

3.3 Maximal Principle

We first define the Laplacian for continuous functions, and then relate the
Laplacian to local extrema.

Lemma 3.3.1 Suppose f,h € C3(M) and p € M. Then if
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1. f(p) = h(p)
2. f(x) > h(zx) for all x in some neighborhood of p

then
1. Vf(p) = Vh(p)

2. Hess (f)(p) > Hess (h)(p)
3. Af(p) > Ah(p).

Proof. Suppose v € T,M. Pick v : (—¢,e) — M so that v(0) = p and
7' (0) =wv. Then (f —h) oy : (—e,e) — R, so the result follows from the real
case.

Definition 3.3.1 Suppose f € CO(M). We say that Af(p) > a in the barrier
sense if for any € > 0 there exists a function f., called a support function,
such that

1. f. € C*3(U) for some neighborhood U of p

2. fo(p) = f(p) and f(z) > fe(z) for allz € U
3. Af.(p) > a—e.

Note that f. is also called support from below, or a lower barrier, for f
at p. A similar definition holds for upper barrier.

Theorem 3.3.1 (Maximal Principle) If f € CO(M) and Af > 0 then f
s constant is a neighborhood of each local maximum. In particular, if f has
a global maximum, then f is constant.

Proof. If Af > 0 then f cannot have a local maximum. Suppose Af > 0,
f has a local maximum at p, but f is not constant at p. We perturb f so
that AF > 0.

Consider the geodesic sphere 0B(p,r). For r sufficiently small, there is
z € 0B(p,r) with f(2) < f(p). We define h in a neighborhood of p such that

1. Ah >0
2. h<0onV ={x: f(z)=p} NIB(p,r)
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3. h(p) =0
To this end, set h = e®¥ — 1. Then
Vh = ae™Viy

Ah e (Vih, Vib) + ae®™ Ag
ae®(a|VY|? + Ay

We want 1) such that
L ¢(p) =0
2. 1(z) < 0 on some neighborhood containing V/
3. Vi £0
Choose coordinates so p — 0 and z +— (r,0,...,0). Set
v=ay = Bas+ -+ ),

where (3 is chosen large enough that ¢ < 0 on some open set in S"~1 — 2.
Then v satisfies the above conditions.

Since |V¢[? > 1 and At is continuous, we may choose « large enough
that Ah > 0. Now consider fs = f + dh on B(p,r). For ¢ small,

fs(p) = f(p) > max_ fs(x).

dB(p,r)

Thus, for § small, fs has a local maximum in the interior of B(p,r). Call this
point ¢, and set N = Ah(q) > 0. Since Af(q) > 0, there is a lower barrier
function for f at ¢, say g, with Ag > —dN/2. Then

A(g+6h)(q) = Ag+ 0Ah > IN/2

and g + dh is a lower barrier function for fs at g. Thus Afs(¢) > 0, which is
a contradiction.

Theorem 3.3.2 (Regularity) If f € CO(M) and Af = 0 in the barrier
sense, then f is C™.

If Af =0, f is called harmonic.
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3.4 Splitting Theorem

Definition 3.4.1 A normalized geodesic v : [0,00) — M is called a ray if
d(v(0),v(t)) =t for all t. A normalized geodesic 7 : (—o0, 00) is called a line

if d(y(t),v(s)) =s—t for all s > t.

Definition 3.4.2 M is called connected at infinity if for all K C M, K
compact, there is a compact K D K such that every two points in M — K
can be connected in M — K.

Lemma 3.4.1 If M is noncompact then for each p € M there is a ray vy
with v(0) = p.
If M is disconnected at infinity then M has a line.
Example 3.4.1 A Paraboloid has rays but no lines.
Example 3.4.2 R? has lines.
Example 3.4.3 A cylinder has lines.
Example 3.4.4 A surface of revolution has lines.

The theorem that we seek to prove is:

Theorem 3.4.1 (Splitting Theorem: Cheeger Gromoll 1971) Suppose
that M™ 1s noncompact, Ricyy > 0, and M contains a line. Then M is iso-
metric to N x R, with the product metric, where N is a smooth (n — 1)-
manifold with Ricy > 0. Thus, if N contains a line we may apply the result

to N.

To prove this theorem, we introduce Busemann functions.
Definition 3.4.3 If v : [0,00) — M is a ray, set b} (z) =t — d(z,~(t)).
Lemma 3.4.2 We have

1. |bf ()] < d(z,7(0)).

2. For x fized, b] () is nondecreasing in t.

3. bl (z) = b/ (y)| < d(z,y).
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Proof. (1) and (3) are the triangle inequality. For (2), suppose s < t.
Then

bi(x) = b (z) = (s—1t)—d(z,7(s)) +d(z,7(t))
d(w,7(t)) = d(x,~(s)) = d(v(s),7(1))
0

IA

Definition 3.4.4 If v :[0,00) — M is a ray, the Busemann function asso-
ciated to v 1s

bV (z) = lim b)(z)

t—00
= tlim t —d(x,v(t)).
By the above, Busemann functions are well defined and Lipschitz contin-
uous. Intuitively, b7(x) is the distance from 7(o0). Also, since

B(3(s) = lim t — d(y(s), (2)
= limt—(t—s)=s,

t—o0

b7(z) is linear along ().

Example 3.4.5 InR", the rays are y(t) = v(0)+~'(0)t. In this case, b7 (x) =
(x —~(0),9'(0)). The level sets of b7 are hyperplanes.

Lemma 3.4.3 If M has Ricy; > 0 and 7 is a ray on M then A(bY) > 0 in
the barrier sense.

Proof. For each p € M, we construct a support function of b7 at p. We
first construct asymptotic rays of v at p.

Pick ¢; — oo. For each i, connect p and v(¢;) by a minimal geodesic o;.
Then {0/(0)} C S™!, so there is a subsequential limit 5/(0). The geodesic ¥
is called an asymptotic ray of v at p; note that 4 need not be unique.

We claim that b7(z)+07(p) is a support function of 7 at p. For b7 (p) = 0,
so the functions agree at p. In addition, 7 is a ray, so ¥(t) is not a cut point of 4
along p. Hence d(5(t), x) is smooth at p, so b7 (z) is smooth in a neighborhood
of p.
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Now

F(e) = Jimt—d(e,3(0)
< lim ¢ — d(z,7(s) )

+d(3(t),7(s)
hmt—l—s— d(z,v(s)) —s+d(7(t),v(s))
= hmt—i—bv( ) = bl(3(1));

letting s — oo, we obtain
b (x) < lim £+ b7 (x) = b7(3(8)).
We also have

F(p) = Jim b — d(p,(t)

= lim t; — d(p,0:(t)) — d(o:(t), v(t;))

_ :?Ep, () + lim ¢ — d(o3(t), 7(t:))
bw( (t))

= _d(p7 (t
= —t+b (7).

)+
) +

Thus

bi(@) +07(p) < lim £+ 07(2) = VV(5(t)) — t + b (5(t))

t—oo

= 0'(z),

so b7(x) 4+ b7 (p) is a support function for b7 at p. By a similar argument, each
b (x) + b7(p) is a support function for b7 at p.
Finally, since Ricy; > 0,

A (x) +67(p) = At —d(,
= —A(l’,’?(t)
n—1

d(w3(1)

which tends to 0 as ¢t — oo. Thus A(b?) > 0 in the barrier sense.
The level sets of b] are geodesic spheres at v(t). The level sets of b} are
geodesic spheres at y(00).

()
)

>
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Lemma 3.4.4 Suppose v is a line in M, Ricy; > 0. Then vy defines two rays,
~T and v~. Let b* and b~ be the associated Busemann functions. Then:

1. bT+b- =0 on M.
2. b" and b~ are smooth.

3. Given any point p € M there is a unique line passing through p that is
perpendicular to vg = {x : b*(x) = 0} and consists of asymptotic rays.

Proof. For
1. Observe that

b (x) +b7(v) = lim (¢ —d(z,77(1))) + lim (£ — d(z,77 (1))
= Jim 2t — (d(z,y" (1)) = d(z,7" (1))
< 2t—d(y"(t),7 (1) =0.

Since b*(v(0)) + b~ (7(0)) = 0, 0 is a global maximum. But
AT +b7) = AbT + Ab” >0,
sobt+b” =0.
2. We have b = —b~. Thus
0< AV =—-Ab <0,
so both b* and b~ are smooth by regularity.

3. At p there are asymptotic rays 4 and 7~. We first show that 37 +4~
is a line. Since

d(7"(s1),7 (s2)) > d(7(
= (t—d

—~
N
+
—~
v
—
N~—
2
+
—~
o~
N~—
S—
S—
|
—~
~
|
QU
—
N
|
—~
V2
v
N~—
2
+
—~
~
S~—
S~—
S~—

holds for all ¢, we have

A7 (51),7 7 (52)) > b (" (s1)) = b (7 (s2))
— () + (G (s2)
> b7 (77(s1)) + 07 (p) + 07 (7 (s2)) + b (p)
= S1+ 89



Thus 4+ + 4~ is a line. But our argument shows that any two asymp-
totic rays form a line, so the line is unique.

Set @y, = (b") " (to). Then if y € @, we have
dy.77(1) = b7 (y) =T (3T ()]
= |to — 1|
(5" (to), 7" (1)),
which shows 7 L 0y,.
Finally, since b*(z) + bt (p) < bt (),

—(0*(x) +b*(p)) = —b* (x).
But bt = —b~ and bT = —b~, so
b~ (z) + b~ (p) > b~ ().
Since b~ (z) + b (p) < b~ (z) as well,
b~ (z) + b (p) = b ().
Thus the level sets of b* are the level sets of b, which proves the result.

Note that b* : M — R is smooth. Since b is linear on v with a Lipschitz
constant 1, [|[Vb*|| = 1. Thus vy = (b7)71(0) is a smooth (n-1) submanifold
of M.

Proof of Splitting Theorem. Let ¢ : R x vy — M be given by (¢,p) —
v(t) = exp, ty'(0), where 7 is the unique line passing through p, perpendicular
to vg. By the existence and uniqueness of v, ¢ is bijective. Since exp, is a
local diffeomorphism and ~/(0) = (Vb")(v) smooth, ¢ is a diffeomorphism.

To show that ¢ is an isometry, set v; = (b7)7!(¢) and let m(t) be the
mean curvature of v;. Then m(t) = Ab™ = 0. In the proof of the Laplacian
comparison, we derived

Ric(N, N) + |[Hess (r)||* = m/(r,0),

where N = V~. Note that ~ is the integral curve of Vb" passing through p,
so Ay =m(t) and Vb = N.
In our case, Ric(N, N) > 0 and m/(r,0) = 0, so

|[Hess (b™)|| = ||Hess ()| < 0.
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Thus ||Hess (b7)|| = 0, so that Vb™ is a parallel vector field.
Now ¢ is an isometry in the ¢ direction since exp,, is a radial isometry.
Suppose X is a vector field on vy. Then

R(N,X)N = VyVxN — Vx VN — Vix yN.

But VNN = 0, and we may extend X in the coordinate direction so that
[X, N] = 0. Since

VxN =VxVb" =0,
we have R(N, X)N = 0.

Let J(t) = ¢u(x) = %(gb(c(s)))h:t, where ¢ : (—¢,¢) — v has ¢(t) = X.

Then J(t) is a Jacobi field, J”(t) = 0 and J L N. Thus J(t) is constant.
Hence ||¢.(X)|| = || X||, so ¢ is an isometry.
Remark: Since |[Hess (b7)|| = 0, we have V x Vbt = 0 for all vector fields
X. By the de Rham decomposition, ¢ is a locally isometric splitting.
Summary of Proof of Splitting Theorem.

1. Laplcaian Comparison in Barrier Sense

2. Maximal Principle

3. Bochner Formula: Generalizes Ric(N, N) + |[Hess (r)|| = m/(r, 8)
4. de Rham Decomposition

Also, the Regularity Theorem was used.

3.5 Applications of the Splitting Theorem
Theorem 3.5.1 (Cheeger-Gromoll 1971) If M™ is compact with Ricyy >

0 then the universal cover M ~ N x R* where N is a compact (n — k)-
manifold. Thus w1 (M) is almost m (Flat Manifold), i.e.

0—-F—->mM)— B, —0,

where F' is a finite group and By, s the fundamental group of some compact

flat manifold.
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By, is called a Bieberbach group.

Proof. By the splitting theorem, M ~ N x R¥, where N has no line. We
show N is compact.

Note that isometries map lines to lines. Thus, if 1/ € Iso(M), then ¢ =
(1, %3), where ¢y : N — N and 1) : R¥ — R¥ are isometries. Suppose N is
not compact, so N contains a ray v : [0,00) — N. Let F' be a fundamental
domain of M, so F is compact, and let p; be the projection M — N.

Pick t; — oo. For each i there is g; € m (M) such that g;(y(t;)) € pi(F).
But p;(F) is compact, so we may assume g;(y(t;)) — p € N. Set v;(t) =
gi(v(t+t;)). Then ~; : [—t;,00) — N is minimal, and {~;} converges to a line
oin N.

Thus N is compact. For the second statement, let py : 71 (M) — Iso(IR¥)

be the map 1) = (11,15) +— 9. Then
0 — Ker(ps) — m(M) — Im(pz) — 0

is exact. Now Ker(ps) = {(¢1,0)}, while I'm(12) = {(0,12)}. Since Ker(ps)
gives a properly discontinuous group action on a compact manifold, Ker(ps)
is finite. On the other hand, I'm(p,) is an isometry group on R¥, so I'm(ps)
is a Bieberbach group.

Remark: The curvature condition is only used to obtain the splitting
M ~ N x R¥. Thus, if the conclusion of the splitting theorem holds, the
curvature condition is unnecessary.

Corollary If M" is compact with Ricy; > 0 and Ricy, > 0 at one point,
then 71 (M) is finite.

Remark: This corollary improves the theorem of Bonnet-Myers. The
corollary can also be proven using the Bochner technique. In fact, Aubin’s
deformation gives another metric that has Ricy; > 0 everywhere.

Corollary If M" has Ricys > 0 then b;(M) < n, with equality if and

only if M™ =z T", where T" is a flat torus.

Definition 3.5.1 Suppose M™ is noncompact. Then M is said to have the
geodesic loops to infinity property if for any ray v in M, any g € m(M,~(0))
and any compact K C M there is a geodesic loop ¢ at v, in M — K such
that g = [c] = [(7]¢’) ™ 0 c o Y[’].

Example 3.5.1 M = N x R If the ray v is in the splitting direction, then
any g € w1 (M,~) is homotopic to a geodesic loop at infinity along 7.
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Theorem 3.5.2 (Sormani, 1999) If M™ is complete and noncompact with
Ricys > 0 then M has the geodesic loops to infinity property.

Theorem 3.5.3 (Line Theorem) If M" does not have the geodesic loops
to infinity property then there is a line in M.

Application:(Shen-Sormani) If M™ is noncompact with Ricy, > 0 then
H, 1(M,Z) =0.

3.6 Excess Estimate

Definition 3.6.1 Given p,q € M, the excess function associated to p and q
15

epq() = d(p, ) +d(q,x) — d(p,q).

For fized p,q € M, write e(x).If v is a minimal geodesic connecting p and q
with v(0) = p and v(1) = q, let h(z) = Oliltiilld(m, v(t)). Then

0 <e(x) < 2h(x).

Let y be the point along v between p and q with d(x,y) = h(x).
Set
S1 = d(p7 {L‘), b = d(pv y)
Sg = d(q,a:), lo = d(Q>y)
We consider triangles pqx for which h/ty is small; such triangles are
called thin.

Example 3.6.1 In R",

S1 = \/h2+t% :tl\/l—i- (h/t1>2

For a thin triangle, we may use a Taylor expansion to obtain s; < t1(1 +
(h/t1)?). Thus

e(r) = s34 83—t — 1o
R [ty + B [t
h(h/t + h/ts)
2h(h/1),

IN

IN

where t = min{ty, ty}. Thus e(x) is small is h?/t is small.
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If M has K > 0 then the Toponogov comparison shows that s; <
\Vh? + 13, so the same estimate holds.

Lemma 3.6.1 e(x) has the following basic properties:

1. e(x) > 0.

2. el =0.

3. le(x) — e(y)| < 2d(z,y).
4. If M has Ric > 0,

Ale(x)) (n—1)(1/s1 +1/s9)

(n—1)(2/s),

ININA

where s = min{sy, s2}.

Proof. (1), (2) and (3) are clear. (4) is a consequence of the following
Laplacian comparison.

Lemma 3.6.2 Suppose M has Ric > (n — 1)H. Set r(z) = d(p, x), and let
f R — R. Then, in the barrier sense,

1 If ' = 0 then Af(r(z)) < Aufl,_. -
2 I 1 <0 then Af(r(z)) 2 Apfl_y

Proof. Recall that A = g—:z + m(r, 6)% + A, where A is the Laplacian
on the geodesic sphere. Hence

Af(r(z)) = f"+m(r0)f
[T+ Arf
so we need only show Ar < Agr in the barrier sense.
We have proved the result where r is smooth, so need only prove at cut
points. Suppose ¢ is a cut point of p. Let v be a minimal geodesic with

7(0) = p and v(¢) = q. We claim that d(y(¢),x) + € is an upper barrier
function of r(z) = d(p, z) at g, as

L. d(v(e),z) +¢& > d(p, ),
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2. d(y(e),q) + e =d(p,q) and

3. d(v(g),x) + € is smooth near ¢, since ¢ is not a cut point of () for
e>0.

Since

Ald(y(e), x) +€)

A
>
=
2
=2
3
2

IA
3 3
s =
= =
S0
30
T &
Q\—/
Q)
Il
>
T
=
=
+
@)
5‘)

we have the result.
Definition 3.6.2 The dilation of a function is

dil(f) = min W

By property (2) of e(x), we have dil(e(x)) < 2.

Theorem 3.6.1 Suppose U : B(y, R +n) — R is a Lipschitz function on
M, Ricpyy > (n—1)H and

1. U >0,

2. dil(U) < a,

3. u(yo) = 0 for some yo € B(y, R) and
4. AU < b in the barrier sense.

Then U(y) < ac+ G(c) for all 0 < ¢ < R, where G(r(x)) is the unique
function on Mg such that:

1. G(r) >0 for0 <r < R.
2. G'(r)<0 for0O<r<R.
3. G(R)=0.
4. AgG =b.
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Proof. Suppose H = 0, n > 3. We want AyG = b. Since Ay = g—:z +
my(r, 0) + A, we solve

G'"+(n-=1)G/r = b
G'r* +(n—1)Gr = b?
which is an Euler type O.D.E. The solutions are G = G, + G, where G, =

b/2nr? and G, = ¢; + cor~ ("2,
Now G(R) = 0 gives

b
—R2 +c + CQR_(TL_Q) = 0,
2n

while G' < 0 gives

b
—r —(n—2)cr~ ™ > 0
n

for all 0 < < R. Thus ¢; > ﬁm

Hence G(r) = £ (r? + -2r~ =2 — _2_R2 Note that G > 0 follows from
G(R)=0and G' <0.
For general H < 0,

_ b/ / <Smh V= t) st
sinhv/—Hs
Note that AyG > b by the Laplacian comparison.
To complete the proof, fix 0 < ¢ < R. If d(y,40) < ¢,

Ul(y) U(y) — U(wo)
ad(y, yo)

ac+ G(c).

VAR VANRVA

If d(y,y0) > c then consider G defined on B(y, R + ¢), where 0 < € < n.
Letting ¢ — 0 gives the result.

Consider V' = G — U. Then AV = AG — AU > 0, Vi]pprte) < 0 a d
V(yo) > 0. Now o is in the interior of B(y, R + ¢) — B(y, c), so V( >
for some y' € 0B(y, ¢). Since

Uly) = U(y) < ad(y,y') = ac
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and

we have
Uly) <ac+ U(y') < ac+ G(c).

We now apply this result to e(x). Here e(z) > 0, a = 2 and R = h(z).
We assume s(z) > 2h(z). On B(z, R),
Ae < M7
s()

so b=4(n—1)/s(z). Thus

e(r) < 2c+Gle)
2(n—1)

L}ﬁ)

(¢ + frac2n — 2h"c= ™72 4
n—2

= 2c+

for all 0 < ¢ < h.
To find the minimal value for ar + G(r), 0 < r < R, consider

b
a+G'(r)=a+ %(27“ —2R™!'™™) = 0.

This gives r(R"/r™ — 1) = an/b. To get an estimate, choose r small. Then
R"™/r™ is large, so R"/r"~! ~ an/b. Hence

R\ i1
an
is close to a minimal point.

For the excess function, choose

L 4(n—1) e
c = @ ! ~ h" S
S\ s - 2n '
Gl = 200 (NI 2 (YT
ns s n—2 s n—2 '
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Now

2
s
and n
1
n—2 "
SO
2n—1) 2 h* [2hr\7T ]
< -
Gle) = n n—2s ( s )
_ 2n-1) (2n7 =
~ nn—=2)\_s
< 2c.
Thus
e(z) < 2c¢+G(c)
= 2c+2c
(2N
B s
p\ T
<s(%)
s
Remarks:

1. A more careful estimate is

s (%) -u ()

where ¢; = 2= <31£h + 821%) and h < min(sy, sg).

2. In general, if Ricy; > (n—1)H then e(z) < hF(hT/S for some continuous
F satisfying F'(0) = 0. F is given by an integral; consider the proof of
the estimate in the case Ric,; > 0.
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3.7 Applications of the Excess Estimate

Theorem 3.7.1 (Sormani, 1998) Suppose M™ complete and noncompact
with Ricyy > 0. If, for some p € M,

diam(0B(p,r))

lim sup

r—00

< 4sy,

where
111

T
then (M) is finitely generated.

Compare this result with:

Theorem 3.7.2 (Abresch and Gromoll) If M is noncompact with Ricy, >
0, K > —1 and diameter growth O(T%), then M has finite topological type.

Note: Diameter growth is the growth of diam 0B(p,r). When Ric > 0,
diam 0B(p,r) < r. To say M has finite topological type is to say that each
H;(M,Z) is finite.

To prove Sormani’s result we choose a desirable set of generators for

7T1(M).

Lemma 3.7.1 For M"™ complete we may choose a set of generators g1, ..., Gn, ...

of m1 (M) such that:

1. g; € span{gy, ..., gi-1}.

2. FEach g; can be represented by a minimal geodesic loop ~y; based at p
such that if £(7;) = d; then d(v(0),v(d;/2)) = d;/2, and the lift ¥; based
at p s a minimal geodesic.

Proof. Fixp € M. Let G = m(M). Choose g; € G such that d(p, ¢;(p)) <
d(p, g(p)) for all g € G — {e}. Note that since G acts discretely on M, only
finitely many elements of G satisfy a given distance restraint.

Let G; = (g1,-.-,9i-1). Choose ¢g; € G — G, such that d(p, g;(p)) <
d(p,g(p)) for all g € G—G;. If w1 (M) is finitely generated, we have a sequence
g1y -+ Gn,--.; otherwise we have a list. The g,;’s satisfy (1). Let 4; be the
minimal geodesic connecting p to g;(p). Set v; = 7(5;), where is the covering
7 : M — M. We claim that if £(y;) = d; then d(y(0),v(d;/2)) = d;/2.
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Otherwise, for some i and some T' < d;/2, v;(T) is a cut point of p along
~;. Since M and M are locally isometric, and 7(T') is not conjugate to p
along 7, 7;(7) is not conjugate to p along . Hence we can connect p to v;(7T)
with a second minimal geodesic . Set

hi=0""olomn

and
hy = %‘[T,di} oo0.

Now h; is not a geodesic, so

Similarly,
d(p, ha(p)) <T +di =T = d;.

Hence hq, hy € G;. But then v; = hy o hy € G;, which is a contradiction.

Lemma 3.7.2 Suppose M"™ has Ric > 0, n > 3 and ~ is a geodesic loop
based at p. Set D = {(7y). Suppose

1. ’7|[07D/2]7 and 7|[D/2,D} are minimal.

2. U(y) < L(o) for all [o] = [v].

Then for x € 0B(p, RD), R > 1/2 + s,,, we have d(z,v(D/2)) > (R —
1/2)D + 25,D.

Remark: ~(D/2) is a cut point of p along 7. Since d(p,z) > D/2, any
minimal geodesic connecting p and x cannot pass through (D /2). Thus

d(v(D/2),z) > d(p,x) —d(p,v(D/2))
= RD—-D/2=(R-1/2)D.

The lemma gives a bound on how much larger d(v(D/2), x) is.
Proof. It is enough to prove for R = 1/2 + s,,. For if R > 1/2 + s,,, we
may choose y € 0B(p, (1/2 + s,)) such that

d(x,v(D/2)) = d(z,y) + d(y,v(D/2)).
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Then

d(z,y) + 3s,D
(R—(1/2+ s,))D + 3s,D
= (R—1/2)D + s,D.

d(x,~7(D/2))

Suppose there exists x € 0B(p, (1/2 + s,,)D) such that
d(z,v(D/2)) = H < 3s,D.

Let ¢ be a minimal geodesic connecting = and v(D/2). Let p be a lift of p,
and lift v to 4 starting at p. If ¢ = [y], then 4 connects p and g(p).
Lift ¢ to ¢ starting at ¥(D/2), and lift c o | o) t0 €0 F| p/s - Then

d(p,z) > d(p,x)
= (1/2+s,)D,

and
d(g(p), ) > (1/2 + s,,)D.

Thus

59 (T) = d(p, %) +d(g(p),T) — d(p,9(p))
> (1/2+s,)D+(1/2+s,)D — D = 2s,D.

But, by the excess estimate, if s > 2h,

(M)

In this case, h < H < 3s,D. Also,
s> (1/2+s,)D > D/2.

Since s, < 1/12 for n > 2, we have s > 2h. Thus

But this gives
25,D < 8D (2(3s,)") 1,
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whence
11 1

n > ——— .
§ 23n 4n—1

We may now prove Sormani’s result.

Proof of Theorem. Pick a set of generators {g; } as in the lemma, where
gr is represented by vi. If xp € 0B(p, (1/2 + s,)dk), where dy = £(~y;,) — o0,
we showed that d(zx,v(dx/2)) > 3s,dk.

Let y, € OB(p,dx/2) be the point on a minimal geodesic connecting p
and z. Then

diam(9B(p,r)) d(Yr, vr(di/2))

li li
msup SEEEEES > i SIS
2s,d
> lim i k:45n,
k—oo dk/Q

so we have a contradiction if there are infinitely many generators.
The excess estimate can also be used for compact manifolds.

Lemma 3.7.3 Suppose M™ with Ricy; > (n—1). Then given 6 > 0 there is
e(n,d) > 0 such that if d(p,q) > 7™ — € then e, (z) < 4.

This lemma can be used to prove the following:

Theorem 3.7.3 There is €(n,H) such that if M™ has Ricyy > (n — 1),
diamy; > 7 — ¢ and Ky, > H then M s a twisted sphere.

Proof of Lemma. Fix x and set e = e, ,(x). Then B(z, e/2), B(p, d(p, z)—

e/2) and B(q,d(x,q) — e/2) are disjoint. Thus

vol(M) > vol(B(z,e/2)) + vol(B(p,d(p,x) — e/2)) + vol(B(q,d(q,x) — e/2))
vol(B(z,e/2))  vol(B(p,d(p,x) —e/2))  vol(B(q,d(q,z) — €/2))

= vol(M) ( vol(B(z, m)) vol(B(p, 7)) vol(B(q, 7))
v(n,1,e/2) +v(n,1,d(p,z) —e/2) +v(n,1,d(q,z) — e/2)

> vol(M) (

v(n,1,m)

where v(n, H,r) = vol(B(r)), B(r) C M},.
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Now in S™(1), vol(B(r)) = [, sin"~'tdt is a convex function of r. Thus

we have

v(n,1,m) > wv(n,1,e/2) +v(n,1,d(p,x) —e/2) +v(n,1,d(q,x) —e/2)
> wv(n,1,e/2) 4+ 2v <n, 1, dp,z) + ;l(q, v) — 6)
= u(m1,e/2) + 20 <n 1, d(l;’ Q)) |
Hence
v(n,1,e/2) <wv(n,1,7) — 20 (n, 1, d(]92, q)) ,

which tends to 0 as € — 0. Thus e — 0.
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