Math 241A

Instructor: Guofang Wei

Fall 2000

The basic idea of this course is that curvature bounds give information about manifolds, which in turn gives topological results. A typical example is the Bonnet-Myers Theorem. Intuitively,

Bigger curvature \rightsquigarrow Smaller manifold¹.

1 Volume Comparison Theorem

1.1 Volume of Riemannian Manifold

Recall: For $U \subset \mathbb{R}^n$,

$$\operatorname{vol}(U) = \int_U 1 \, dv = \int_U 1 \, dx_1 \cdots dx_n.$$

Note - $dx_1 \cdots dx_n$ is called the volume density element.

Change of variable formula: Suppose $\psi : V \to U$ is a diffeomorphism, with $U, V \subset \mathbb{R}^n$. Suppose $\psi(x) = y$. Then

$$\int_{U} dv = \int_{U} 1 \, dy_1 \cdots dy_n = \int_{V} |Jac(\psi)| \, dx_1 \cdots dx_n.$$

On a Riemannian manifold M^n , let $\psi_{\alpha} : U_{\alpha} \to \mathbb{R}^n$ be a chart. Set $E_{ip} = (\psi_{\alpha}^{-1})_*(\frac{\partial}{\partial x_i})$. In general, the E_{ip} 's are not orthonormal. Let $\{e_k\}$ be an orthonormal basis of T_pM . Then $E_{ip} = \sum_{k=1}^n a_{ik}e_k$. The volume of

¹This quarter we use that bigger curvature \Rightarrow smaller volume

the parallelepiped spanned by $\{E_{ip}\}$ is $|\det(a_{ik})|$. Now $g_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj}$, so $\det(g_{ij}) = \det(a_{ij})^2$. Thus

$$\operatorname{vol}(U_{\alpha}) = \int_{\psi(U_{\alpha})} \sqrt{|\det(g_{ij})|} \circ (\psi_{\alpha}^{-1}) \, dx_1 \cdots dx_n$$

Note - $dv = \sqrt{|\det(g_{ij})|} \circ (\psi_{\alpha}^{-1}) dx_1 \cdots dx_n$ is called a volume density element, or volume form, on M.

We have our first result, whose proof is left as an exercise.

Lemma 1.1.1 Volume is well defined.

Definition 1.1.1 Let M be a Riemannian manifold, and let $\{U_{\alpha}\}$ be a covering of M by domains of coordinate charts. Let $\{f_{\alpha}\}$ be a partition of unity subordinate to $\{U_{\alpha}\}$. The volume of M is

$$\operatorname{vol}(M) = \int_M 1 \, dv = \sum_{\alpha} \int_{\psi(U_{\alpha})} f_{\alpha} \, dv.$$

Lemma 1.1.2 The volume of a Riemannian manifold is well defined.

1.2 Computing the volume of a Riemannian manifold

Partitions of unity are not practically effective. Instead we look for charts that cover all but a measure zero set.

Example 1.2.1 For S^2 , use stereographic projection.

In general, we use the exponential map. We may choose normal coordinates or geodesic polar coordinates. Let $p \in M^n$. Then $\exp_p : T_pM \to M$ is a local diffeomorphism. Let $D_p \subset T_pM$ be the segment disk. Then if C_p is the cut locus of p, $\exp_p : D_p \to M - C_p$ is a diffeomorphism.

Lemma 1.2.1 C_p has measure zero.

Hence we may use \exp_p to compute the volume element $dv = \sqrt{\det(g_{ij})} dx_1 \cdots dx_n$. Now polar coordinates are not defined at p, but $\{p\}$ has measure zero. We have

$$\exp_p: D_p - \{0\} \xrightarrow{diffeo} M - C_p \cup \{p\}.$$

Set $E_i = (\exp_p)_*(\frac{\partial}{\partial theta_i})$ and $E_n = (\exp_p)_*(\frac{\partial}{\partial r})$. To compute g_{ij} 's, we want E_i and E_n explicitly. Since \exp_p is a radial isometry, $g_{nn} = 1$ and $g_{ni} = 0$ for $1 \le i < n$. Let $J_i(r, \theta)$ be the Jacobi field with $J_i(0) = 0$ and $J'_i(0) = \frac{\partial}{\partial \theta_i}$. Then $E_i(\exp_p(r, \theta) = J_i(r, \theta)$.

If we write J_i and $\frac{\partial}{\partial r}$ in terms of an orthonormal basis $\{e_k\}$, we have $J_i = \sum_{k=1}^{n} a_{ik} e_k$. Thus $\sqrt{\det(g_{ij})(r,\theta)} = |\det(a_{ik})| \stackrel{\Delta}{=} ||J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}||$

The volume density, or volume element, of M is

$$dv = ||J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}|| \, dr d\theta_{n-1} \stackrel{\Delta}{=} \mathcal{A}(r,\theta) \, dr d\theta_{n-1}$$

Example 1.2.2 \mathbb{R}^n has Jacobi equation J'' = R(T, J)T. If J(0) = 0 and $J'(0) = \frac{\partial}{\partial \theta_i}$ then $J(r) = r\frac{\partial}{\partial \theta_i}$. Thus the volume element is $dv = r^{n-1} dr d\theta_{n-1}$.

Example 1.2.3 S^n has $J_i(r) = \sin(r) \frac{\partial}{\partial \theta_i}$. Hence $dv = \sin^{n-1}(r) dr d\theta_{n-1}$.

Example 1.2.4 \mathbb{H}^n has $J_i(r) = \sinh(r) \frac{\partial}{\partial \theta_i}$. Hence $dv = \sinh^{n-1}(r) dr d\theta_{n-1}$.

Example 1.2.5 Volume of unit disk in \mathbb{R}^n

$$\omega_n = \int_{S^{n-1}} \int_0^1 r^{n-1} \, dr \, d\theta_{n-1} = \frac{1}{n} \int_{S^{n-1}} d\theta_{n-1}$$

Note -

$$\int_{S^{n-1}} d\theta_{n-1} = \frac{2(\pi)^{n/2}}{\Gamma(n/2)}.$$

1.3 Comparison of Volume Elements

Theorem 1.3.1 Suppose M^n has $\operatorname{Ric}_M \ge (n-1)H$. Let $dv = \mathcal{A}(r,\theta) dr d\theta_{n-1}$ be the volume element of M and let $dv_H = \mathcal{A}_H(r,\theta) dr d\theta_{n-1}$ be the volume element of the model space (simply connected n-manifold with $K \equiv H$). Then

$$\frac{\mathcal{A}(r,\theta)}{\mathcal{A}_H(r,\theta)}$$

is a nonincreasing function in r.

Proof². We show that

$$\nabla_{\frac{\partial}{\partial r}} (\frac{\mathcal{A}(r,\theta)}{\mathcal{A}_H(r,\theta)})^2 \le 0.$$

Since

$$\mathcal{A}(r,\theta)^2 = \langle J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \cdots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle,$$

we wish to show that

$$\langle J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle' \mathcal{A}_H(r, \theta)^2 - \mathcal{A}(r, \theta)^2 \langle J_1^H \wedge \dots \wedge J_{n-1}^H \wedge \frac{\partial}{\partial r}, J_1^H \wedge \dots \wedge J_{n-1}^H \wedge \frac{\partial}{\partial r} \rangle' \leq 0.$$

Thus we wish to show that

$$2\sum_{i=1}^{n-1} \frac{\langle J_1 \wedge \dots \wedge J_i' \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle}{\langle J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r}, J_1 \wedge \dots \wedge J_{n-1} \wedge \frac{\partial}{\partial r} \rangle}$$

$$\leq 2\sum_{i=1}^{n-1} \frac{\langle J_1^H \wedge \dots \wedge (J_i^H)' \wedge \dots \wedge J_{n-1}^H \wedge \frac{\partial}{\partial r}, J_1^H \wedge \dots \wedge J_{n-1}^H \wedge \frac{\partial}{\partial r} \rangle}{\langle J_1^H \wedge \dots \wedge J_{n-1}^H \wedge \frac{\partial}{\partial r}, J_1^H \wedge \dots \wedge J_{n-1}^H \wedge \frac{\partial}{\partial r} \rangle}$$
(1)

At $r = r_0$, let $\bar{J}_i(r_0)$ be orthonormal such that $\bar{J}_n(r_0) = \frac{\partial}{\partial r}|_{r=r_0}$. Then for $1 \le i < n$,

$$\bar{J}_i(r_0) = \sum_{k=1}^{n-1} b_{ik} J_k(r_0).$$

²Compare to the proof of the Rauch Comparison Theorem.

Define $\bar{J}_i(r) = \sum_{k=1}^{n-1} b_{ik} J_k(r)$, where the b_{ik} 's are fixed. Then each \bar{J}_i is a

linear combination of Jacobi fields, and hence is a Jacobi field.

The left hand side of (1), evaluated at $r = r_0$ is

$$2\sum_{i=1}^{n-1} \frac{\langle \bar{J}_1 \wedge \dots \wedge \bar{J}_i' \wedge \dots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}, \bar{J}_1 \wedge \dots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r} \rangle}{\langle \bar{J}_1 \wedge \dots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r}, \bar{J}_1 \wedge \dots \wedge \bar{J}_{n-1} \wedge \frac{\partial}{\partial r} \rangle} \bigg|_{r=r_0}$$
$$= 2\sum_{i=1}^{n-1} \langle \bar{J}_i'(r_0), \bar{J}_i(r_0) \rangle = 2\sum_{i=1}^{n-1} I(\bar{J}_i, \bar{J}_i),$$

where I is the index form $I(v,v) = \int_0^{r_0} \langle v',v' \rangle + \langle R(T,v)T,v \rangle dt$. Note that for a Jacobi field J,

$$\begin{split} I(J,J) &= \int_0^{r_0} \langle J', J' \rangle + \langle R(T,J)T, J \rangle dt \\ &= \int_0^{r_0} \langle J', J \rangle' - \langle J'', J \rangle + \langle R(T,J)T, J \rangle dt \\ &= \langle v', v \rangle|_{r=r_0}. \end{split}$$

Let E_i be a parallel field such that $E_i(r_0) = \overline{J}_i(r_0)$, and let $w_i = \frac{\sin\sqrt{H}r}{\sin\sqrt{H}r_0}E_i$. By the Index Lemma, Jacobi fields minimize the index form provided there are no conjugate points. Thus we have $2\sum_{i=1}^{n-1} I(\overline{J}_i, \overline{J}_i) \leq 2\sum_{i=1}^{n-1} I(w_i, w_i)$. By the curvature condition, $2\sum_{i=1}^{n-1} I(w_i, w_i) \leq 2\sum_{i=1}^{n-1} I(\overline{J}_i^H, \overline{J}_i^H)$, which is the right hand side of (1), evaluated at $r = r_0$. Thus $\frac{\mathcal{A}(r, \theta)}{\mathcal{A}_H(r, \theta)}$ is nonincreasing in r. **Remarks:**

1.
$$\lim_{r \to 0} \frac{\mathcal{A}(r,\theta)}{\mathcal{A}_H(r,\theta)} = 1, \text{ so } \mathcal{A}(r,\theta) \le \mathcal{A}_H(r,\theta).$$

2. (Rigidity) If $\mathcal{A}(r_0, \theta) = \mathcal{A}_H(r_0, \theta)$ for some r_0 , then $\mathcal{A}(r, \theta) = \mathcal{A}_H(r, \theta)$ for all $0 \leq r \leq r_0$. But then $B(p, r_0)$ is isometric to $B(r_0) \subset S_H^n$, where S_H^n is the model space. But then the Jacobi fields in M correspond to the Jacobi fields in the model space, so that M is isometric to the model space.

- 3. We cannot use the Index Lemma to prove an analogous result for $\operatorname{Ric}_M \leq (n-1)H$. In fact, there is no such result. For example, consider Einstein manifolds with $\operatorname{Ric} \equiv (n-1)H$.
- 4. If $K_M \leq H$, we may use the Rauch Comparison Theorem to prove a similar result inside the injectivity radius.
- 5. (Lohkamp) $\operatorname{Ric}_M \leq (n-1)H$ has no topological implications. Any smooth manifold M^n , with $n \geq 3$, has a complete Riemannian metric with $\operatorname{Ric}_M \leq 0$.
- 6. $\operatorname{Ric}_M \leq (n-1)H$ may still have geometric implications. For example, if M is compact with $\operatorname{Ric}_M < 0$ then M has a finite isometry group.

1.4 Volume Comparison Theorem

Theorem 1.4.1 (Bishop-Gromov) If M^n has $\operatorname{Ric}_M \ge (n-1)H$ then

$$\frac{\operatorname{vol}(B(p,R))}{\operatorname{vol}(B^H(R))}$$

is nonincreasing in R.

Proof. We have

$$\operatorname{vol}B(p,R) = \int_{B(p,R)} 1 dv$$
$$= \int_{0}^{R} \int_{S_{p}(r)} \mathcal{A}(r,\theta) d\theta_{n-1} dr,$$

where $S_p(r) = \{\theta \in S_p : r\theta \in D_p\}$. Note that $S_p(r_1) \subset S_p(r_2)$ if $r_1 \ge r_2$. The theorem now follows from two lemmas:

Lemma 1.4.1 If $f(r)/g(r) \ge 0$ is nonincreasing in r, with g(r) > 0, then

$$\frac{\int_0^R f(r)dr}{\int_0^R g(r)dr}$$

is nonincreasing in R.

Proof of Lemma.- The numerator of the derivative is

$$\begin{split} (\int_0^R g(r)dr)(\int_0^R f(r)dr)' &- (\int_0^R f(r)dr)(\int_0^R g(r)dr)' \\ &= f(R)(\int_0^R g(r)dr) - g(R)(\int_0^R f(r)dr) \\ &= g(R)(\int_0^R g(r)dr) \left[\frac{f(R)}{g(R)} - \frac{\int_0^R f(r)dr}{\int_0^R g(r)dr}\right] \end{split}$$

Now

$$\frac{f(r)}{g(r)} \ge \frac{f(R)}{g(R)} \Rightarrow g(R)f(r) \ge f(R)g(r),$$
$$\int_0^R g(R)f(r)dr \ge \int_0^R f(R)g(r)dr.$$

Thus

 \mathbf{SO}

$$\frac{f(R)}{g(R)} \le \frac{\int_0^R f(r)dr}{\int_0^R g(r)dr},$$

so the derivative is nonpositive.

Lemma 1.4.2 (Comparison of Lower Area of Geodesic Sphere) Suppose r lies inside the injectivity radius of the model space S_H^n , so that if H > 0, $r < \pi/\sqrt{H}$. Then

$$\frac{\int_{S_p(r)} \mathcal{A}(r,\theta) \, d\theta_{n-1}}{\int_{S^{n-1}} \mathcal{A}^H(r) \, d\theta_{n-1}}$$

is nonincreasing in r.

Proof of Lemma. In the model space, $\mathcal{A}^{H}(r,\theta)$ does not depend on θ , so we write $\mathcal{A}^{H}(r)$. Note that if $r \leq R$,

$$\frac{\int_{S_p(R)} \mathcal{A}(R,\theta) d\theta_{n-1}}{\int_{S^{n-1}} \mathcal{A}^H(R) d\theta_{n-1}} = \frac{1}{\int_{S^{n-1}} d\theta_{n-1}} \int_{S_p(R)} \frac{\mathcal{A}(R,\theta)}{\mathcal{A}^H(R)} d\theta_{n-1} \\
\leq \frac{1}{\int_{S^{n-1}} d\theta_{n-1}} \int_{S_p(r)} \frac{\mathcal{A}(r,\theta)}{\mathcal{A}^H(r)} d\theta_{n-1} \\
= \frac{\int_{S_p(r)} \mathcal{A}(r,\theta) d\theta_{n-1}}{\int_{S^{n-1}} \mathcal{A}^H(r) d\theta_{n-1}},$$

since $S_p(r) \supset S_p(R)$ and $\frac{\mathcal{A}(r,\theta)}{\mathcal{A}^H(r)}$ is nonincreasing in r. The theorem now follows. Note that if R is greater than the injectivity radius then $\operatorname{vol} B(p, R)$ de-

creases. Thus the volume comparison theorem holds for all R.

Corollaries:

- 1. (Bishop Absolute Volume Comparison) Under the same assumptions, $\operatorname{vol}B(p,r) \leq \operatorname{vol}B^{H}(r).$
- 2. (Relative Volume Comparison) If $r \leq R$ then

$$\frac{\operatorname{vol}B(p,r)}{\operatorname{vol}B(p,R)} \ge \frac{\operatorname{vol}B^H(r)}{\operatorname{vol}B^H(R)}.$$

If equality holds for some r_0 then equality holds for all $0 \le r \le r_0$, and $B(p, r_0)$ is isometric to $B^H(r_0)$.

Proofs:

(1) holds because $\lim_{r\to 0} \frac{\operatorname{vol} B(p,r)}{\operatorname{vol} B^H(r)} = 1.$

(2) is a restatement of the volume comparison theorem.

Sometimes we let R = 2r in (2). Then (2) gives a lower bound on the ratio $\frac{\operatorname{vol}B(p,r)}{\operatorname{vol}B(p,R)}$, called the doubling constant. If $\operatorname{vol}(M) \ge V$ then we obtain a lower bound on the volume of small balls.

Generalizations:

- 1. The same proof shows that the result holds for $\operatorname{vol}^{\Gamma} B(p, R)$, where $\Gamma \subset S_p = S^{n-1} \subset T_p M$. In particular, the result holds for annuli $(\int_{r_0}^{R_0} \cdots)$ and for cones.
- 2. Integral Curvature
- 3. Stronger curvature conditions give submanifold results.

2 Applications of Volume Comparison

2.1 Cheng's Maximal Diameter Rigidity Theorem

Theorem 2.1.1 (Cheng) Suppose M^n has $\operatorname{Ric}_M \ge (n-1)H > 0$. By the Bonnet-Myers Theorem, $\operatorname{diam}_M \le \pi/\sqrt{H}$. If $\operatorname{diam}_M = \pi/\sqrt{H}$, Cheng's result states that M is isometric to the sphere S^n_H with radius $1/\sqrt{H}$.

Proof. (Shiohama) Let $p, q \in M$ have $d(p,q) = \pi/\sqrt{H}$. Then

$$\frac{\operatorname{vol} B(p, \pi/(2\sqrt{H}))}{\operatorname{vol} M} = \frac{\operatorname{vol} B(p, \pi/(2\sqrt{H}))}{\operatorname{vol} B(p, \pi/\sqrt{H})}$$
$$\geq \frac{\operatorname{vol} B_H(\pi/(2\sqrt{H}))}{\operatorname{vol} B_H(\pi/\sqrt{H})} = 1/2$$

Thus vol $B(p, \pi/2\sqrt{H}) \ge (\text{vol } M)/2$. Similarly for q. Hence vol $B(p, \pi/(2\sqrt{H})) = (\text{vol } M)/2$, so we have equality in the volume comparison. By rigidity, $B(p, \pi/(2\sqrt{H}))$ is isometric to the upper hemisphere of S_H^n . Similarly for $B(q, \pi/2\sqrt{H})$, so $\text{vol } M = \text{vol}, S_H^n$.

Question: What about perturbation? Suppose $\operatorname{Ric}_M \geq (n-1)H$ and diam_M $\geq \pi/\sqrt{H} - \varepsilon$. In general there is no result for $\varepsilon > 0$. There are spaces not homeomorphic to S^n , provided $n \geq 4$, with $\operatorname{Ric} \geq (n-1)H$ and diam $\geq \pi/\sqrt{H} - \varepsilon$. Still, if $\operatorname{Ric} \geq (n-1)H$ and $\operatorname{vol} M \geq \operatorname{vol} S^n_H - \varepsilon(n, H)$ then $M^n \stackrel{diffeo}{\simeq} S^n_H$.

2.2 Growth of Fundamental Group

Suppose Γ is a finitely generated group, say $\Gamma = \langle g_1, \ldots, g_k \rangle$. Any $g \in \Gamma$ can be written as a word $g = \prod_i g_{k_i}^{n_i}$, where $k_i \in \{1, \ldots, k\}$. Define the length of this word to be $\sum_i |n_i|$, and let |g| be the minimum of the lengths of all word representations of g. Note that $|\cdot|$ depends on the choice of generators. Fix a set of generators for Γ . The growth function of Γ is

$$\Gamma(s) = \#\{g \in \Gamma : |g| \le s\}.$$

Example 2.2.1 If Γ is a finite group then $\Gamma(s) \leq |\Gamma|$.

Example 2.2.2 $\Gamma = \mathbb{Z} \oplus \mathbb{Z}$. Then $\Gamma = \langle g_1, g_2 \rangle$, where $g_1 = (1, 0)$ and $g_2 = (0, 1)$. Any $g \in \Gamma$ can be written as $g = s_1g_1 + s_2g_2$. To find $\Gamma(s)$, we want $|s_1| + |s_2| \leq s$.

$$\begin{split} \Gamma(s) &= 2s+1+\sum_{t=1}^{s}2(2(s-t)+1)\\ &= 2s+1+\sum_{t=1}^{s}(4s-4t+2)\\ &= 2s+1+4s^2+2s-4\sum_{t=1}^{2}t\\ &= 4s^2+4s+1-4(s(s+1)/2)\\ &= 4s^2+4s+1-2(s^2+s)\\ &= 2s^2+2s+1 \end{split}$$

In this case we say Γ has polynomial growth.

Example 2.2.3 Γ free abelian on k generators. Then $\Gamma(s) = \sum_{i=0}^{k} {\binom{k}{i}} {\binom{s}{i}}$. Γ has polynomial growth of degree k.

Definition 2.2.1 Γ is said to have polynomial growth of degree $\leq n$ if for each set of generators the growth function $\Gamma(s) \leq as^n$ for some a > 0.

 Γ is said to have exponential growth if for each set of generators the growth function $\Gamma(s) \ge e^{as}$ for some a > 0.

Lemma 2.2.1 If for some set of generators, $\Gamma(s) \leq as^n$ for some a > 0, then Γ has polynomial growth of degree $\leq n$. If for some set of generators, $\Gamma(s) \geq e^{as}$ for some a > 0, then Γ has exponential growth.

Example 2.2.4 \mathbb{Z}^k has polynomial growth of degree k.

Example 2.2.5 $\mathbb{Z} * \mathbb{Z}$ has exponential growth.

Note that for each group Γ there always exists a > 0 so that $\Gamma(s) \leq e^{as}$.

Definition 2.2.2 A group is called almost nilpotent if it has a nilpotent subgroup of finite index. **Theorem 2.2.1 (Gromov)** A finitely generated group Γ has polynomial growth iff Γ is almost nilpotent.

Theorem 2.2.2 (Milnor) If M^n is complete with $\operatorname{Ric}_M \geq 0$, then any finitely generated subgroup of $\pi_1(M)$ has polynomial growth of degree $\leq n$.

Proof. Let \tilde{M} have the induced metric. Then $\operatorname{Ric}_{\tilde{M}} \geq 0$, and $\pi_1(M)$ acts isometrically on \tilde{M} . Suppose $\Gamma = \langle g_1, \ldots, g_k \rangle$ be a finitely generated subgroup of $\pi_1(M)$. Pick $p \in M$.

Let $\ell = \max_{i} d(g_i \tilde{p}, \tilde{p})$. Then if $g \in \pi_1(M)$ has $|g| \leq s, d(g\tilde{p}, \tilde{p}) \leq s\ell$.

On the other hand, for any cover there exists $\varepsilon > 0$ such that $B(g\tilde{p},\varepsilon)$ are pairwise disjoint for all $g \in \pi_1(M)$. Note that $gB(\tilde{p},\varepsilon) = B(g\tilde{p},\varepsilon)$.

Now

$$\bigcup_{|g| \le s} B(g\tilde{p}, \varepsilon) \subset B(\tilde{p}, s\ell + \varepsilon);$$

since the $B(q\tilde{p},\varepsilon)$'s are disjoint and have the same volume,

$$\Gamma(s) \operatorname{vol} B(\tilde{p}, \varepsilon) \le \operatorname{vol} B(\tilde{p}, s\ell + \varepsilon).$$

Thus

$$\Gamma(s) \leq \frac{\operatorname{vol}B(\tilde{p}, s\ell + \varepsilon)}{\operatorname{vol}B(\tilde{p}, \varepsilon)} \\ \leq \frac{\operatorname{vol}B_{\mathbb{R}^n}(0, s\ell + \varepsilon)}{\operatorname{vol}B_{\mathbb{R}^n}(0, \varepsilon)}.$$

Now

$$\operatorname{vol}(B_{\mathbb{R}^n}(0,s)) = \int_{S^{n-1}} \int_0^s r^{n-1} dr d\theta_{n-1}$$
$$= \frac{1}{n} s^n \int_{S^{n-1}} d\theta_{n-1}$$
$$= s^n \omega_n,$$

so $\Gamma(s) \leq \frac{s\ell + \varepsilon^n}{\varepsilon_1^n}$.

Since ℓ and ε are fixed, we may choose a so that $\Gamma(s) \leq as^n$.

Example 2.2.6 Let H be the Heisenberg group

$$\left\{ \left(\begin{array}{ccc} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array} \right) : x, y, x \in \mathbb{R} \right\},\$$

and let

$$H_{\mathbb{Z}} = \left\{ \left(\begin{array}{ccc} 1 & n_1 & n_2 \\ 0 & 1 & n_3 \\ 0 & 0 & 1 \end{array} \right) : n_i \in \mathbb{Z} \right\}.$$

Then $H/H_{\mathbb{Z}}$ is a compact 3-manifold with $\pi_1(H/H_{\mathbb{Z}}) = H_{\mathbb{Z}}$. The growth of $H_{\mathbb{Z}}$ is polynomial of degree 4, so $H/H_{\mathbb{Z}}$ has no metric with Ric ≥ 0 .

Remarks:

- 1. If $\operatorname{Ric}_M \geq 1/k^2 > 0$, then M is compact. Thus $\pi_1(M)$ is finitely generated. It is unknown whether $\pi_1(M)$ is finitely generated if M is noncompact.
- 2. Ricci curvature gives control on $\pi(M)$, while sectional curvature gives control on the higher homology groups. For example, if $K \ge 0$ then the Betti numbers of M are bounded by dimension.
- 3. If M is compact then growth of $\pi_1(M) \leftrightarrow$ volume growth of M.

Related Results:

- 1. (Gromov) If $\operatorname{Ric}_M \geq 0$ then any finitely generated subgroup of $\pi_1(M)$ is almost nilpotent.
- 2. (Cheeger-Gromoll, 1972) If M is compact with $\operatorname{Ric} \geq 0$ then $\pi_1(M)$ is abelian up to finite index.
- 3. (Wei, 1988; Wilking 1999) Any finitely generated almost nilpotent group can be realized as $\pi_1(M)$ for some M with Ric ≥ 0 .
- 4. Milnor's Conjecture (Open) If M^n has $\operatorname{Ric}_M \geq 0$ then $\pi_1(M)$ is finitely generated.

In 1999, Wilking used algebraic methods to show that $\pi_1(M)$ is finitely generated iff any abelian subgroup of $\pi_1(M)$ is finitely generated (provided $\operatorname{Ric}_M \geq 0$).

Sormani showed in 1998 that if M^n has small linear diameter growth, i.e. if

$$\limsup_{r \to \infty} \frac{\operatorname{diam}\partial B(p, r)}{r} < s_n = \frac{n}{(n-1)3^n} \left(\frac{n-1}{n-2}\right)^{n-1},$$

then $\pi_1(M)$ is finitely generated.

2.2.1 Basic Properties of Covering Space

Suppose $\tilde{M} \to M$ has the covering metric.

- 1. M compact \Rightarrow there is a compact set $K \subset \tilde{M}$ such that $\{\gamma K\}_{\gamma \in \pi_1(M)}$ covers \tilde{M} . K is the closure of a fundamental domain.
- 2. $\{\gamma K\}_{\gamma \in \pi_1(M)}$ is locally finite.

Definition 2.2.3 Suppose $\delta > 0$. Set $S = \{\gamma : d(K, \gamma K) \leq \delta\}$. Note that S is finite.

Lemma 2.2.2 If $\delta > D = \text{diam}_M$ then S generates $\pi_1(M)$. In fact, for any $a \in K$, if $d(a, \gamma K) \leq (\delta - D)s + D$, then $|\gamma| \leq s$.

Proof. There exists $y \in \gamma K$ such that $d(a, y) = d(a, \gamma K)$. Connect a and y a minimal geodesic σ . Divide σ by $y_1, \ldots, y_{s+1} = y$, where $d(y_i, y_{i+1}) \leq \delta - D$ and $d(a, y_i) < D$.

Now $\{\gamma K\}_{\gamma \in \pi_1(M)}$ covers \tilde{M} , so there exist $\gamma_i \in \pi_1(M)$ and $x_i \in K$ such that $\gamma_i(x_i) = y_i$. Choose $\gamma_{s+1} = \gamma$ and $\gamma_1 = Id$. Then $\gamma = \gamma_1^{-1} \gamma_2 \cdots \gamma_s^{-1} \gamma_{s+1}$. But $\gamma_i^{-1} \gamma_{i+1} \in S$, since

$$d(x_{i}, \gamma_{i}^{-1}\gamma_{i+1}x_{i}) = d(\gamma_{i}x_{i}, \gamma_{i+1}x_{i})$$

= $d(y_{i}, \gamma_{i+1}x_{i})$
 $\leq d(y_{i}, y_{i+1}) + d(y_{i+1}, \gamma_{i+1}x_{i})$
= $d(y_{i}, y_{i+1}) + d(x_{i+1}, x_{i})$
 $\leq \delta.$

Thus $|\gamma| \leq s$.

Theorem 2.2.3 (Milnor 1968) Suppose M is compact with $K_M < 0$. Then $\pi_1(M)$ has exponential growth.

Note that $K_M \leq -H < 0$ since M is compact. The volume comparison holds for $K \leq -H$, but only for balls inside the injectivity radius. Since $K_M < 0$, though, the injectivity radius is infinite.

Proof of Theorem. By the lemma,

$$\bigcup_{|\gamma| \le s} \gamma K \supset B(a, (\delta - D)s + D),$$

so $\Gamma(s)\operatorname{vol}(K) \ge \operatorname{vol}B(a, (\delta - d)s + D)$. Note that

$$\operatorname{vol}B(a, (\delta - D)s + D) \ge \operatorname{vol}B^{-H}(a, (\delta - D)s + D),$$

since $K_{\tilde{M}} \leq -H < 0$. Now

$$\operatorname{vol} B^{-H}(r) = \int_{S^{n-1}} \int_0^r \left(\frac{\sinh\sqrt{H}r}{\sqrt{H}}\right)^{n-1} dr d\theta_{n-1}$$
$$= n\omega_n \int_0^r \left(\frac{\sinh\sqrt{H}r}{\sqrt{H}}\right)^{n-1} dr d\theta_{n-1}$$
$$\geq \frac{n\omega_n}{2(2\sqrt{H})^{n-1}(n-1)\sqrt{H}} e^{\sqrt{H}r},$$

for r large.

Thus

$$\Gamma(s) \ge \frac{\operatorname{vol}B(a, (\delta - D)s + D)}{\operatorname{vol}(K)} \ge C(n, H)e^{(\delta - D)\sqrt{Hs}},$$

where C(n, H) is constant.

Corollary The torus does not admit a metric with negative sectional curvature.

2.3 First Betti Number Estimate

Suppose M is a manifold. The first Betti number of M is

$$b_1(M) = \dim H_1(M, \mathbb{R}).$$

Now $H_1(M, \mathbb{Z}) = \pi_1(M)/[\pi_1(M), \pi_1(M)]$, which is the fundamental group of M made abelian. Let T be the group of torsion elements in $H_1(M, \mathbb{Z})$. Then $T \triangleleft H_1(M, \mathbb{Z})$ and $\Gamma = H_1(M, \mathbb{Z})/T$ is a free abelian group. Moreover,

$$b_1(M) = \operatorname{rank}(\Gamma) = \operatorname{rank}(\Gamma'),$$

where Γ' is any subgroup of Γ with finite index.

Theorem 2.3.1 (Gromov, Gallot) Suppose M^n is a compact manifold with $\operatorname{Ric}_M \geq (n-1)H$ and $\operatorname{diam}_M \leq D$. There is a function $C(n, HD^2)$ such that $b_1(M) \leq C(n, HD^2)$ and $\lim_{x\to 0^-} C(n, x) = n$ and C(n, x) = 0 for x > 0. In particular, if HD^2 is small, $b_1(M) \leq n$.

Proof. First note that if M is compact and $\operatorname{Ric}_M > 0$ then $\pi_1(M)$ is finite. In this case $b_1(M) = 0$. Also, by Milnor's result, if M is compact with $\operatorname{Ric}_M \geq 0$ then $b_1(M) \leq n$.

As above, $b_1(M) = \operatorname{rank}(\Gamma)$, where $\Gamma = \pi_1(M)/[\pi_1(M), \pi_1(M)]/T$. Set $\overline{M} = \widetilde{M}/[\pi_1(M), \pi_1(M)]/T$ be the covering space of M corresponding to Γ . Then Γ acts isometrically as deck transformations on \overline{M} .

Lemma 2.3.1 For fixed $\tilde{x} \in \overline{M}$ there is a subgroup $\Gamma' \leq \Gamma$, $[\Gamma : \Gamma']$ finite, such that $\Gamma' = \langle \gamma_1, \ldots, \gamma_2 \rangle$, where:

- 1. $d(x, \gamma_i(x)) \leq 2 \operatorname{diam}_M$ and
- 2. For any $\gamma \in \Gamma' \{e\}, d(x, \gamma(x)) > \operatorname{diam}_M$.

Proof of Lemma. For each $\varepsilon \geq 0$ let $\Gamma_{\varepsilon} \leq \Gamma$ be generated by

$$\{\gamma \in \Gamma : d(x, \gamma(x)) \le 2 \operatorname{diam}_M + \varepsilon\}.$$

Then Γ_{ε} has finite index. For if M/Γ_{ε} is a covering space corresponding to $\Gamma/\Gamma_{\varepsilon}$. Then $[\Gamma : \Gamma_{\varepsilon}]$ is the number of copies of M in $\overline{M}/\Gamma_{\varepsilon}$. We show that $\operatorname{diam}(\overline{M}/\Gamma_{\varepsilon}) \leq 2\operatorname{diam}_M + 2\varepsilon$ so that $\overline{M}/\Gamma_{\varepsilon}$.

Suppose not, so there is $z \in \overline{M}$ such that $d(x, z) = \operatorname{diam}_M + \varepsilon$. Then there is $\gamma \in \Gamma$ that $d(\gamma(x), z) \leq \operatorname{diam}_M$. Then if π_{ε} is the covering $\overline{M} \to \overline{M}/\Gamma_{\varepsilon}$,

$$d(\pi_{\varepsilon}x, \pi_{\varepsilon}\gamma(x)) \geq d(\pi_{\varepsilon}x, \pi_{\varepsilon}z) - d(\pi_{\varepsilon}z, \pi_{\varepsilon}\gamma(x))$$

$$\geq \operatorname{diam}_{M} + \varepsilon - \operatorname{diam}_{M}$$

$$= \varepsilon.$$

Thus $\gamma \notin \Gamma_{\varepsilon}$. But

$$d(x, \gamma(x)) \leq d(x, z) + d(z, \gamma(x))$$

$$\leq 2 \operatorname{diam}_M + \varepsilon$$

Thus M/Γ_{ε} is compact, so Γ_{ε} has finite index. Moreover,

$$\{\gamma \in \Gamma : d(x, \gamma(x)) \leq 3 \operatorname{diam}_M\}$$

is finite, Γ_{ε} is finitely generated. Also, note that for ε small,

$$\{\gamma \in \Gamma : d(x, \gamma(x)) \le 2 \operatorname{diam}_M\} = \{\gamma \in \Gamma : d(x, \gamma(x)) \le 2 \operatorname{diam}_M + \varepsilon\}.$$

Pick such an $\varepsilon > 0$.

Since $\Gamma_{\varepsilon} \leq \Gamma$ has finite index, $b_1(M) = \operatorname{rank}(\Gamma_{\varepsilon})$. Now Γ_{ε} is finitely generated, say $\Gamma_{\varepsilon} = \langle \gamma_1, \ldots, \gamma_m \rangle$; pick linearly independent generators $\gamma_1, \ldots, \gamma_{b_1}$ so that $\Gamma'' = \langle \gamma_1, \ldots, \gamma_{b_1} \rangle$ has finite index in Γ_{ε} .

Let $\Gamma' = \langle \tilde{\gamma}_1, \ldots, \tilde{\gamma}_{b_1} \rangle$, where $\tilde{\gamma}_k = \ell_{k1}\gamma_1 + \cdots + \ell_{kk}\gamma_k$ and the coefficients ℓ_{ki} are chosen so that ℓ_{kk} is maximal with respect to the constraints:

- 1. $\tilde{\gamma}_k \in \Gamma'' \cap \{\gamma \in \Gamma : d(x, \gamma(x)) \leq 2 \operatorname{diam}_M\}$ and
- 2. span{ $\tilde{\gamma}_1, \ldots, \tilde{\gamma}_k$ } \leq span{ $\gamma_1, \ldots, \gamma_k$ } with finite index.

Then $\Gamma' \leq \Gamma''$ has finite index, and $d(x, \tilde{\gamma}_i(x)) \leq 2 \operatorname{diam}_M$ for each *i*. Finally, suppose there exists $\gamma \in \Gamma' - \{e\}$ with $d(x, \gamma(x)) \leq \operatorname{diam}_M$, write

$$\gamma = m_1 \tilde{\gamma}_1 + \dots + \tilde{\gamma}_k,$$

with $m_k \neq 0$. Then $d(x, \gamma^2(x)) \leq 2d(x, \gamma(x)) \leq 2\text{diam}_M$, but

$$\begin{aligned} \gamma^2 &= 2m_1 \tilde{\gamma}_1 + \dots + 2m_k \tilde{\gamma}_k \\ &= (\text{terms involving } \gamma_i, i < k) + 2m_k \ell_{kk} \gamma_k, \end{aligned}$$

which contradicts the choice of the coefficients ℓ_{ki} .

Proof of Theorem. Let $\Gamma' = \langle \gamma_1, \ldots, \gamma_{b_1} \rangle$ be as in the lemma. Then $d(\gamma_i(x), \gamma_j(x)) = d(x, \gamma_i^{-1}\gamma_j(x)) > D = \operatorname{diam}_M$, where $i \neq j$. Thus

$$B(\gamma_i(x), D/2) \cap B(\gamma_j(x), D/2) = \emptyset$$

for $i \neq j$. Also

$$B(\gamma_i(x), D/2) \subset B(x, 2D + D/2)$$

for all i, so that

$$\bigcup_{i=1}^{b_1} B(\gamma_i(x), D/2) \subset B(x, 2D + D/2).$$

Hence

$$b_1 \le \frac{\mathrm{vol}B(x, 2D + D/2)}{\mathrm{vol}B(x, D/2)} \le \frac{\mathrm{vol}B^H(2D + D/2)}{\mathrm{vol}B^H(D/2)}.$$

Since the result holds for $H \ge 0$, assume H < 0. Then

$$\frac{\operatorname{vol}B^{H}(2D+D/2)}{\operatorname{vol}B^{H}(D/2)} = \frac{\int_{S^{n-1}} \int_{0}^{5D/2} (\frac{\sinh\sqrt{-Ht}}{\sqrt{-H}})^{n-1} dt d\theta}{\int_{S^{n-1}} \int_{0}^{D/2} (\frac{\sinh\sqrt{-Ht}}{\sqrt{-H}})^{n-1} dt d\theta}$$
$$= \frac{\int_{0}^{5D/2} (\sinh\sqrt{-Ht})^{n-1} dt}{\int_{0}^{D/2} (\sinh\sqrt{-Ht})^{n-1} dt}$$
$$= \frac{\int_{0}^{5D\sqrt{-H/2}} (\sinh r)^{n-1} dr}{\int_{0}^{D\sqrt{-H/2}} (\sinh r)^{n-1} dr}$$

Let $U(s) = \{\gamma \in \Gamma' : |\gamma| \le s\}$. Then

$$\bigcup_{\gamma \in U(s)} B(\gamma x, D/2) \subset B(x, 2Ds + D/2),$$

whence

$$\begin{aligned} \#U(s) &\leq \frac{\operatorname{vol}B(x,2Ds+D/2)}{\operatorname{vol}B(x,D/2)} \\ &\leq \frac{\operatorname{vol}B^{H}(2Ds+D/2)}{\operatorname{vol}B^{H}(D/2)} \\ &= \frac{\int_{0}^{(2s+\frac{1}{2})D\sqrt{-H}}(\sinh r)^{n-1}dr}{\int_{0}^{D\sqrt{-H}/2}(\sinh r)^{n-1}dr} \\ &\leq \frac{2(2s+\frac{1}{2})^{n}(D\sqrt{-H})^{n}}{(\frac{1}{2})^{n}(D\sqrt{-H})^{n}} \\ &= 2^{n+1}(2s+\frac{1}{2})^{n} \end{aligned}$$

Thus $b_1(M) = \operatorname{rank}(\Gamma') \leq n$, so that for HD^2 small, $b_1(M) \leq n$. **Conjecture:** For M^n with $\operatorname{Ric}_M \geq (n-1)H$ and $\operatorname{diam}_M \leq D$, the number of generators of $\pi_1(M)$ is uniformly bounded by C(n, H, D).

2.4 Finiteness of Fundamental Groups

Lemma 2.4.1 (Gromov, 1980) For any compact M^n and each $\tilde{x} \in M$ there are generators $\gamma_1, \ldots, \gamma_k$ of $\pi_1(M)$ such that $d(\tilde{x}, \gamma_i \tilde{x}) \leq 2 \operatorname{diam}_M$ and all relations of $\pi_1(M)$ are of the form $\gamma_i \gamma_j = \gamma_\ell$.

Proof. Let $0 < \varepsilon <$ injectivity radius. Triangulate M so that the length of each adjacent edge is less than ε . Let x_1, \ldots, x_k be the vertices of the triangulation, and let e_{ij} be minimal geodesics connecting x_i and x_j .

Connect x to each x_i by a minimal geodesic σ_i , and set $\sigma_{ij} = \sigma_j^{-1} e_{ij} \sigma_i$. Then $\ell(\sigma_{ij}) < 2 \operatorname{diam}_M + \varepsilon$, so $d(\tilde{x}, \sigma_{ij}\tilde{x}) < 2 \operatorname{diam}_M + \varepsilon$.

We claim that $\{\sigma_{ij}\}$ generates $\pi_1(M)$. For any loop at x is homotopic to a 1-skeleton, while $\sigma_{jk}\sigma_{ij} = \sigma_{ik}$ as adjacent vertices span a 2-simplex. In addition, if $1 = \sigma \in \pi_1(M)$, σ is trivial in some 2-simplex. Thus $\sigma = 1$ can be expressed as a product of the above relations.

Theorem 2.4.1 (Anderson, 1990)) In the class of manifolds M with $\operatorname{Ric}_M \geq (n-1)H$, $\operatorname{vol}_M \geq V$ and $\operatorname{diam}_M \leq D$ there are only finitely many isomorphism types of $\pi_1(M)$.

Remark: The volume condition is necessary. For example, S^3/\mathbb{Z}_n has $K \equiv 1$ and diam $= \pi/2$, but $\pi_1(S^3/\mathbb{Z}_n) = \mathbb{Z}_n$. In this case, $\operatorname{vol}(S^3/\mathbb{Z}_n) \to 0$ as $n \to \infty$.

Proof of Theorem. Choose generators for $\pi_1(M)$ as in the lemma; it is sufficient to bound the number of generators.

Let F be a fundamental domain in \hat{M} that contains \tilde{x} . Then

$$\bigcup_{i=1}^{k} \gamma_i(F) \subset B(\tilde{x}, 3D).$$

Also, $\operatorname{vol}(F) = \operatorname{vol}(M)$, so

$$k \le \frac{\operatorname{vol} B(\tilde{x}, 3D)}{\operatorname{vol} M} \le \frac{\operatorname{vol} B^H(3D)}{V}.$$

This is a uniform bound depending on H, D and V.

Theorem 2.4.2 (Anderson, 1990) For the class of manifolds M with $\operatorname{Ric}_M \geq (n-1)H$, $\operatorname{vol}_M \geq V$ and $\operatorname{diam}_M \leq D$ there are L = L(n, H, V, D) and N = N(n, H, V, D) such that if $\Gamma \subset \pi_1(M)$ is generated by $\{\gamma_i\}$ with each $\ell(\gamma_i) \leq L$ then the order of Γ is at most N.

Proof. Let $\Gamma = \langle \gamma_1, \ldots, \gamma_k \rangle \subset \pi_1(M)$, where each $\ell(\gamma_i) \leq L$. Set

 $U(s) = \{ \gamma \in \Gamma : |\gamma| \le s \},$

and let $F \subset \tilde{M}$ be a fundamental domain of M. Then $\gamma_i(F) \cap \gamma_j(F)$ has measure zero for $i \neq j$. Now

$$\bigcup_{\gamma \in U(s)} \gamma(F) \subset B(\tilde{x}, sL + D),$$

 \mathbf{SO}

$$#U(s) \le \frac{\operatorname{vol}B^H(sL+D)}{V}\,.$$

Note that if U(s) = U(s+1), then $U(s) = \Gamma$. Also, $U(1) \ge 1$. Thus, if Γ has order greater than N, then $U(N) \ge N$.

Set L = D/N and s = N. Then

$$N \le U(N) \le \frac{\operatorname{vol}B^H(2D)}{V}$$

Hence $|\Gamma| \leq N = \frac{\operatorname{vol}B^H(2D)}{V} + 1$, so Γ is finite.

3 Laplacian Comparison

3.1 What is the Laplacian?

We restrict our attention to functions, so the Laplacian is a function

$$\Delta: \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M).$$

3.1.1 Invariant definition of the Laplacian

Suppose $f \in \mathcal{C}^{\infty}(M)$. The gradient of f is defined by $\langle \nabla f, X \rangle = Xf$. Note that the gradient depends on the metric. We may also define the Hessian of f to be the symmetric bilinear form Hess $f : \chi(M) \times \chi(M) \to \mathcal{C}^{\infty}(M)$ by

$$\operatorname{Hess} f(X,Y) = \nabla_{X,Y}^2 f = X(Yf) - (\nabla_X Y)f = \langle \nabla_X \nabla f, Y \rangle.$$

The Laplacian of f is the trace of Hess f, $\Delta f = tr(\text{Hess } f)$. Note that if $\{e_i\}$ is an orthonormal basis, we have

$$\Delta f = \operatorname{tr} \langle \nabla_X \nabla f, Y \rangle$$
$$= \sum_{i=1}^n \langle \nabla_{e_i} \nabla f, e_i \rangle$$
$$= \operatorname{div} \nabla f.$$

3.1.2 Laplacian in terms of geodesic polar coordinates

Fix $p \in M$ and use geodesic polar coordinates about p. For any $x \in M - C_p$, $x \neq p$, connect p to x by a normalized minimal geodesic γ so $\gamma(0) = p$ and $\gamma(r) = x$. Set $N = \gamma'(r)$, the outward pointing unit normal of the geodesic sphere. Let e_2, \ldots, e_n be an orthonormal basis tangent to the geodesic sphere, and extend N, e_2, \ldots, e_n to an orthonormal frame in a neighborhood of x. Then if $e_1 = N$,

$$\Delta f = \sum_{i=1}^{n} \langle \nabla_{e_i} \nabla f, e_i \rangle = \sum_{i=1}^{n} (e_i(e_i f) - (\nabla_{e_i} e_i) f).$$

Note that

$$\begin{aligned} \nabla_{e_i} e_i &= \langle \nabla_{e_i} e_i, N \rangle N + (\nabla_{e_i} e_i)^T \\ &= \langle \nabla_{e_i} e_i, N \rangle N + (\bar{\nabla}_{e_i} e_i), \end{aligned}$$

where $\overline{\nabla}$ is the induced connection on $\partial B(p, r)$. Thus

$$\Delta f = N(Nf) - (\nabla_N N)f + \sum_{i=2}^n (e_i(e_i f) - (\nabla_{e_i} e_i)f)$$

$$= \frac{\partial^2 f}{\partial r^2} + \sum_{i=2}^n (e_i(e_i f) - (\bar{\nabla}_{e_i} e_i)f) - (\sum_{i=2}^n \langle \nabla_{e_i} e_i, N \rangle N)f$$

$$= \bar{\Delta}f + m(r, \theta)\frac{\partial}{\partial r}f + \frac{\partial^2 f}{\partial r^2},$$

where $\overline{\Delta}$ is the induced Laplacian on the sphere and $m(r,\theta) = -\sum_{i=2}^{n} \langle \nabla_{e_i} e_i, N \rangle$ is the mean curvature of the geodesic sphere in the inner normal direction.

3.1.3 Laplacian in local coordinates

Let $\varphi : U \subset M^n \to \mathbb{R}^n$ be a chart, and let $e_i = (\varphi^{-1})_*(\frac{\partial}{\partial x_i})$ be the corresponding coordinate frame on U. Then

$$\Delta f = \sum_{k,\ell} \frac{1}{\sqrt{\det g_{ij}}} \,\partial_k (\sqrt{\det g_{ij}} \,g^{k\ell} \,\partial_\ell) f,$$

where $g_{ij} = \langle e_i, e_j \rangle$ and $(g^{ij}) = (g_{ij})^{-1}$. Notes:

1. $\Delta f = \frac{\partial^2}{\partial r^2} f + m(r,\theta) \frac{\partial}{\partial r} + \bar{\Delta} f$. Let $m_H(r)$ be the mean curvature in the inner normal direction of $\partial B_H(x,r)$. Then

$$m_H(r) = (n-1) \begin{cases} \frac{1}{r} & \text{if } H = 0\\ \sqrt{H} \cot \sqrt{H}r & \text{if } H > 0\\ \sqrt{-H} \coth \sqrt{-H}r & \text{if } H < 0 \end{cases}$$

2. We have

$$m(r,\theta) = rac{\mathcal{A}'(r,\theta)}{\mathcal{A}(r,\theta)}$$

where $\mathcal{A}(r,\theta)drd\theta$ is the volume element.

3. We also have

$$m(r,\theta) = -\sum_{k=0}^{n} \langle \nabla_{e_i} e_i, N \rangle.$$

In

$$\begin{split} \mathbb{R}^n, \quad g &= dr^2 + r^2 d\theta_{n-1}^2 \\ S_H^n, \quad g &= dr^2 + \left(\frac{\sin\sqrt{H}r}{\sqrt{H}}\right)^2 d\theta_{n-1}^2 \\ \mathbb{H}_H^n, \quad g &= dr^2 + \left(\frac{\sinh\sqrt{-H}r}{\sqrt{-H}}\right)^2 d\theta_{n-1}^2. \end{split}$$

By Koszul's formula,

$$\langle \nabla_{e_i} e_i, N \rangle = -\langle e_i, [e_i, N] \rangle.$$

In Euclidean space, $N = \frac{\partial}{\partial r}, \frac{1}{r}e_i$ are orthonormal. In S_H^n ,

$$N = \frac{\partial}{\partial r}, \frac{\sqrt{H}}{\sin\sqrt{H}r} e_i$$

are orthonormal, while

$$N = \frac{\partial}{\partial r}, \frac{\sqrt{-H}}{\sinh\sqrt{-H}r} e_i$$

are orthonormal in \mathbb{H}^n_H .

3.2 Laplacian Comparison

On a Riemannian manifold M^n , the most natural function to consider is the distance function r(x) = d(x, p) with $p \in M$ fixed. Then r(x) is continuous, and is smooth on $M - (\{p\} \cup C_p)$. We consider Δr where r is smooth.

If $x \in M - (\{p\} \cup C_p)$, connect p and x with a normalized, minimal geodesic γ . Then $\gamma(0) = p$, $\gamma(r(x)) = x$ and $\nabla r = \gamma'(r)$. In polar coordinates,

$$\Delta = \frac{\partial^2}{\partial r^2} + m(r,\theta)\frac{\partial}{\partial r} + \bar{\Delta}.$$

Thus $\Delta r = m(r, \theta)$.

Theorem 3.2.1 (Laplacian Comparison, Mean Curvature Comparison) Suppose M^n has $\operatorname{Ric}_M \ge (n-1)H$. Let Δ_H be the Laplacian of S^n_H and $m_H(r)$ be the mean curvature of $\partial B_H(r) \subset M^n_H$. Then:

- 1. $\Delta r \leq \Delta_H r$ (Laplacian Comparison)
- 2. $m(r, \theta) \leq m_H(r)$ (Mean Curvature Comparison)

Proof. We first derive an equation. Let N, e_2, \ldots, e_n be an orthonormal basis at p, and extend to an orthonormal frame N, e_2, \ldots, e_n by parallel translation along N. Then $\nabla_N e_i = 0$, so $\langle \nabla_N \nabla_{e_i} N, e_i \rangle = N \langle \nabla_{e_i} N, e_i \rangle$. Also, $\nabla_{e_i} \nabla_N N = 0$. Thus

$$\operatorname{Ric}(N,N) = \sum_{i=2}^{n} \langle R(e_i,N)N, e_i \rangle$$
$$= \sum_{i=2}^{n} \langle \nabla_{e_i} \nabla_N N - \nabla_N \nabla_{e_i} N - \nabla_{[e_i,N]} N, e_i \rangle$$
$$= -\sum_{i=2}^{n} N \langle \nabla_{e_i} N, e_i \rangle - \sum_{i=2}^{n} \langle \nabla_{[e_i,N]} N, e_i \rangle.$$

Now

$$\sum_{i=2}^{n} \langle \nabla_{e_i} N, e_i \rangle = \sum_{i=2}^{n} e_i \langle N, e_i \rangle - \langle N, \nabla_{e_i} e_i \rangle$$
$$= -\sum_{i=2}^{n} \langle N, \nabla_{e_i} e_i \rangle$$
$$= m(r, \theta),$$

 \mathbf{SO}

$$\operatorname{Ric}(N,N) = -m'(r,\theta) - \sum_{i=2}^{n} \langle \nabla_{[e_i,N]} N, e_i \rangle.$$

In addition,

$$\nabla_{e_i} N = \sum_j \langle \nabla_{e_i} N, e_j \rangle e_j + \langle \nabla_{e_i} N, N \rangle N.$$

But

$$2\langle \nabla_{e_i} N, N \rangle = e_i \langle N, N \rangle = 0,$$

 \mathbf{SO}

$$\nabla_{e_i} N = \sum_j \langle \nabla_{e_i} N, e_j \rangle e_j.$$

Thus

$$\sum_{i=2}^{n} \langle \nabla_{[e_i,N]} N, e_i \rangle = \sum_{i=2}^{n} \sum_{j=2}^{n} \langle \nabla_{e_i} N, E_j \rangle \langle \nabla_{e_j} N, e_i \rangle$$
$$= \| \operatorname{Hess}(r) \|^2,$$

where $||A||^2 = \operatorname{tr}(AA^t)$. Hence $\operatorname{Ric}(N, N) = -m'(r, \theta) - ||\operatorname{Hess}(r)||^2$. Now $||A||^2 = \lambda_1^2 + \cdots + \lambda_n^2$, where the λ_i 's are the eigenvalues of A. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of $\operatorname{Hess} r$; since $\nabla_N N = 0$ we may assume $\lambda_1 = 0$. Then

$$\|\operatorname{Hess}(r)\|^2 = \lambda_2^2 + \dots + \lambda_n^2$$

$$\geq (\lambda_2 + \dots + \lambda_n)^2 / (n-1),$$

since $\langle A, I \rangle^2 \leq ||A||^2 ||I||^2$ with A diagonal and $\langle A, B \rangle = tr(AB^t)$. But $\lambda_2 + \cdots + \lambda_n = m(r, \theta)$, so $(m, 0)^2$

$$\|\text{Hess}(r)\|^2 \ge \frac{m(r,\theta)^2}{(n-1)}.$$

Since $\operatorname{Ric}(N, N) \ge (n-1)H$, we have

$$(n-1)H + m(r,\theta)^2/(n-1) \le -m'(r,\theta)$$

Set $u = (n-1)/m(r,\theta)$, so $m(r,\theta) = (n-1)/u$. Then

$$H + 1/u^2 \le (1/u^2)u',$$

 \mathbf{SO}

$$Hu^2 + 1 \le u',$$

which is

$$\frac{u'}{Hu^2 + 1} \ge 1.$$

Thus

$$\int_0^r \frac{u'}{Hu^2 + 1} \ge \int_0^r 1 = r.$$

If H = 0, we have $u \ge r$. In this case $(n-1)/r \ge m(r,\theta)$, so

 $m(r,\theta) \le m_H(r).$

If H > 0, $(\tan^{-1}(\sqrt{H}u))/\sqrt{h} \ge r$. Now as $r \to 0$, $m(r,\theta) \to (n-1)/r$. Thus $u \to 0$ as $r \to 0$. Hence $\sqrt{H}u \ge \tan(\sqrt{h}r)$. Thus $\sqrt{H}(n-1)/m(r,\theta) \ge \tan(\sqrt{H}r)$, so

$$m(r,\theta) \le \frac{\sqrt{H(n-1)}}{\tan(\sqrt{H}r)} = m_H(r).$$

Note that inside the cut locus of M, the mean curvature is positive, so the inequality is unchanged when we may multiply by $m(r, \theta)$.

If H < 0, similar arguments show that

$$m(r, \theta \le \frac{(n-1)\sqrt{-H}}{\coth(\sqrt{-H}r)} = m_H(r)$$

3.3 Maximal Principle

We first define the Laplacian for continuous functions, and then relate the Laplacian to local extrema.

Lemma 3.3.1 Suppose $f, h \in C^2(M)$ and $p \in M$. Then if

1. f(p) = h(p)

2. $f(x) \ge h(x)$ for all x in some neighborhood of p

then

- 1. $\nabla f(p) = \nabla h(p)$
- 2. Hess $(f)(p) \ge \text{Hess}(h)(p)$
- 3. $\Delta f(p) \ge \Delta h(p)$.

Proof. Suppose $v \in T_p M$. Pick $\gamma : (-\varepsilon, \varepsilon) \to M$ so that $\gamma(0) = p$ and $\gamma'(0) = v$. Then $(f - h) \circ \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}$, so the result follows from the real case.

Definition 3.3.1 Suppose $f \in C^0(M)$. We say that $\Delta f(p) \ge a$ in the barrier sense if for any $\varepsilon > 0$ there exists a function f_{ε} , called a support function, such that

- 1. $f_{\varepsilon} \in \mathcal{C}^2(U)$ for some neighborhood U of p
- 2. $f_{\varepsilon}(p) = f(p)$ and $f(x) \ge f_{\varepsilon}(x)$ for all $x \in U$
- 3. $\Delta f_{\varepsilon}(p) \geq a \varepsilon$.

Note that f_{ε} is also called support from below, or a lower barrier, for f at p. A similar definition holds for upper barrier.

Theorem 3.3.1 (Maximal Principle) If $f \in C^0(M)$ and $\Delta f \ge 0$ then f is constant is a neighborhood of each local maximum. In particular, if f has a global maximum, then f is constant.

Proof. If $\Delta f > 0$ then f cannot have a local maximum. Suppose $\Delta f \ge 0$, f has a local maximum at p, but f is not constant at p. We perturb f so that $\Delta F > 0$.

Consider the geodesic sphere $\partial B(p, r)$. For r sufficiently small, there is $z \in \partial B(p, r)$ with f(z) < f(p). We define h in a neighborhood of p such that

- 1. $\Delta h > 0$
- 2. h < 0 on $V = \{x : f(x) = p\} \cap \partial B(p, r)$

3. h(p) = 0

To this end, set $h = e^{\alpha \psi} - 1$. Then

$$\begin{aligned} \nabla h &= \alpha e^{\alpha \psi} \nabla \psi \\ \Delta h &= \alpha^2 e^{\alpha \psi} \langle \nabla \psi, \nabla \psi \rangle + \alpha e^{\alpha \psi} \Delta \psi \\ &= \alpha e^{\alpha \phi} (\alpha |\nabla \psi|^2 + \Delta \psi \end{aligned}$$

We want ψ such that

- 1. $\psi(p) = 0$
- 2. $\psi(x) < 0$ on some neighborhood containing V
- 3. $\nabla \psi \neq 0$

Choose coordinates so $p \mapsto 0$ and $z \mapsto (r, 0, \ldots, 0)$. Set

$$\psi = x_1 - \beta (x_2^2 + \dots + x_n^2),$$

where β is chosen large enough that $\psi < 0$ on some open set in $S_r^{n-1} - z$. Then ψ satisfies the above conditions.

Since $|\nabla \psi|^2 \ge 1$ and $\Delta \psi$ is continuous, we may choose α large enough that $\Delta h > 0$. Now consider $f_{\delta} = f + \delta h$ on B(p, r). For δ small,

$$f_{\delta}(p) = f(p) > \max_{\partial B(p,r)} f_{\delta}(x).$$

Thus, for δ small, f_{δ} has a local maximum in the interior of B(p, r). Call this point q, and set $N = \Delta h(q) > 0$. Since $\Delta f(q) \ge 0$, there is a lower barrier function for f at q, say g, with $\Delta g > -\delta N/2$. Then

$$\Delta(g + \delta h)(q) = \Delta g + \delta \Delta h > \delta N/2$$

and $g + \delta h$ is a lower barrier function for f_{δ} at q. Thus $\Delta f_{\delta}(q) > 0$, which is a contradiction.

Theorem 3.3.2 (Regularity) If $f \in C^0(M)$ and $\Delta f \equiv 0$ in the barrier sense, then f is C^{∞} .

If $\Delta f \equiv 0$, f is called harmonic.

3.4 Splitting Theorem

Definition 3.4.1 A normalized geodesic $\gamma : [0, \infty) \to M$ is called a ray if $d(\gamma(0), \gamma(t)) = t$ for all t. A normalized geodesic $\gamma : (-\infty, \infty)$ is called a line if $d(\gamma(t), \gamma(s)) = s - t$ for all $s \ge t$.

Definition 3.4.2 M is called connected at infinity if for all $K \subset M$, K compact, there is a compact $\tilde{K} \supset K$ such that every two points in $M - \tilde{K}$ can be connected in M - K.

Lemma 3.4.1 If M is noncompact then for each $p \in M$ there is a ray γ with $\gamma(0) = p$.

If M is disconnected at infinity then M has a line.

Example 3.4.1 A Paraboloid has rays but no lines.

Example 3.4.2 \mathbb{R}^2 has lines.

Example 3.4.3 A cylinder has lines.

Example 3.4.4 A surface of revolution has lines.

The theorem that we seek to prove is:

Theorem 3.4.1 (Splitting Theorem: Cheeger Gromoll 1971) Suppose that M^n is noncompact, $\operatorname{Ric}_M \geq 0$, and M contains a line. Then M is isometric to $N \times \mathbb{R}$, with the product metric, where N is a smooth (n - 1)manifold with $\operatorname{Ric}_N \geq 0$. Thus, if N contains a line we may apply the result to N.

To prove this theorem, we introduce Busemann functions.

Definition 3.4.3 If $\gamma : [0, \infty) \to M$ is a ray, set $b_t^{\gamma}(x) = t - d(x, \gamma(t))$.

Lemma 3.4.2 We have

- 1. $|b_t^{\gamma}(x)| \le d(x, \gamma(0)).$
- 2. For x fixed, $b_t^{\gamma}(x)$ is nondecreasing in t.
- 3. $b_t^{\gamma}(x) b_t^{\gamma}(y) \le d(x, y).$

Proof. (1) and (3) are the triangle inequality. For (2), suppose s < t. Then

$$b_s^{\gamma}(x) - b_t^{\gamma}(x) = (s - t) - d(x, \gamma(s)) + d(x, \gamma(t))$$

= $d(x, \gamma(t)) - d(x, \gamma(s)) - d(\gamma(s), \gamma(t))$
 ≤ 0

Definition 3.4.4 If $\gamma : [0, \infty) \to M$ is a ray, the Busemann function associated to γ is

$$b^{\gamma}(x) = \lim_{t \to \infty} b^{\gamma}_t(x)$$

=
$$\lim_{t \to \infty} t - d(x, \gamma(t)).$$

By the above, Busemann functions are well defined and Lipschitz continuous. Intuitively, $b^{\gamma}(x)$ is the distance from $\gamma(\infty)$. Also, since

$$b^{\gamma}(\gamma(s)) = \lim_{t \to \infty} t - d(\gamma(s), \gamma(t))$$
$$= \lim_{t \to \infty} t - (t - s) = s,$$

 $b^{\gamma}(x)$ is linear along $\gamma(t)$.

Example 3.4.5 In \mathbb{R}^n , the rays are $\gamma(t) = \gamma(0) + \gamma'(0)t$. In this case, $b^{\gamma}(x) = \langle x - \gamma(0), \gamma'(0) \rangle$. The level sets of b^{γ} are hyperplanes.

Lemma 3.4.3 If M has $\operatorname{Ric}_M \geq 0$ and γ is a ray on M then $\Delta(b^{\gamma}) \geq 0$ in the barrier sense.

Proof. For each $p \in M$, we construct a support function of b^{γ} at p. We first construct asymptotic rays of γ at p.

Pick $t_i \to \infty$. For each *i*, connect *p* and $\gamma(t_i)$ by a minimal geodesic σ_i . Then $\{\sigma'_i(0)\} \subset S^{n-1}$, so there is a subsequential limit $\tilde{\gamma}'(0)$. The geodesic $\tilde{\gamma}$ is called an asymptotic ray of γ at *p*; note that $\tilde{\gamma}$ need not be unique.

We claim that $b^{\tilde{\gamma}}(x) + b^{\gamma}(p)$ is a support function of b^{γ} at p. For $b^{\tilde{\gamma}}(p) = 0$, so the functions agree at p. In addition, $\tilde{\gamma}$ is a ray, so $\tilde{\gamma}(t)$ is not a cut point of $\tilde{\gamma}$ along p. Hence $d(\tilde{\gamma}(t), *)$ is smooth at p, so $b^{\tilde{\gamma}}(x)$ is smooth in a neighborhood of p. Now

$$\begin{split} b^{\tilde{\gamma}}(x) &= \lim_{t \to \infty} t - d(x, \tilde{\gamma}(t)) \\ &\leq \lim_{t \to \infty} t - d(x, \gamma(s)) + d(\tilde{\gamma}(t), \gamma(s)) \\ &= \lim_{t \to \infty} t + s - d(x, \gamma(s)) - s + d(\tilde{\gamma}(t), \gamma(s)) \\ &= \lim_{t \to \infty} t + b^{\gamma}_s(x) - b^{\gamma}_s(\tilde{\gamma}(t)); \end{split}$$

letting $s \to \infty$, we obtain

$$b^{\tilde{\gamma}}(x) \leq \lim_{t \to \infty} t + b^{\gamma}(x) - b^{\gamma}(\tilde{\gamma}(t)).$$

We also have

$$b^{\gamma}(p) = \lim_{i \to \infty} t_i - d(p, \gamma(t_i))$$

=
$$\lim_{i \to \infty} t_i - d(p, \sigma_i(t)) - d(\sigma_i(t), \gamma(t_i))$$

=
$$-d(p, \tilde{\gamma}(t)) + \lim_{i \to \infty} t_i - d(\sigma_i(t), \gamma(t_i))$$

=
$$-d(p, \tilde{\gamma}(t)) + b^{\gamma}(\tilde{\gamma}(t))$$

=
$$-t + b^{\gamma}(\tilde{\gamma}(t)).$$

Thus

$$\begin{split} b^{\tilde{\gamma}}(x) + b^{\gamma}(p) &\leq \lim_{t \to \infty} t + b^{\gamma}(x) - b^{\gamma}(\tilde{\gamma}(t)) - t + b^{\gamma}(\tilde{\gamma}(t)) \\ &= b^{\gamma}(x), \end{split}$$

so $b^{\tilde{\gamma}}(x) + b^{\gamma}(p)$ is a support function for b^{γ} at p. By a similar argument, each $b_t^{\gamma}(x) + b^{\gamma}(p)$ is a support function for b^{γ} at p.

Finally, since $\operatorname{Ric}_M \geq 0$,

$$\begin{aligned} \Delta(b_t^{\tilde{\gamma}}(x) + b^{\gamma}(p)) &= \Delta(t - d(x, \tilde{\gamma}(t))) \\ &= -\Delta(x, \tilde{\gamma}(t)) \\ &\ge -\frac{n-1}{d(x, \tilde{\gamma}(t))}, \end{aligned}$$

which tends to 0 as $t \to \infty$. Thus $\Delta(b^{\gamma}) \ge 0$ in the barrier sense.

The level sets of b_t^{γ} are geodesic spheres at $\gamma(t)$. The level sets of b_t^{γ} are geodesic spheres at $\gamma(\infty)$.

Lemma 3.4.4 Suppose γ is a line in M, $\operatorname{Ric}_M \geq 0$. Then γ defines two rays, γ^+ and γ^- . Let b^+ and b^- be the associated Busemann functions. Then:

- 1. $b^+ + b^- \equiv 0$ on *M*.
- 2. b^+ and b^- are smooth.
- 3. Given any point $p \in M$ there is a unique line passing through p that is perpendicular to $v_0 = \{x : b^+(x) = 0\}$ and consists of asymptotic rays.

Proof. For

1. Observe that

$$b^{+}(x) + b^{-}(x) = \lim_{t \to \infty} (t - d(x, \gamma^{+}(t))) + \lim_{t \to \infty} (t - d(x, \gamma^{-}(t)))$$

=
$$\lim_{t \to \infty} 2t - (d(x, \gamma^{+}(t)) - d(x, \gamma^{-}(t)))$$

$$\leq 2t - d(\gamma^{+}(t), \gamma^{-}(t)) = 0.$$

Since $b^+(\gamma(0)) + b^-(\gamma(0)) = 0$, 0 is a global maximum. But

$$\Delta(b^+ + b^-) = \Delta b^+ + \Delta b^- \ge 0,$$

so $b^+ + b^- \equiv 0$.

2. We have $b^+ = -b^-$. Thus

$$0 \le \Delta b^+ = -\Delta b^- \le 0,$$

so both b^+ and b^- are smooth by regularity.

3. At p there are asymptotic rays $\tilde{\gamma}^+$ and $\tilde{\gamma}^-$. We first show that $\tilde{\gamma}^+ + \tilde{\gamma}^-$ is a line. Since

$$d(\tilde{\gamma}^{+}(s_{1}), \tilde{\gamma}^{-}(s_{2})) \geq d(\tilde{\gamma}^{-}(s_{2}), \gamma^{+}(t)) - d(\tilde{\gamma}^{+}(s_{1}), \gamma^{+}(t)) \\ = (t - d(\tilde{\gamma}^{+}(s_{1}), \gamma^{+}(t))) - (t - d(\tilde{\gamma}^{-}(s_{2}), \gamma^{+}(t)))$$

holds for all t, we have

$$d(\tilde{\gamma}^{+}(s_{1}), \tilde{\gamma}^{-}(s_{2})) \geq b^{+}(\tilde{\gamma}^{+}(s_{1})) - b^{+}(\tilde{\gamma}^{-}(s_{2}))$$

$$= b^{+}(\tilde{\gamma}^{+}(s_{1})) + b^{-}(\tilde{\gamma}^{-}(s_{2}))$$

$$\geq \tilde{b}^{+}(\tilde{\gamma}^{+}(s_{1})) + b^{+}(p) + \tilde{b}^{-}(\tilde{\gamma}^{-}(s_{2})) + b^{-}(p)$$

$$= s_{1} + s_{2}.$$

Thus $\tilde{\gamma}^+ + \tilde{\gamma}^-$ is a line. But our argument shows that any two asymptotic rays form a line, so the line is unique.

Set $\tilde{v}_{t_0} = (\tilde{b}^+)^{-1}(t_0)$. Then if $y \in \tilde{v}_{t_0}$ we have

$$d(y, \tilde{\gamma}^{+}(t)) \geq |\tilde{b}^{+}(y) - \tilde{b}^{+}(\tilde{\gamma}^{+}(t))| \\ = |t_{0} - t| \\ = d(\tilde{\gamma}^{+}(t_{0}), \tilde{\gamma}^{+}(t)),$$

which shows $\tilde{\gamma} \perp \tilde{v}_{t_0}$.

Finally, since $\tilde{b}^+(x) + b^+(p) \le b^+(x)$,

$$-(\tilde{b}^+(x) + b^+(p)) \ge -b^+(x).$$

But $\tilde{b}^+ = -\tilde{b}^-$ and $b^+ = -b^-$, so

$$\tilde{b}^-(x) + b^-(p) \ge b^-(x).$$

Since $b^-(x) + b^-(p) \le b^-(x)$ as well,

$$\tilde{b}^{-}(x) + b^{-}(p) = b^{-}(x).$$

Thus the level sets of b^+ are the level sets of \tilde{b}^+ , which proves the result.

Note that $b^+: M \to \mathbb{R}$ is smooth. Since b^+ is linear on γ with a Lipschitz constant 1, $\|\nabla b^+\| = 1$. Thus $v_0 = (b^+)^{-1}(0)$ is a smooth (n-1) submanifold of M.

Proof of Splitting Theorem. Let $\phi : \mathbb{R} \times v_0 \to M$ be given by $(t, p) \mapsto \gamma(t) = \exp_p t \gamma'(0)$, where γ is the unique line passing through p, perpendicular to v_0 . By the existence and uniqueness of γ , ϕ is bijective. Since \exp_p is a local diffeomorphism and $\gamma'(0) = (\nabla b^+)(v)$ smooth, ϕ is a diffeomorphism.

To show that ϕ is an isometry, set $v_t = (b^+)^{-1}(t)$ and let m(t) be the mean curvature of v_t . Then $m(t) = \Delta b^+ = 0$. In the proof of the Laplacian comparison, we derived

$$\operatorname{Ric}(N, N) + \|\operatorname{Hess}(r)\|^2 = m'(r, \theta),$$

where $N = \nabla \gamma$. Note that γ is the integral curve of ∇b^+ passing through p, so $\Delta \gamma = m(t)$ and $\nabla b^+ = N$.

In our case, $\operatorname{Ric}(N, N) \ge 0$ and $m'(r, \theta) = 0$, so

$$\|\text{Hess}(b^+)\| = \|\text{Hess}(r)\| \le 0.$$

Thus $\|\text{Hess}(b^+)\| = 0$, so that ∇b^+ is a parallel vector field.

Now ϕ is an isometry in the t direction since \exp_p is a radial isometry. Suppose X is a vector field on v_0 . Then

$$R(N,X)N = \nabla_N \nabla_X N - \nabla_X \nabla_N N - \nabla_{[X,N]} N.$$

But $\nabla_N N = 0$, and we may extend X in the coordinate direction so that [X, N] = 0. Since

$$\nabla_X N = \nabla_X \nabla b^+ = 0,$$

we have R(N, X)N = 0.

Let $J(t) = \phi_*(x) = \frac{d}{ds}(\phi(c(s)))|_{s=t}$, where $c: (-\varepsilon, \varepsilon) \to v_0$ has c'(t) = X. Then J(t) is a Jacobi field, J''(t) = 0 and $J \perp N$. Thus J(t) is constant. Hence $\|\phi_*(X)\| = \|X\|$, so ϕ is an isometry.

Remark: Since $\|\text{Hess}(b^+)\| = 0$, we have $\nabla_X \nabla b^+ = 0$ for all vector fields X. By the de Rham decomposition, ϕ is a locally isometric splitting.

Summary of Proof of Splitting Theorem.

- 1. Laplcaian Comparison in Barrier Sense
- 2. Maximal Principle
- 3. Bochner Formula: Generalizes $\operatorname{Ric}(N, N) + \|\operatorname{Hess}(r)\| = m'(r, \theta)$
- 4. de Rham Decomposition

Also, the Regularity Theorem was used.

3.5 Applications of the Splitting Theorem

Theorem 3.5.1 (Cheeger-Gromoll 1971) If M^n is compact with $\operatorname{Ric}_M \geq 0$ then the universal cover $\tilde{M} \stackrel{iso}{\simeq} N \times \mathbb{R}^k$, where N is a compact (n-k)-manifold. Thus $\pi_1(M)$ is almost $\pi_1(Flat Manifold)$, i.e.

$$0 \to F \to \pi_1(M) \to B_k \to 0,$$

where F is a finite group and B_k is the fundamental group of some compact flat manifold.

 B_k is called a Bieberbach group.

Proof. By the splitting theorem, $\tilde{M} \simeq N \times \mathbb{R}^k$, where N has no line. We show N is compact.

Note that isometries map lines to lines. Thus, if $\psi \in Iso(M)$, then $\psi = (\psi_1, \psi_2)$, where $\psi_1 : N \to N$ and $\psi_2 : \mathbb{R}^k \to \mathbb{R}^k$ are isometries. Suppose N is not compact, so N contains a ray $\gamma : [0, \infty) \to N$. Let F be a fundamental domain of M, so \overline{F} is compact, and let p_1 be the projection $\widetilde{M} \to N$.

Pick $t_i \to \infty$. For each *i* there is $g_i \in \pi_1(M)$ such that $g_i(\gamma(t_i)) \in p_1(F)$. But $p_1(\bar{F})$ is compact, so we may assume $g_i(\gamma(t_i)) \to p \in N$. Set $\gamma_i(t) = g_i(\gamma(t+t_i))$. Then $\gamma_i : [-t_i, \infty) \to N$ is minimal, and $\{\gamma_i\}$ converges to a line σ in N.

Thus N is compact. For the second statement, let $p_2 : \pi_1(M) \to Iso(\mathbb{R}^k)$ be the map $\psi = (\psi_1, \psi_2) \mapsto \psi_2$. Then

$$0 \to Ker(p_2) \to \pi_1(M) \to Im(p_2) \to 0$$

is exact. Now $Ker(p_2) = \{(\psi_1, 0)\}$, while $Im(\psi_2) = \{(0, \psi_2)\}$. Since $Ker(p_2)$ gives a properly discontinuous group action on a compact manifold, $Ker(p_2)$ is finite. On the other hand, $Im(p_2)$ is an isometry group on \mathbb{R}^k , so $Im(p_2)$ is a Bieberbach group.

Remark: The curvature condition is only used to obtain the splitting $\tilde{M} \simeq N \times \mathbb{R}^k$. Thus, if the conclusion of the splitting theorem holds, the curvature condition is unnecessary.

Corollary If M^n is compact with $\operatorname{Ric}_M \geq 0$ and $\operatorname{Ric}_M > 0$ at one point, then $\pi_1(M)$ is finite.

Remark: This corollary improves the theorem of Bonnet-Myers. The corollary can also be proven using the Bochner technique. In fact, Aubin's deformation gives another metric that has $\operatorname{Ric}_M > 0$ everywhere.

Corollary If M^n has $\operatorname{Ric}_M \geq 0$ then $b_1(M) \leq n$, with equality if and only if $M^n \stackrel{iso}{\simeq} T^n$, where T^n is a flat torus.

Definition 3.5.1 Suppose M^n is noncompact. Then M is said to have the geodesic loops to infinity property if for any ray γ in M, any $g \in \pi_1(M, \gamma(0))$ and any compact $K \subset M$ there is a geodesic loop c at γ_{t_0} in M - K such that $g = [c] = [(\gamma|_0^{t_0})^{-1} \circ c \circ \gamma|_0^{t_0}].$

Example 3.5.1 $M = N \times \mathbb{R}$ If the ray γ is in the splitting direction, then any $g \in \pi_1(M, \gamma)$ is homotopic to a geodesic loop at infinity along γ .

Theorem 3.5.2 (Sormani, 1999) If M^n is complete and noncompact with $\operatorname{Ric}_M > 0$ then M has the geodesic loops to infinity property.

Theorem 3.5.3 (Line Theorem) If M^n does not have the geodesic loops to infinity property then there is a line in \tilde{M} .

Application:(Shen-Sormani) If M^n is noncompact with $\operatorname{Ric}_M > 0$ then $H_{n-1}(M, \mathbb{Z}) = 0$.

3.6 Excess Estimate

Definition 3.6.1 Given $p, q \in M$, the excess function associated to p and q is

$$e_{p,q}(x) = d(p,x) + d(q,x) - d(p,q).$$

For fixed $p, q \in M$, write e(x). If γ is a minimal geodesic connecting p and q with $\gamma(0) = p$ and $\gamma(1) = q$, let $h(x) = \min_{0 \le t \le 1} d(x, \gamma(t))$. Then

$$0 \le e(x) \le 2h(x).$$

Let y be the point along γ between p and q with d(x, y) = h(x). Set

$$s_1 = d(p, x), \quad t_1 = d(p, y)$$

 $s_2 = d(q, x), \quad t_2 = d(q, y).$

We consider triangles pqx for which h/t_1 is small; such triangles are called thin.

Example 3.6.1 In \mathbb{R}^n ,

$$s_1 = \sqrt{h^2 + t_1^2} = t_1 \sqrt{1 + (h/t_1)^2}.$$

For a thin triangle, we may use a Taylor expansion to obtain $s_1 \leq t_1(1 + (h/t_1)^2)$. Thus

$$e(x) = s_1 + s_2 - t_1 - t_2$$

$$\leq h^2/t_1 + h^2/t_2$$

$$= h(h/t_1 + h/t_2)$$

$$\leq 2h(h/t),$$

where $t = \min\{t_1, t_2\}$. Thus e(x) is small is h^2/t is small.

If M has $K \ge 0$ then the Toponogov comparison shows that $s_1 \le \sqrt{h^2 + t_1^2}$, so the same estimate holds.

Lemma 3.6.1 e(x) has the following basic properties:

- 1. $e(x) \ge 0$.
- 2. $e|_{\gamma} = 0.$
- 3. $|e(x) e(y)| \le 2d(x, y)$.
- 4. If M has $\operatorname{Ric} \geq 0$,

$$\begin{array}{rcl} \Delta(e(x)) &\leq & (n-1)(1/s_1 + 1/s_2) \\ &\leq & (n-1)(2/s), \end{array}$$

where $s = \min\{s_1, s_2\}$.

Proof. (1), (2) and (3) are clear. (4) is a consequence of the following Laplacian comparison.

Lemma 3.6.2 Suppose M has $\text{Ric} \ge (n-1)H$. Set r(x) = d(p, x), and let $f : \mathbb{R} \to \mathbb{R}$. Then, in the barrier sense,

- 1. If $f' \ge 0$ then $\Delta f(r(x)) \le \Delta_H f|_{r=r(x)}$.
- 2. If $f' \leq 0$ then $\Delta f(r(x)) \geq \Delta_H f|_{r=r(x)}$.

Proof. Recall that $\Delta = \frac{\partial^2}{\partial r^2} + m(r,\theta)\frac{\partial}{\partial r} + \tilde{\Delta}$, where $\tilde{\Delta}$ is the Laplacian on the geodesic sphere. Hence

$$\Delta f(r(x)) = f'' + m(r,\theta)f'$$

= $f'' + \Delta r f',$

so we need only show $\Delta r \leq \Delta_H r$ in the barrier sense.

We have proved the result where r is smooth, so need only prove at cut points. Suppose q is a cut point of p. Let γ be a minimal geodesic with $\gamma(0) = p$ and $\gamma(\ell) = q$. We claim that $d(\gamma(\varepsilon), x) + \varepsilon$ is an upper barrier function of r(x) = d(p, x) at q, as

1.
$$d(\gamma(\varepsilon), x) + \varepsilon \ge d(p, x),$$

- 2. $d(\gamma(\varepsilon), q) + \varepsilon = d(p, q)$ and
- 3. $d(\gamma(\varepsilon), x) + \varepsilon$ is smooth near q, since q is not a cut point of $\gamma(\varepsilon)$ for $\varepsilon > 0$.

Since

$$\begin{aligned} \Delta(d(\gamma(\varepsilon), x) + \varepsilon) &\leq \Delta_H(d(\gamma(\varepsilon), x)) \\ &= m_H(d(\gamma(\varepsilon), x)) \\ &\leq m_H(d(p, x)) + c\varepsilon = \Delta_H(r(x)) + c\varepsilon, \end{aligned}$$

we have the result.

Definition 3.6.2 The dilation of a function is

$$\operatorname{dil}(f) = \min_{x,y} \frac{|f(x) - f(y)|}{d(x,y)}.$$

By property (2) of e(x), we have $dil(e(x)) \le 2$.

Theorem 3.6.1 Suppose $U : B(y, R + \eta) \to \mathbb{R}$ is a Lipschitz function on M, $\operatorname{Ric}_M \ge (n-1)H$ and

- 1. $U \ge 0$,
- 2. dil $(U) \leq a$,
- 3. $u(y_0) = 0$ for some $y_0 \in B(\bar{y}, R)$ and
- 4. $\Delta U \leq b$ in the barrier sense.

Then $U(y) \leq ac + G(c)$ for all 0 < c < R, where G(r(x)) is the unique function on M_H such that:

- 1. G(r) > 0 for 0 < r < R.
- 2. G'(r) < 0 for 0 < r < R.
- 3. G(R) = 0.
- 4. $\Delta_H G \equiv b$.

Proof. Suppose $H = 0, n \ge 3$. We want $\Delta_H G = b$. Since $\Delta_H = \frac{\partial^2}{\partial r^2} + \frac{\partial^2}{\partial r^2}$ $m_H(r,\theta)\frac{\partial}{\partial r} + \tilde{\Delta}$, we solve

$$G'' + (n-1)G'/r = b$$

$$G''r^{2} + (n-1)G'r = br^{2},$$

which is an Euler type O.D.E. The solutions are $G = G_p + G_h$, where $G_p =$ $b/2nr^2$ and $G_h = c_1 + c_2 r^{-(n-2)}$.

Now G(R) = 0 gives

$$\frac{b}{2n}R^2 + c_1 + c_2R^{-(n-2)} = 0,$$

while G' < 0 gives

$$\frac{b}{n}r - (n-2)c_2r^{-(n-1)} > -0$$

for all 0 < r < R. Thus $c_2 \ge \frac{b}{n(n-2)}R^n$. Hence $G(r) = \frac{b}{2n}(r^2 + \frac{2}{n-2}r^{-(n-2)} - \frac{n}{n-2}R^2$. Note that G > 0 follows from G(R) = 0 and G' < 0.

For general H < 0,

$$G(r) = b \int_{r}^{R} \int_{r}^{t} \left(\frac{\sinh \sqrt{-Ht}}{\sinh \sqrt{-Hs}} \right)^{n-1} ds dt.$$

Note that $\Delta_H G \geq b$ by the Laplacian comparison. To complete the proof, fix 0 < c < R. If $d(y, y_0) \leq c$,

$$U(y) = U(y) - U(y_0)$$

$$\leq ad(y, y_0)$$

$$\leq ac$$

$$\leq ac + G(c).$$

If $d(y, y_0) > c$ then consider G defined on $B(y, R + \varepsilon)$, where $0 < \varepsilon < \eta$. Letting $\varepsilon \to 0$ gives the result.

Consider V = G - U. Then $\Delta V = \Delta G - \Delta U \ge 0$, $V|_{\partial B(R+\varepsilon)} \le 0$ and $V(y_0) > 0$. Now y_0 is in the interior of $B(y, \overline{R} + \varepsilon) - B(y, c)$, so V(y') > 0for some $y' \in \partial B(y, c)$. Since

$$U(y) - U(y') \le ad(y, y') = ac$$

and

$$G(c) - U(y') = V(y') > 0,$$

we have

$$U(y) \le ac + U(y') < ac + G(c).$$

We now apply this result to e(x). Here $e(x) \ge 0$, a = 2 and R = h(x). We assume $s(x) \ge 2h(x)$. On B(x, R),

$$\Delta e \le \frac{4(n-1)}{s(x)},$$

so b = 4(n-1)/s(x). Thus

$$e(x) \leq 2c + G(c) \\ = 2c + \frac{2(n-1)}{ns}(c^2 + frac^{2n} - 2h^n c^{-(n-2)} + \frac{n}{n-2}h^2)$$

for all 0 < c < h.

To find the minimal value for ar + G(r), 0 < r < R, consider

$$a + G'(r) = a + \frac{b}{2n}(2r - 2R^n r^{1-n}) = 0.$$

This gives $r(R^n/r^n - 1) = an/b$. To get an estimate, choose r small. Then R^n/r^n is large, so $R^n/r^{n-1} \approx an/b$. Hence

$$r = \left(\frac{R^n b}{an}\right)^{\frac{1}{n-1}}$$

is close to a minimal point.

For the excess function, choose

$$c = \left(\frac{2h^n}{s}\right)^{\frac{1}{n-1}} \approx \left(\frac{h^n \frac{4(n-1)}{s}}{2n}\right)^{\frac{1}{n-1}}.$$

Then

$$G(c) = \frac{2(n-1)}{ns} \left(\left(\frac{2h^n}{s}\right)^{2/(n-1)} + \frac{2}{n-2}h^n \left(\frac{2h^n}{s}\right)^{-\frac{n-2}{n-1}} - \frac{n}{n-2}h^2 \right).$$

Now

$$\begin{split} \left(\frac{2h^n}{s}\right)^{\frac{2}{n-1}} &= h^2 \left(\frac{2h}{s}\right)^{\frac{2}{n-1}},\\ &\frac{2h}{s} \leq 1\\ &\frac{n}{n-2} > 1, \end{split}$$

and

 \mathbf{SO}

$$G(c) \leq \frac{2(n-1)}{n} \frac{2}{n-2} \frac{h^n}{s} \left(\frac{2h^n}{s}\right)^{\frac{1}{n-1}-1} \\ \leq \frac{2(n-1)}{n(n-2)} \left(\frac{2h^n}{s}\right)^{\frac{1}{n-1}} \\ \leq 2c.$$

Thus

$$e(x) \leq 2c + G(c)$$

= $2c + 2c$
= $\left(\frac{2h^n}{s}\right)^{\frac{1}{n-1}}$
 $\leq 8\left(\frac{h^n}{s}\right)^{\frac{1}{n-1}}$.

Remarks:

1. A more careful estimate is

$$e(x) \le 2\left(\frac{n-1}{n-2}\right)\left(\frac{c_3h^n}{2}\right)^{\frac{1}{n-1}} = 8h\left(\frac{h}{s}\right)^{\frac{1}{n-1}},$$

where $c_3 = \frac{n-1}{n} \left(\frac{1}{s_1 - h} + \frac{1}{s_2 - h} \right)$ and $h < \min(s_1, s_2)$.

2. In general, if $\operatorname{Ric}_M \ge (n-1)H$ then $e(x) \le hF(\frac{h/s}{r})$ for some continuous F satisfying F(0) = 0. F is given by an integral; consider the proof of the estimate in the case $\operatorname{Ric}_M \ge 0$.

3.7 Applications of the Excess Estimate

Theorem 3.7.1 (Sormani, 1998) Suppose M^n complete and noncompact with $\operatorname{Ric}_M \geq 0$. If, for some $p \in M$,

$$\limsup_{r \to \infty} \frac{\operatorname{diam}(\partial B(p, r))}{r} < 4s_n,$$

where

$$s_n = \frac{1}{2} \frac{1}{3^n} \frac{1}{4^{n-1}}$$

then $\pi_1(M)$ is finitely generated.

Compare this result with:

Theorem 3.7.2 (Abresch and Gromoll) If M is noncompact with $\operatorname{Ric}_M \geq 0$, $K \geq -1$ and diameter growth $o(r^{\frac{1}{n}})$, then M has finite topological type.

Note: Diameter growth is the growth of diam $\partial B(p, r)$. When Ric ≥ 0 , diam $\partial B(p, r) \leq r$. To say M has finite topological type is to say that each $H_i(M, \mathbb{Z})$ is finite.

To prove Sormani's result we choose a desirable set of generators for $\pi_1(M)$.

Lemma 3.7.1 For M^n complete we may choose a set of generators g_1, \ldots, g_n, \ldots of $\pi_1(M)$ such that:

- 1. $g_i \in \text{span}\{g_1, \dots, g_{i-1}\}.$
- 2. Each g_i can be represented by a minimal geodesic loop γ_i based at p such that if $\ell(\gamma_i) = d_i$ then $d(\gamma(0), \gamma(d_i/2)) = d_i/2$, and the lift $\tilde{\gamma}_i$ based at \tilde{p} is a minimal geodesic.

Proof. Fix $\tilde{p} \in M$. Let $G = \pi_1(M)$. Choose $g_1 \in G$ such that $d(\tilde{p}, g_1(\tilde{p})) \leq d(\tilde{p}, g(\tilde{p}))$ for all $g \in G - \{e\}$. Note that since G acts discretely on \tilde{M} , only finitely many elements of G satisfy a given distance restraint.

Let $G_i = \langle g_1, \ldots, g_{i-1} \rangle$. Choose $g_i \in G - G_i$ such that $d(\tilde{p}, g_i(\tilde{p})) \leq d(\tilde{p}, g(\tilde{p}))$ for all $g \in G - G_i$. If $\pi_1(M)$ is finitely generated, we have a sequence g_1, \ldots, g_n, \ldots ; otherwise we have a list. The g_i 's satisfy (1). Let $\tilde{\gamma}_i$ be the minimal geodesic connecting \tilde{p} to $g_i(\tilde{p})$. Set $\gamma_i = \pi(\tilde{\gamma}_i)$, where is the covering $\pi : \tilde{M} \to M$. We claim that if $\ell(\gamma_i) = d_i$ then $d(\gamma(0), \gamma(d_i/2)) = d_i/2$.

Otherwise, for some *i* and some $T < d_i/2$, $\gamma_i(T)$ is a cut point of *p* along γ_i . Since *M* and \tilde{M} are locally isometric, and $\tilde{\gamma}_i(T)$ is not conjugate to \tilde{p} along $\tilde{\gamma}$, $\gamma_i(T)$ is not conjugate to *p* along γ . Hence we can connect *p* to $\gamma_i(T)$ with a second minimal geodesic σ . Set

$$h_1 = \sigma^{-1} \circ \gamma_i|_{[0,T]}$$

and

$$h_2 = \gamma_i|_{[T,d_i]} \circ \sigma.$$

Now h_1 is not a geodesic, so

$$d(\tilde{p}, h_1(\tilde{p})) < 2T < d_i.$$

Similarly,

$$d(\tilde{p}, h_2(\tilde{p})) < T + d_i - T = d_i.$$

Hence $h_1, h_2 \in G_i$. But then $\gamma_i = h_2 \circ h_1 \in G_i$, which is a contradiction.

Lemma 3.7.2 Suppose M^n has Ric ≥ 0 , $n \geq 3$ and γ is a geodesic loop based at p. Set $D = \ell(\gamma)$. Suppose

- 1. $\gamma|_{[0,D/2]}$, and $\gamma|_{[D/2,D]}$ are minimal.
- 2. $\ell(\gamma) \leq \ell(\sigma)$ for all $[\sigma] = [\gamma]$.

Then for $x \in \partial B(p, RD)$, $R \ge 1/2 + s_n$, we have $d(x, \gamma(D/2)) \ge (R - 1/2)D + 2s_nD$.

Remark: $\gamma(D/2)$ is a cut point of p along γ . Since d(p, x) > D/2, any minimal geodesic connecting p and x cannot pass through $\gamma(D/2)$. Thus

$$d(\gamma(D/2), x) > d(p, x) - d(p, \gamma(D/2)) = RD - D/2 = (R - 1/2)D.$$

The lemma gives a bound on how much larger $d(\gamma(D/2), x)$ is.

Proof. It is enough to prove for $R = 1/2 + s_n$. For if $R > 1/2 + s_n$, we may choose $y \in \partial B(p, (1/2 + s_n))$ such that

$$d(x, \gamma(D/2)) = d(x, y) + d(y, \gamma(D/2)).$$

Then

$$d(x, \gamma(D/2)) \geq d(x, y) + 3s_n D$$

$$\geq (R - (1/2 + s_n))D + 3s_n D$$

$$= (R - 1/2)D + s_n D.$$

Suppose there exists $x \in \partial B(p, (1/2 + s_n)D)$ such that

$$d(x, \gamma(D/2)) = H < 3s_n D.$$

Let c be a minimal geodesic connecting x and $\gamma(D/2)$. Let \tilde{p} be a lift of p, and lift γ to $\tilde{\gamma}$ starting at \tilde{p} . If $g = [\gamma]$, then $\tilde{\gamma}$ connects \tilde{p} and $g(\tilde{p})$.

Lift c to \tilde{c} starting at $\tilde{\gamma}(D/2)$, and lift $c \circ \gamma|_{[0,D/2]}$ to $\tilde{c} \circ \tilde{\gamma}|_{[0,D/2]}$. Then

$$d(\tilde{p}, \tilde{x}) \geq d(p, x) = (1/2 + s_n)D,$$

and

$$d(g(\tilde{p}), \tilde{x}) \ge (1/2 + s_n)D.$$

Thus

$$e_{\tilde{p},g(\tilde{p})}(\tilde{x}) = d(\tilde{p},\tilde{x}) + d(g(\tilde{p}),\tilde{x}) - d(\tilde{p},g(\tilde{p})) \\ \ge (1/2 + s_n)D + (1/2 + s_n)D - D = 2s_nD.$$

But, by the excess estimate, if $s \ge 2h$,

$$e(\tilde{x}) \le 8\left(\frac{h^n}{s}\right)^{\frac{1}{n-1}}$$

.

In this case, $h \leq H < 3s_n D$. Also,

$$s \ge (1/2 + s_n)D > D/2.$$

Since $s_n < 1/12$ for $n \ge 2$, we have $s \ge 2h$. Thus

$$e(\tilde{x}) \le 8\left(\frac{(3s_nD)^n}{D/2}\right)^{\frac{1}{n-1}}$$

But this gives

$$2s_n D \le 8D \left(2(3s_n)^n \right)^{\frac{1}{n-1}},$$

whence

$$s_n > \frac{1}{2} \frac{1}{3^n} \frac{1}{4^{n-1}}.$$

We may now prove Sormani's result.

Proof of Theorem. Pick a set of generators $\{g_k\}$ as in the lemma, where g_k is represented by γ_k . If $x_k \in \partial B(p, (1/2 + s_n)d_k)$, where $d_k = \ell(\gamma_k) \to \infty$, we showed that $d(x_k, \gamma(d_k/2)) \ge 3s_n d_k$.

Let $y_k \in \partial B(p, d_k/2)$ be the point on a minimal geodesic connecting p and x_k . Then

$$\limsup_{r \to \infty} \frac{\operatorname{diam}(\partial B(p, r))}{r} \geq \lim_{k \to \infty} \frac{d(y_k, \gamma_k(d_k/2))}{d_k/2}$$
$$\geq \lim_{k \to \infty} \frac{2s_n d_k}{d_k/2} = 4s_n,$$

so we have a contradiction if there are infinitely many generators.

The excess estimate can also be used for compact manifolds.

Lemma 3.7.3 Suppose M^n with $\operatorname{Ric}_M \ge (n-1)$. Then given $\delta > 0$ there is $\varepsilon(n, \delta) > 0$ such that if $d(p, q) \ge \pi - \varepsilon$ then $e_{p,q}(x) \le \delta$.

This lemma can be used to prove the following:

Theorem 3.7.3 There is $\varepsilon(n, H)$ such that if M^n has $\operatorname{Ric}_M \ge (n-1)$, $\operatorname{diam}_M \ge \pi - \varepsilon$ and $K_M \ge H$ then M is a twisted sphere.

Proof of Lemma. Fix x and set $e = e_{p,q}(x)$. Then B(x, e/2), B(p, d(p, x) - e/2) and B(q, d(x, q) - e/2) are disjoint. Thus

$$\begin{aligned} \operatorname{vol}(M) &\geq \operatorname{vol}(B(x, e/2)) + \operatorname{vol}(B(p, d(p, x) - e/2)) + \operatorname{vol}(B(q, d(q, x) - e/2)) \\ &= \operatorname{vol}(M) \left(\frac{\operatorname{vol}(B(x, e/2))}{\operatorname{vol}(B(x, \pi))} + \frac{\operatorname{vol}(B(p, d(p, x) - e/2))}{\operatorname{vol}(B(p, \pi))} + \frac{\operatorname{vol}(B(q, d(q, x) - e/2))}{\operatorname{vol}(B(q, \pi))} \right) \\ &\geq \operatorname{vol}(M) \left(\frac{v(n, 1, e/2) + v(n, 1, d(p, x) - e/2) + v(n, 1, d(q, x) - e/2)}{v(n, 1, \pi)} \right), \end{aligned}$$

where $v(n, H, r) = \operatorname{vol}(B(r)), \ B(r) \subset M_H^n$.

Now in $S^n(1)$, $vol(B(r)) = \int_0^r \sin^{n-1} t \, dt$ is a convex function of r. Thus we have

$$\begin{array}{lll} v(n,1,\pi) & \geq & v(n,1,e/2) + v(n,1,d(p,x) - e/2) + v(n,1,d(q,x) - e/2) \\ \\ & \geq & v(n,1,e/2) + 2v \left(n,1,\frac{d(p,x) + d(q,x) - e}{2}\right) \\ \\ & = & v(n,1,e/2) + 2v \left(n,1,\frac{d(p,q)}{2}\right). \end{array}$$

Hence

$$v(n, 1, e/2) \le v(n, 1, \pi) - 2v\left(n, 1, \frac{d(p, q)}{2}\right),$$

which tends to 0 as $\varepsilon \to 0$. Thus $e \to 0$.