
Math 241A

Instructor: Guofang Wei

Fall 2000

The basic idea of this course is that curvature bounds give information
about manifolds, which in turn gives topological results. A typical example
is the Bonnet-Myers Theorem. Intuitively,

Bigger curvature ; Smaller manifold1.

1 Volume Comparison Theorem

1.1 Volume of Riemannian Manifold

Recall: For U ⊂ Rn,

vol(U) =

∫

U

1 dv =

∫

U

1 dx1 · · · dxn.

Note - dx1 · · · dxn is called the volume density element.
Change of variable formula: Suppose ψ : V → U is a diffeomorphism,

with U, V ⊂ Rn. Suppose ψ(x) = y. Then

∫

U

dv =

∫

U

1 dy1 · · · dyn =

∫

V

|Jac(ψ)| dx1 · · · dxn.

On a Riemannian manifold Mn, let ψα : Uα → Rn be a chart. Set
Eip = (ψ−1

α )∗( ∂
∂xi

). In general, the Eip’s are not orthonormal. Let {ek}

be an orthonormal basis of TpM . Then Eip =
n∑

k=1

aikek. The volume of

1This quarter we use that bigger curvature ⇒ smaller volume
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the parallelepiped spanned by {Eip} is | det(aik)|. Now gij =
n∑

k=1

aikakj, so

det(gij) = det(aij)
2. Thus

vol(Uα) =

∫

ψ(Uα)

√
| det(gij)| ◦ (ψ−1

α ) dx1 · · · dxn

Note - dv =
√| det(gij)| ◦ (ψ−1

α ) dx1 · · · dxn is called a volume density
element, or volume form, on M .

We have our first result, whose proof is left as an exercise.

Lemma 1.1.1 Volume is well defined.

Definition 1.1.1 Let M be a Riemannian manifold, and let {Uα} be a cov-
ering of M by domains of coordinate charts. Let {fα} be a partition of unity
subordinate to {Uα}. The volume of M is

vol(M) =

∫

M

1 dv =
∑

α

∫

ψ(Uα)

fα dv.

Lemma 1.1.2 The volume of a Riemannian manifold is well defined.

1.2 Computing the volume of a Riemannian manifold

Partitions of unity are not practically effective. Instead we look for charts
that cover all but a measure zero set.

Example 1.2.1 For S2, use stereographic projection.

In general, we use the exponential map. We may choose normal coordi-
nates or geodesic polar coordinates. Let p ∈ Mn. Then expp : TpM → M is
a local diffeomorphism. Let Dp ⊂ TpM be the segment disk. Then if Cp is
the cut locus of p, expp : Dp → M − Cp is a diffeomorphism.

Lemma 1.2.1 Cp has measure zero.

Hence we may use expp to compute the volume element dv =
√

det(gij) dx1 · · · dxn.
Now polar coordinates are not defined at p, but {p} has measure zero. We
have
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expp : Dp − {0} diffeo→ M − Cp ∪ {p}.

Set Ei = (expp)∗(
∂

∂thetai
) and En = (expp)∗(

∂
∂r

). To compute gij’s, we
want Ei and En explicitly. Since expp is a radial isometry, gnn = 1 and
gni = 0 for 1 ≤ i < n. Let Ji(r, θ) be the Jacobi field with Ji(0) = 0 and
J

′
i (0) = ∂

∂θi
. Then Ei(expp(r, θ) = Ji(r, θ).

If we write Ji and ∂
∂r

in terms of an orthonormal basis {ek}, we have

Ji =
n∑

k=1

aikek. Thus

√
det(gij)(r, θ) = | det(aik)| ∆

= ||J1 ∧ · · · ∧ Jn−1 ∧ ∂

∂r
||

The volume density, or volume element, of M is

dv = ||J1 ∧ · · · ∧ Jn−1 ∧ ∂

∂r
|| drdθn−1

∆
= A(r, θ) drdθn−1

Example 1.2.2 Rn has Jacobi equation J
′′

= R(T, J)T .
If J(0) = 0 and J ′(0) = ∂

∂θi
then J(r) = r ∂

∂θi
. Thus the volume element

is dv = rn−1 drdθn−1.

Example 1.2.3 Sn has Ji(r) = sin(r) ∂
∂θi

. Hence dv = sinn−1(r) drdθn−1.

Example 1.2.4 Hn has Ji(r) = sinh(r) ∂
∂θi

. Hence dv = sinhn−1(r) drdθn−1.

Example 1.2.5 Volume of unit disk in Rn

ωn =

∫

Sn−1

∫ 1

0

rn−1 drdθn−1 =
1

n

∫

Sn−1

dθn−1

Note - ∫

Sn−1

dθn−1 =
2(π)n/2

Γ(n/2)
.
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1.3 Comparison of Volume Elements

Theorem 1.3.1 Suppose Mn has RicM ≥ (n−1)H. Let dv = A(r, θ) drdθn−1

be the volume element of M and let dvH = AH(r, θ) drdθn−1 be the volume
element of the model space (simply connected n-manifold with K ≡ H). Then

A(r, θ)

AH(r, θ)

is a nonincreasing function in r.

Proof2. We show that

∇ ∂
∂r

(
A(r, θ)

AH(r, θ)
)2 ≤ 0.

Since

A(r, θ)2 = 〈J1 ∧ · · · ∧ Jn−1 ∧ ∂

∂r
, J1 ∧ · · · ∧ Jn−1 ∧ ∂

∂r
〉,

we wish to show that

〈J1 ∧ · · · ∧ Jn−1 ∧ ∂

∂r
, J1 ∧ · · · ∧ Jn−1 ∧ ∂

∂r
〉′AH(r, θ)2−

A(r, θ)2〈JH
1 ∧ · · · ∧ JH

n−1 ∧
∂

∂r
, JH

1 ∧ · · · ∧ JH
n−1 ∧

∂

∂r
〉′ ≤ 0.

Thus we wish to show that

2
n−1∑
i=1

〈J1 ∧ · · · ∧ J
′

i ∧ · · · ∧ Jn−1 ∧ ∂
∂r

, J1 ∧ · · · ∧ Jn−1 ∧ ∂
∂r
〉

〈J1 ∧ · · · ∧ Jn−1 ∧ ∂
∂r

, J1 ∧ · · · ∧ Jn−1 ∧ ∂
∂r
〉

≤ 2
n−1∑
i=1

〈JH
1 ∧ · · · ∧ (JH

i )
′ ∧ · · · ∧ JH

n−1 ∧ ∂
∂r

, JH
1 ∧ · · · ∧ JH

n−1 ∧ ∂
∂r
〉

〈JH
1 ∧ · · · ∧ JH

n−1 ∧ ∂
∂r

, JH
1 ∧ · · · ∧ JH

n−1 ∧ ∂
∂r
〉 (1)

At r = r0, let J̄i(r0) be orthonormal such that J̄n(r0) = ∂
∂r
|r=r0 . Then for

1 ≤ i < n,

J̄i(r0) =
n−1∑

k=1

bikJk(r0).

2Compare to the proof of the Rauch Comparison Theorem.
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Define J̄i(r) =
n−1∑

k=1

bikJk(r), where the bik’s are fixed. Then each J̄i is a

linear combination of Jacobi fields, and hence is a Jacobi field.
The left hand side of (1), evaluated at r = r0 is

2
n−1∑
i=1

〈J̄1 ∧ · · · ∧ J̄
′

i ∧ · · · ∧ J̄n−1 ∧ ∂
∂r

, J̄1 ∧ · · · ∧ J̄n−1 ∧ ∂
∂r
〉

〈J̄1 ∧ · · · ∧ J̄n−1 ∧ ∂
∂r

, J̄1 ∧ · · · ∧ J̄n−1 ∧ ∂
∂r
〉

∣∣∣∣∣
r=r0

= 2
n−1∑
i=1

〈J̄ ′
i (r0), J̄i(r0)〉 = 2

n−1∑
i=1

I(J̄i, J̄i),

where I is the index form I(v, v) =
∫ r0

0
〈v′, v′〉 + 〈R(T, v)T, v〉dt. Note that

for a Jacobi field J ,

I(J, J) =

∫ r0

0

〈J ′, J ′〉+ 〈R(T, J)T, J〉dt

=

∫ r0

0

〈J ′, J〉′ − 〈J ′′, J〉+ 〈R(T, J)T, J〉dt

= 〈v′, v〉|r=r0 .

Let Ei be a parallel field such that Ei(r0) = J̄i(r0), and let wi = sin
√

Hr
sin
√

Hr0
Ei.

By the Index Lemma, Jacobi fields minimize the index form provided there

are no conjugate points. Thus we have 2
n−1∑
i=1

I(J̄i, J̄i) ≤ 2
n−1∑
i=1

I(wi, wi). By the

curvature condition, 2
n−1∑
i=1

I(wi, wi) ≤ 2
n−1∑
i=1

I(J̄H
i , J̄H

i ), which is the right hand

side of (1), evaluated at r = r0.

Thus
A(r, θ)

AH(r, θ)
is nonincreasing in r.

Remarks:

1. lim
r→0

A(r, θ)

AH(r, θ)
= 1, so A(r, θ) ≤ AH(r, θ).

2. (Rigidity) If A(r0, θ) = AH(r0, θ) for some r0, then A(r, θ) = AH(r, θ)
for all 0 ≤ r ≤ r0. But then B(p, r0) is isometric to B(r0) ⊂ Sn

H , where
Sn

H is the model space. But then the Jacobi fields in M correspond
to the Jacobi fields in the model space, so that M is isometric to the
model space.
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3. We cannot use the Index Lemma to prove an analogous result for
RicM ≤ (n−1)H. In fact, there is no such result. For example, consider
Einstein manifolds with Ric ≡ (n− 1)H.

4. If KM ≤ H, we may use the Rauch Comparison Theorem to prove a
similar result inside the injectivity radius.

5. (Lohkamp) RicM ≤ (n − 1)H has no topological implications. Any
smooth manifold Mn, with n ≥ 3, has a complete Riemannian metric
with RicM ≤ 0.

6. RicM ≤ (n− 1)H may still have geometric implications. For example,
if M is compact with RicM < 0 then M has a finite isometry group.

1.4 Volume Comparison Theorem

Theorem 1.4.1 (Bishop-Gromov) If Mn has RicM ≥ (n− 1)H then

vol(B(p,R))

vol(BH(R))

is nonincreasing in R.

Proof. We have

volB(p,R) =

∫

B(p,R)

1dv

=

∫ R

0

∫

Sp(r)

A(r, θ)dθn−1dr,

where Sp(r) = {θ ∈ Sp : rθ ∈ Dp}. Note that Sp(r1) ⊂ Sp(r2) if r1 ≥ r2. The
theorem now follows from two lemmas:

Lemma 1.4.1 If f(r)/g(r) ≥ 0 is nonincreasing in r, with g(r) > 0, then

∫ R

0
f(r)dr∫ R

0
g(r)dr

is nonincreasing in R.

6



Proof of Lemma.- The numerator of the derivative is

(

∫ R

0

g(r)dr)(

∫ R

0

f(r)dr)′ − (

∫ R

0

f(r)dr)(

∫ R

0

g(r)dr)′

= f(R)(

∫ R

0

g(r)dr)− g(R)(

∫ R

0

f(r)dr)

= g(R)(

∫ R

0

g(r)dr)

[
f(R)

g(R)
−

∫ R

0
f(r)dr∫ R

0
g(r)dr

]

Now
f(r)

g(r)
≥ f(R)

g(R)
⇒ g(R)f(r) ≥ f(R)g(r),

so ∫ R

0

g(R)f(r)dr ≥
∫ R

0

f(R)g(r)dr.

Thus
f(R)

g(R)
≤

∫ R

0
f(r)dr∫ R

0
g(r)dr

,

so the derivative is nonpositive.

Lemma 1.4.2 (Comparison of Lower Area of Geodesic Sphere) Suppose
r lies inside the injectivity radius of the model space Sn

H , so that if H > 0,
r < π/

√
H. Then ∫

Sp(r)
A(r, θ) dθn−1∫

Sn−1 AH(r) dθn−1

is nonincreasing in r.

Proof of Lemma. In the model space, AH(r, θ) does not depend on θ,
so we write AH(r). Note that if r ≤ R,

∫
Sp(R)

A(R, θ) dθn−1∫
Sn−1 AH(R) dθn−1

=
1∫

Sn−1 dθn−1

∫

Sp(R)

A(R, θ)

AH(R)
dθn−1

≤ 1∫
Sn−1 dθn−1

∫

Sp(r)

A(r, θ)

AH(r)
dθn−1

=

∫
Sp(r)

A(r, θ)dθn−1∫
Sn−1 AH(r) dθn−1

,
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since Sp(r) ⊃ Sp(R) and A(r,θ)
AH(r)

is nonincreasing in r. The theorem now follows.

Note that if R is greater than the injectivity radius then volB(p,R) de-
creases. Thus the volume comparison theorem holds for all R.

Corollaries:

1. (Bishop Absolute Volume Comparison) Under the same assumptions,
volB(p, r) ≤ volBH(r).

2. (Relative Volume Comparison) If r ≤ R then

volB(p, r)

volB(p,R)
≥ volBH(r)

volBH(R)
.

If equality holds for some r0 then equality holds for all 0 ≤ r ≤ r0, and
B(p, r0) is isometric to BH(r0).

Proofs:

(1) holds because lim
r→0

volB(p, r)

volBH(r)
= 1.

(2) is a restatement of the the volume comparison theorem.

Sometimes we let R = 2r in (2). Then (2) gives a lower bound on the ratio
volB(p, r)

volB(p,R)
, called the doubling constant. If vol(M) ≥ V then we obtain a

lower bound on the volume of small balls.
Generalizations:

1. The same proof shows that the result holds for volΓB(p,R), where
Γ ⊂ Sp = Sn−1 ⊂ TpM. In particular, the result holds for annuli

(
∫ R0

r0
· · ·) and for cones.

2. Integral Curvature

3. Stronger curvature conditions give submanifold results.
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2 Applications of Volume Comparison

2.1 Cheng’s Maximal Diameter Rigidity Theorem

Theorem 2.1.1 (Cheng) Suppose Mn has RicM ≥ (n − 1)H > 0. By the
Bonnet-Myers Theorem, diamM ≤ π/

√
H. If diamM = π/

√
H, Cheng’s re-

sult states that M is isometric to the sphere Sn
H with radius 1/

√
H.

Proof. (Shiohama) Let p, q ∈ M have d(p, q) = π/
√

H. Then

vol B(p, π/(2
√

H))

vol M
=

vol B(p, π/(2
√

H))

vol B(p, π/
√

H)

≥ vol BH(π(/2
√

H))

vol BH(π/
√

H)
= 1/2

Thus vol B(p, π/2
√

H) ≥ (vol M)/2. Similarly for q. Hence vol B(p, π/(2
√

H)) =
(vol M)/2, so we have equality in the volume comparison. By rigidity, B(p, π/(2

√
H))

is isometric to the upper hemisphere of Sn
H . Similarly for B(q, π/2

√
H), so

vol M = vol, Sn
H .

Question: What about perturbation? Suppose RicM ≥ (n − 1)H and
diamM ≥ π/

√
H − ε. In general there is no result for ε > 0. There are

spaces not homeomorphic to Sn, provided n ≥ 4, with Ric ≥ (n − 1)H and
diam ≥ π/

√
H − ε. Still, if Ric ≥ (n − 1)H and vol M ≥ vol Sn

H − ε(n,H)

then Mn
diffeo' Sn

H .

2.2 Growth of Fundamental Group

Suppose Γ is a finitely generated group, say Γ = 〈g1, . . . , gk〉. Any g ∈ Γ can

be written as a word g =
∏

i

gni
ki

, where ki ∈ {1, . . . , k}. Define the length of

this word to be
∑

i

|ni|, and let |g| be the mininimum of the lengths of all

word representations of g. Note that | · | depends on the choice of generators.
Fix a set of generators for Γ. The growth function of Γ is

Γ(s) = #{g ∈ Γ : |g| ≤ s}.

Example 2.2.1 If Γ is a finite group then Γ(s) ≤ |Γ|.
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Example 2.2.2 Γ = Z ⊕ Z. Then Γ = 〈g1, g2〉, where g1 = (1, 0) and g2 =
(0, 1). Any g ∈ Γ can be written as g = s1g1 + s2g2. To find Γ(s), we want
|s1|+ |s2| ≤ s.

Γ(s) = 2s + 1 +
s∑

t=1

2(2(s− t) + 1)

= 2s + 1 +
s∑

t=1

(4s− 4t + 2)

= 2s + 1 + 4s2 + 2s− 4
2∑

t=1

t

= 4s2 + 4s + 1− 4(s(s + 1)/2)

= 4s2 + 4s + 1− 2(s2 + s)

= 2s2 + 2s + 1

In this case we say Γ has polynomial growth.

Example 2.2.3 Γ free abelian on k generators. Then Γ(s) =
k∑

i=0

(
k

i

)(
s

i

)
.

Γ has polynomial growth of degree k.

Definition 2.2.1 Γ is said to have polynomial growth of degree ≤ n if for
each set of generators the growth function Γ(s) ≤ asn for some a > 0.

Γ is said to have exponential growth if for each set of generators the growth
function Γ(s) ≥ eas for some a > 0.

Lemma 2.2.1 If for some set of generators, Γ(s) ≤ asn for some a > 0,
then Γ has polynomial growth of degree ≤ n. If for some set of generators,
Γ(s) ≥ eas for some a > 0, then Γ has exponential growth.

Example 2.2.4 Zk has polynomial growth of degree k.

Example 2.2.5 Z ∗ Z has exponential growth.

Note that for each group Γ there always exists a > 0 so that Γ(s) ≤ eas.

Definition 2.2.2 A group is called almost nilpotent if it has a nilpotent sub-
group of finite index.
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Theorem 2.2.1 (Gromov) A finitely generated group Γ has polynomial
growth iff Γ is almost nilpotent.

Theorem 2.2.2 (Milnor) If Mn is complete with RicM ≥ 0, then any fi-
nitely generated subgroup of π1(M) has polynomial growth of degree ≤ n.

Proof. Let M̃ have the induced metric. Then RicM̃ ≥ 0, and π1(M)
acts isometrically on M̃. Suppose Γ = 〈g1, . . . , gk〉 be a finitely generated
subgroup of π1(M). Pick p ∈ M.

Let ` = max
i

d(gip̃, p̃). Then if g ∈ π1(M) has |g| ≤ s, d(gp̃, p̃) ≤ s`.

On the other hand, for any cover there exists ε > 0 such that B(gp̃, ε)
are pairwise disjoint for all g ∈ π1(M). Note that gB(p̃, ε) = B(gp̃, ε).

Now ⋃

|g|≤ s

B(gp̃, ε) ⊂ B(p̃, s` + ε);

since the B(gp̃, ε)’s are disjoint and have the same volume,

Γ(s) volB(p̃, ε) ≤ volB(p̃, s` + ε).

Thus

Γ(s) ≤ volB(p̃, s` + ε)

volB(p̃, ε)

≤ volBRn(0, s` + ε)

volBRn(0, ε)
.

Now

vol(BRn(0, s) =

∫

Sn−1

∫ s

0

rn−1drdθn−1

=
1

n
sn

∫

Sn−1

dθn−1

= snωn,

so Γ(s) ≤ s` + εn

εn
.

Since ` and ε are fixed, we may choose a so that Γ(s) ≤ asn.
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Example 2.2.6 Let H be the Heisenberg group








1 x z
0 1 y
0 0 1


 : x, y, x ∈ R



 ,

and let

HZ =








1 n1 n2

0 1 n3

0 0 1


 : ni ∈ Z



 .

Then H/HZ is a compact 3-manifold with π1(H/HZ) = HZ. The growth of
HZ is polynomial of degree 4, so H/HZ has no metric with Ric ≥ 0.

Remarks:

1. If RicM ≥ 1/k2 > 0, then M is compact. Thus π1(M) is finitely
generated. It is unknown whether π1(M) is finitely generated if M is
noncompact.

2. Ricci curvature gives control on π(M), while sectional curvature gives
control on the higher homology groups. For example, if K ≥ 0 then
the Betti numbers of M are bounded by dimension.

3. If M is compact then growth of π1(M) ↔ volume growth of M̃ .

Related Results:

1. (Gromov) If RicM ≥ 0 then any finitely generated subgroup of π1(M)
is almost nilpotent.

2. (Cheeger-Gromoll, 1972) If M is compact with Ric ≥ 0 then π1(M) is
abelian up to finite index.

3. (Wei, 1988; Wilking 1999) Any finitely generated almost nilpotent
group can be realized as π1(M) for some M with Ric ≥ 0.

4. Milnor’s Conjecture (Open) If Mn has RicM ≥ 0 then π1(M) is finitely
generated.
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In 1999, Wilking used algebraic methods to show that π1(M) is finitely
generated iff any abelian subgroup of π1(M) is finitely generated (provided
RicM ≥ 0).

Sormani showed in 1998 that if Mn has small linear diameter growth, i.e.
if

lim sup
r→∞

diam∂B(p, r)

r
< sn =

n

(n− 1)3n

(
n− 1

n− 2

)n−1

,

then π1(M) is finitely generated.

2.2.1 Basic Properties of Covering Space

Suppose M̃ → M has the covering metric.

1. M compact ⇒ there is a compact set K ⊂ M̃ such that {γK}γ ∈π1(M)

covers M̃. K is the closure of a fundamental domain.

2. {γK}γ ∈π1(M) is locally finite.

Definition 2.2.3 Suppose δ > 0. Set S = {γ : d(K, γK) ≤ δ}. Note that S
is finite.

Lemma 2.2.2 If δ > D = diamM then S generates π1(M). In fact, for any
a ∈ K, if d(a, γK) ≤ (δ −D)s + D, then |γ| ≤ s.

Proof. There exists y ∈ γK such that d(a, y) = d(a, γK). Connect a and
y a minimal geodesic σ. Divide σ by y1, . . . , ys+1 = y, where d(yi, yi+1) ≤ δ−D
and d(a, yi) < D.

Now {γK}γ ∈π1(M) covers M̃, so there exist γi ∈ π1(M) and xi ∈ K such
that γi(xi) = yi. Choose γs+1 = γ and γ1 = Id. Then γ = γ−1

1 γ2 · · · γ−1
s γs+1.

But γ−1
i γi+1 ∈ S, since

d(xi, γ
−1
i γi+1xi) = d(γixi, γi+1xi)

= d(yi, γi+1xi)

≤ d(yi, yi+1) + d(yi+1, γi+1xi)

= d(yi, yi+1) + d(xi+1, xi)

≤ δ.

Thus |γ| ≤ s.
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Theorem 2.2.3 (Milnor 1968) Suppose M is compact with KM < 0. Then
π1(M) has exponential growth.

Note that KM ≤ −H < 0 since M is compact. The volume comparison
holds for K ≤ −H, but only for balls inside the injectivity radius. Since
KM < 0, though, the injectivity radius is infinite.

Proof of Theorem. By the lemma,
⋃

|γ|≤s

γK ⊃ B(a, (δ −D)s + D),

so Γ(s)vol(K) ≥ volB(a, (δ − d)s + D). Note that

volB(a, (δ −D)s + D) ≥ volB−H(a, (δ −D)s + D),

since KM̃ ≤ −H < 0.
Now

volB−H(r) =

∫

Sn−1

∫ r

0

(
sinh

√
Hr√

H

)n−1

drdθn−1

= nωn

∫ r

0

(
sinh

√
Hr√

H

)n−1

drdθn−1

≥ nωn

2(2
√

H)n−1(n− 1)
√

H
e
√

Hr,

for r large.
Thus

Γ(s) ≥ volB(a, (δ −D)s + D)

vol(K)
≥ C(n,H)e(δ−D)

√
Hs,

where C(n,H) is constant.
Corollary The torus does not admit a metric with negative sectional

curvature.

2.3 First Betti Number Estimate

Suppose M is a manifold. The first Betti number of M is

b1(M) = dim H1(M,R).

14



Now H1(M,Z) = π1(M)/[π1(M), π1(M)], which is the fundamental group of
M made abelian. Let T be the group of torsion elements in H1(M,Z). Then
T ¢ H1(M,Z) and Γ = H1(M,Z)/T is a free abelian group. Moreover,

b1(M) = rank(Γ) = rank(Γ′),

where Γ′ is any subgroup of Γ with finite index.

Theorem 2.3.1 (Gromov, Gallot) Suppose Mn is a compact manifold with
RicM ≥ (n− 1)H and diamM ≤ D. There is a function C(n,HD2) such that
b1(M) ≤ C(n,HD2) and lim

x→0−
C(n, x) = n and C(n, x) = 0 for x > 0. In

particular, if HD2 is small, b1(M) ≤ n.

Proof. First note that if M is compact and RicM > 0 then π1(M) is
finite. In this case b1(M) = 0. Also, by Milnor’s result, if M is compact with
RicM ≥ 0 then b1(M) ≤ n.

As above, b1(M) = rank(Γ), where Γ = π1(M)/[π1(M), π1(M)]/T. Set
M̄ = M̃/[π1(M), π1(M)]/T be the covering space of M corresponding to Γ.
Then Γ acts isometrically as deck transformations on M̄.

Lemma 2.3.1 For fixed x̃ ∈ M̄ there is a subgroup Γ′ ≤ Γ, [Γ : Γ′] finite,
such that Γ′ = 〈γ1, . . . , γ2〉, where:

1. d(x, γi(x)) ≤ 2diamM and

2. For any γ ∈ Γ′ − {e}, d(x, γ(x)) > diamM .

Proof of Lemma. For each ε ≥ 0 let Γε ≤ Γ be generated by

{γ ∈ Γ : d(x, γ(x)) ≤ 2diamM + ε}.
Then Γε has finite index. For if M̄/Γε is a covering space corresponding to
Γ/Γε. Then [Γ : Γε] is the number of copies of M in M̄/Γε. We show that
diam(M̄/Γε) ≤ 2diamM + 2ε so that M̄/Γε.

Suppose not, so there is z ∈ M̄ such that d(x, z) = diamM +ε. Then there
is γ ∈ Γ that d(γ(x), z) ≤ diamM . Then if πε is the covering M̄ → M̄/Γε,

d(πεx, πεγ(x)) ≥ d(πεx, πεz)− d(πεz, πεγ(x))

≥ diamM + ε− diamM

= ε.
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Thus γ /∈ Γε. But

d(x, γ(x)) ≤ d(x, z) + d(z, γ(x))

≤ 2diamM + ε

Thus M̄/Γε is compact, so Γε has finite index. Moreover,

{γ ∈ Γ : d(x, γ(x)) ≤ 3diamM}
is finite, Γε is finitely generated. Also, note that for ε small,

{γ ∈ Γ : d(x, γ(x)) ≤ 2diamM} = {γ ∈ Γ : d(x, γ(x)) ≤ 2diamM + ε}.
Pick such an ε > 0.

Since Γε ≤ Γ has finite index, b1(M) = rank(Γε). Now Γε is finitely gener-
ated, say Γε = 〈γ1, . . . , γm〉; pick linearly independent generators γ1, . . . , γb1

so that Γ′′ = 〈γ1, . . . , γb1〉 has finite index in Γε.
Let Γ′ = 〈γ̃1, . . . , γ̃b1〉, where γ̃k = `k1γ1 + · · ·+ `kkγk and the coefficients

`ki are chosen so that `kk is maximal with respect to the constraints:

1. γ̃k ∈ Γ′′ ∩ {γ ∈ Γ : d(x, γ(x)) ≤ 2diamM} and

2. span{γ̃1, . . . , γ̃k} ≤ span{γ1, . . . , γk} with finite index.

Then Γ′ ≤ Γ′′ has finite index, and d(x, γ̃i(x)) ≤ 2diamM for each i.
Finally, suppose there exists γ ∈ Γ′−{e} with d(x, γ(x)) ≤ diamM , write

γ = m1γ̃1 + · · ·+ γ̃k,

with mk 6= 0. Then d(x, γ2(x)) ≤ 2d(x, γ(x)) ≤ 2diamM , but

γ2 = 2m1γ̃1 + · · ·+ 2mkγ̃k

= (terms involving γi, i < k) + 2mk`kkγk,

which contradicts the choice of the coefficients `ki.
Proof of Theorem. Let Γ′ = 〈γ1, . . . , γb1〉 be as in the lemma. Then

d(γi(x), γj(x)) = d(x, γ−1
i γj(x)) > D = diamM , where i 6= j. Thus

B(γi(x), D/2) ∩B(γj(x), D/2) = ∅
for i 6= j. Also

B(γi(x), D/2) ⊂ B(x, 2D + D/2)
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for all i, so that

b1⋃
i=1

B(γi(x), D/2) ⊂ B(x, 2D + D/2).

Hence

b1 ≤ volB(x, 2D + D/2)

volB(x,D/2)
≤ volBH(2D + D/2)

volBH(D/2)
.

Since the result holds for H ≥ 0, assume H < 0. Then

volBH(2D + D/2)

volBH(D/2)
=

∫
Sn−1

∫ 5D/2

0
( sinh

√−Ht√−H
)n−1dtdθ

∫
Sn−1

∫ D/2

0
( sinh

√−Ht√−H
)n−1dtdθ

=

∫ 5D/2

0
(sinh

√−Ht)n−1dt
∫ D/2

0
(sinh

√−Ht)n−1dt

=

∫ 5D
√−H/2

0
(sinh r)n−1dr

∫ D
√−H/2

0
(sinh r)n−1dr

Let U(s) = {γ ∈ Γ′ : |γ| ≤ s}. Then
⋃

γ∈U(s)

B(γx, D/2) ⊂ B(x, 2Ds + D/2),

whence

#U(s) ≤ volB(x, 2Ds + D/2)

volB(x, D/2)

≤ volBH(2Ds + D/2)

volBH(D/2)

=

∫ (2s+ 1
2
)D
√−H

0
(sinh r)n−1dr

∫ D
√−H/2

0
(sinh r)n−1dr

≤ 2(2s + 1
2
)n(D

√−H)n

(1
2
)n(D

√−H)n

= 2n+1(2s +
1

2
)n

Thus b1(M) = rank(Γ′) ≤ n, so that for HD2 small, b1(M) ≤ n.
Conjecture: For Mn with RicM ≥ (n − 1)H and diamM ≤ D, the

number of generators of π1(M) is uniformly bounded by C(n,H, D).
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2.4 Finiteness of Fundamental Groups

Lemma 2.4.1 (Gromov, 1980) For any compact Mn and each x̃ ∈ M̃
there are generators γ1, . . . , γk of π1(M) such that d(x̃, γix̃) ≤ 2diamM and
all relations of π1(M) are of the form γiγj = γ`.

Proof. Let 0 < ε < injectivty radius. Triangulate M so that the length
of each adjacent edge is less than ε. Let x1, . . . , xk be the vertices of the
triangulation, and let eij be minimal geodesics connecting xi and xj.

Connect x to each xi by a minimal geodesic σi, and set σij = σ−1
j eijσi.

Then `(σij) < 2diamM + ε, so d(x̃, σijx̃) < 2diamM + ε.
We claim that {σij} generates π1(M). For any loop at x is homotopic to

a 1-skeleton, while σjkσij = σik as adjacent vertices span a 2-simplex. In
addition, if 1 = σ ∈ π1(M), σ is trivial in some 2-simplex. Thus σ = 1 can
be expressed as a product of the above relations.

Theorem 2.4.1 (Anderson, 1990)) In the class of manifolds M with RicM ≥
(n − 1)H, volM ≥ V and diamM ≤ D there are only finitely many isomor-
phism types of π1(M).

Remark: The volume condition is necessary. For example, S3/Zn has K ≡ 1
and diam = π/2, but π1(S

3/Zn) = Zn. In this case, vol(S3/Zn) → 0 as
n →∞.

Proof of Theorem. Choose generators for π1(M) as in the lemma; it is
sufficient to bound the number of generators.

Let F be a fundamental domain in M̃ that contains x̃. Then

k⋃
i=1

γi(F ) ⊂ B(x̃, 3D).

Also, vol(F ) = vol(M), so

k ≤ vol B(x̃, 3D)

volM
≤ volBH(3D)

V
.

This is a uniform bound depending on H, D and V.

Theorem 2.4.2 (Anderson, 1990) For the class of manifolds M with RicM ≥
(n − 1)H, volM ≥ V and diamM ≤ D there are L = L(n,H, V, D) and
N = N(n,H, V,D) such that if Γ ⊂ π1(M) is generated by {γi} with each
`(γi) ≤ L then the order of Γ is at most N.
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Proof. Let Γ = 〈γ1, . . . , γk〉 ⊂ π1(M), where each `(γi) ≤ L. Set

U(s) = {γ ∈ Γ : |γ| ≤ s},

and let F ⊂ M̃ be a fundamental domain of M. Then γi(F ) ∩ γj(F ) has
measure zero for i 6= j. Now

⋃

γ∈U(s)

γ(F ) ⊂ B(x̃, sL + D),

so

#U(s) ≤ volBH(sL + D)

V
.

Note that if U(s) = U(s + 1), then U(s) = Γ. Also, U(1) ≥ 1. Thus, if Γ has
order greater than N, then U(N) ≥ N.

Set L = D/N and s = N. Then

N ≤ U(N) ≤ volBH(2D)

V
.

Hence |Γ| ≤ N =
volBH(2D)

V
+ 1, so Γ is finite.

3 Laplacian Comparison

3.1 What is the Laplacian?

We restrict our attention to functions, so the Laplacian is a function

∆ : C∞(M) → C∞(M).

3.1.1 Invariant definition of the Laplacian

Suppose f ∈ C∞(M). The gradient of f is defined by 〈∇f, X〉 = Xf. Note
that the gradient depends on the metric. We may also define the Hessian of
f to be the symmetric bilinear form Hess f : χ(M)× χ(M) → C∞(M) by

Hess f(X, Y ) = ∇2
X,Y f = X(Y f)− (∇XY )f = 〈∇X∇f, Y 〉.
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The Laplacian of f is the trace of Hess f, ∆f = tr(Hess f). Note that if {ei}
is an orthonormal basis, we have

∆f = tr 〈∇X∇f, Y 〉

=
n∑

i=1

〈∇ei
∇f, ei〉

= div∇f.

3.1.2 Laplacian in terms of geodesic polar coordinates

Fix p ∈ M and use geodesic polar coordinates about p. For any x ∈ M −Cp,
x 6= p, connect p to x by a normalized minimal geodesic γ so γ(0) = p and
γ(r) = x. Set N = γ′(r), the outward pointing unit normal of the geodesic
sphere. Let e2, . . . , en be an orthonormal basis tangent to the geodesic sphere,
and extend N, e2, . . . , en to an orthonormal frame in a neighborhood of x.
Then if e1 = N,

∆f =
n∑

i=1

〈∇ei
∇f, ei〉 =

n∑
i=1

(ei(eif)− (∇ei
ei)f).

Note that

∇ei
ei = 〈∇ei

ei, N〉N + (∇ei
ei)

T

= 〈∇ei
ei, N〉N + (∇̄ei

ei),

where ∇̄ is the induced connection on ∂B(p, r). Thus

∆f = N(Nf)− (∇NN)f +
n∑

i=2

(ei(eif)− (∇ei
ei)f)

=
∂2f

∂r2
+

n∑
i=2

(ei(eif)− (∇̄ei
ei)f)− (

n∑
i=2

〈∇ei
ei, N〉N)f

= ∆̄f + m(r, θ)
∂

∂r
f +

∂2f

∂r2
,

where ∆̄ is the induced Laplacian on the sphere and m(r, θ) = −∑n
i=2〈∇ei

ei, N〉
is the mean curvature of the geodesic sphere in the inner normal direction.
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3.1.3 Laplacian in local coordinates

Let ϕ : U ⊂ Mn → Rn be a chart, and let ei = (ϕ−1)∗( ∂
∂xi

) be the corre-
sponding coordinate frame on U. Then

∆f =
∑

k,`

1√
det gij

∂k(
√

det gij gk` ∂`)f,

where gij = 〈ei, ej〉 and (gij) = (gij)
−1.

Notes:

1. ∆f = ∂2

∂r2 f + m(r, θ) ∂
∂r

+ ∆̄f. Let mH(r) be the mean curvature in the
inner normal direction of ∂BH(x, r). Then

mH(r) = (n− 1)





1
r

if H = 0√
H cot

√
Hr if H > 0√−H coth
√−Hr if H < 0

.

2. We have

m(r, θ) =
A′(r, θ)
A(r, θ)

,

where A(r, θ)drdθ is the volume element.

3. We also have

m(r, θ) = −
n∑

k=0

〈∇ei
ei, N〉.

In
Rn, g = dr2 + r2dθ2

n−1

Sn
H , g = dr2 +

(
sin
√

Hr√
H

)2

dθ2
n−1

Hn
H , g = dr2 +

(
sinh

√−Hr√−H

)2

dθ2
n−1.

By Koszul’s formula,

〈∇ei
ei, N〉 = −〈ei, [ei, N ]〉.

In Euclidean space, N = ∂
∂r

, 1
r
ei are orthonormal. In Sn

H ,

N =
∂

∂r
,

√
H

sin
√

Hr
ei
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are orthonormal, while

N =
∂

∂r
,

√−H

sinh
√−Hr

ei

are orthonormal in Hn
H .

3.2 Laplacian Comparison

On a Riemannian manifold Mn, the most natural function to consider is the
distance function r(x) = d(x, p) with p ∈ M fixed. Then r(x) is continuous,
and is smooth on M − ({p} ∪ Cp). We consider ∆r where r is smooth.

If x ∈ M−({p}∪Cp), connect p and x with a normalized, minimal geodesic
γ. Then γ(0) = p, γ(r(x)) = x and ∇r = γ′(r). In polar coordinates,

∆ =
∂2

∂r2
+ m(r, θ)

∂

∂r
+ ∆̄.

Thus ∆r = m(r, θ).

Theorem 3.2.1 (Laplacian Comparison, Mean Curvature Comparison)
Suppose Mn has RicM ≥ (n−1)H. Let ∆H be the Laplacian of Sn

H and mH(r)
be the mean curvature of ∂BH(r) ⊂ Mn

H . Then:

1. ∆r ≤ ∆Hr (Laplacian Comparison)

2. m(r, θ) ≤ mH(r) (Mean Curvature Comparison)

Proof. We first derive an equation. Let N, e2, . . . , en be an orthonormal
basis at p, and extend to an orthonormal frame N, e2, . . . , en by parallel
translation along N. Then ∇Nei = 0, so 〈∇N∇ei

N, ei〉 = N〈∇ei
N, ei〉. Also,

∇ei
∇NN = 0. Thus

Ric(N, N) =
n∑

i=2

〈R(ei, N)N, ei〉

=
n∑

i=2

〈∇ei
∇NN −∇N∇ei

N −∇[ei,N ]N, ei〉

= −
n∑

i=2

N〈∇ei
N, ei〉 −

n∑
i=2

〈∇[ei,N ]N, ei〉.
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Now
n∑

i=2

〈∇ei
N, ei〉 =

n∑
i=2

ei〈N, ei〉 − 〈N,∇ei
ei〉

= −
n∑

i=2

〈N,∇ei
ei〉

= m(r, θ),

so

Ric(N, N) = −m′(r, θ)−
n∑

i=2

〈∇[ei,N ]N, ei〉.

In addition,

∇ei
N =

∑
j

〈∇ei
N, ej〉ej + 〈∇ei

N,N〉N.

But
2〈∇ei

N, N〉 = ei〈N, N〉 = 0,

so
∇ei

N =
∑

j

〈∇ei
N, ej〉ej.

Thus
n∑

i=2

〈∇[ei,N ]N, ei〉 =
n∑

i=2

n∑
j=2

〈∇ei
N,Ej〉〈∇ej

N, ei〉

= ‖Hess (r)‖2,

where ‖A‖2 = tr(AAt). Hence Ric(N,N) = −m′(r, θ)− ‖Hess (r)‖2.
Now ‖A‖2 = λ2

1 + · · · + λ2
n, where the λi’s are the eigenvalues of A.

Let λ1, . . . , λn be the eigenvalues of Hess r; since ∇NN = 0 we may assume
λ1 = 0. Then

‖Hess (r)‖2 = λ2
2 + · · ·+ λ2

n

≥ (λ2 + · · ·+ λn)2/(n− 1),

since 〈A, I〉2 ≤ ‖A‖2‖I‖2 with A diagonal and 〈A,B〉 = tr(ABt). But λ2 +
· · ·+ λn = m(r, θ), so

‖Hess (r)‖2 ≥ m(r, θ)2

(n− 1)
.

23



Since Ric(N,N) ≥ (n− 1)H, we have

(n− 1)H + m(r, θ)2/(n− 1) ≤ −m′(r, θ).

Set u = (n− 1)/m(r, θ), so m(r, θ) = (n− 1)/u. Then

H + 1/u2 ≤ (1/u2)u′,

so
Hu2 + 1 ≤ u′,

which is
u′

Hu2 + 1
≥ 1.

Thus ∫ r

0

u′

Hu2 + 1
≥

∫ r

0

1 = r.

If H = 0, we have u ≥ r. In this case (n− 1)/r ≥ m(r, θ), so

m(r, θ) ≤ mH(r).

If H > 0, (tan−1(
√

Hu))/
√

h ≥ r. Now as r → 0, m(r, θ) → (n − 1)/r.
Thus u → 0 as r → 0. Hence

√
Hu ≥ tan(

√
hr). Thus

√
H(n− 1)/m(r, θ) ≥

tan(
√

Hr), so

m(r, θ) ≤
√

H(n− 1)

tan(
√

Hr)
= mH(r).

Note that inside the cut locus of M, the mean curvature is positive, so the
inequality is unchanged when we may multiply by m(r, θ).

If H < 0, similar arguments show that

m(r, θ ≤ (n− 1)
√−H

coth(
√−Hr)

= mH(r).

3.3 Maximal Principle

We first define the Laplacian for continuous functions, and then relate the
Laplacian to local extrema.

Lemma 3.3.1 Suppose f, h ∈ C2(M) and p ∈ M. Then if
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1. f(p) = h(p)

2. f(x) ≥ h(x) for all x in some neighborhood of p

then

1. ∇f(p) = ∇h(p)

2. Hess (f)(p) ≥ Hess (h)(p)

3. ∆f(p) ≥ ∆h(p).

Proof. Suppose v ∈ TpM. Pick γ : (−ε, ε) → M so that γ(0) = p and
γ′(0) = v. Then (f − h) ◦ γ : (−ε, ε) → R, so the result follows from the real
case.

Definition 3.3.1 Suppose f ∈ C0(M). We say that ∆f(p) ≥ a in the barrier
sense if for any ε > 0 there exists a function fε, called a support function,
such that

1. fε ∈ C2(U) for some neighborhood U of p

2. fε(p) = f(p) and f(x) ≥ fε(x) for all x ∈ U

3. ∆fε(p) ≥ a− ε.

Note that fε is also called support from below, or a lower barrier, for f
at p. A similar definition holds for upper barrier.

Theorem 3.3.1 (Maximal Principle) If f ∈ C0(M) and ∆f ≥ 0 then f
is constant is a neighborhood of each local maximum. In particular, if f has
a global maximum, then f is constant.

Proof. If ∆f > 0 then f cannot have a local maximum. Suppose ∆f ≥ 0,
f has a local maximum at p, but f is not constant at p. We perturb f so
that ∆F > 0.

Consider the geodesic sphere ∂B(p, r). For r sufficiently small, there is
z ∈ ∂B(p, r) with f(z) < f(p). We define h in a neighborhood of p such that

1. ∆h > 0

2. h < 0 on V = {x : f(x) = p} ∩ ∂B(p, r)
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3. h(p) = 0

To this end, set h = eαψ − 1. Then

∇h = αeαψ∇ψ

∆h = α2eαψ〈∇ψ,∇ψ〉+ αeαψ∆ψ

= αeαφ(α|∇ψ|2 + ∆ψ

We want ψ such that

1. ψ(p) = 0

2. ψ(x) < 0 on some neighborhood containing V

3. ∇ψ 6= 0

Choose coordinates so p 7→ 0 and z 7→ (r, 0, . . . , 0). Set

ψ = x1 − β(x2
2 + · · ·+ x2

n),

where β is chosen large enough that ψ < 0 on some open set in Sn−1
r − z.

Then ψ satisfies the above conditions.
Since |∇ψ|2 ≥ 1 and ∆ψ is continuous, we may choose α large enough

that ∆h > 0. Now consider fδ = f + δh on B(p, r). For δ small,

fδ(p) = f(p) > max
∂B(p,r)

fδ(x).

Thus, for δ small, fδ has a local maximum in the interior of B(p, r). Call this
point q, and set N = ∆h(q) > 0. Since ∆f(q) ≥ 0, there is a lower barrier
function for f at q, say g, with ∆g > −δN/2. Then

∆(g + δh)(q) = ∆g + δ∆h > δN/2

and g + δh is a lower barrier function for fδ at q. Thus ∆fδ(q) > 0, which is
a contradiction.

Theorem 3.3.2 (Regularity) If f ∈ C0(M) and ∆f ≡ 0 in the barrier
sense, then f is C∞.

If ∆f ≡ 0, f is called harmonic.
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3.4 Splitting Theorem

Definition 3.4.1 A normalized geodesic γ : [0,∞) → M is called a ray if
d(γ(0), γ(t)) = t for all t. A normalized geodesic γ : (−∞,∞) is called a line
if d(γ(t), γ(s)) = s− t for all s ≥ t.

Definition 3.4.2 M is called connected at infinity if for all K ⊂ M, K
compact, there is a compact K̃ ⊃ K such that every two points in M − K̃
can be connected in M −K.

Lemma 3.4.1 If M is noncompact then for each p ∈ M there is a ray γ
with γ(0) = p.

If M is disconnected at infinity then M has a line.

Example 3.4.1 A Paraboloid has rays but no lines.

Example 3.4.2 R2 has lines.

Example 3.4.3 A cylinder has lines.

Example 3.4.4 A surface of revolution has lines.

The theorem that we seek to prove is:

Theorem 3.4.1 (Splitting Theorem: Cheeger Gromoll 1971) Suppose
that Mn is noncompact, RicM ≥ 0, and M contains a line. Then M is iso-
metric to N × R, with the product metric, where N is a smooth (n − 1)-
manifold with RicN ≥ 0. Thus, if N contains a line we may apply the result
to N.

To prove this theorem, we introduce Busemann functions.

Definition 3.4.3 If γ : [0,∞) → M is a ray, set bγ
t (x) = t− d(x, γ(t)).

Lemma 3.4.2 We have

1. |bγ
t (x)| ≤ d(x, γ(0)).

2. For x fixed, bγ
t (x) is nondecreasing in t.

3. bγ
t (x)− bγ

t (y)| ≤ d(x, y).
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Proof. (1) and (3) are the triangle inequality. For (2), suppose s < t.
Then

bγ
s (x)− bγ

t (x) = (s− t)− d(x, γ(s)) + d(x, γ(t))

= d(x, γ(t))− d(x, γ(s))− d(γ(s), γ(t))

≤ 0

Definition 3.4.4 If γ : [0,∞) → M is a ray, the Busemann function asso-
ciated to γ is

bγ(x) = lim
t→∞

bγ
t (x)

= lim
t→∞

t− d(x, γ(t)).

By the above, Busemann functions are well defined and Lipschitz contin-
uous. Intuitively, bγ(x) is the distance from γ(∞). Also, since

bγ(γ(s)) = lim
t→∞

t− d(γ(s), γ(t))

= lim
t→∞

t− (t− s) = s,

bγ(x) is linear along γ(t).

Example 3.4.5 In Rn, the rays are γ(t) = γ(0)+γ′(0)t. In this case, bγ(x) =
〈x− γ(0), γ′(0)〉. The level sets of bγ are hyperplanes.

Lemma 3.4.3 If M has RicM ≥ 0 and γ is a ray on M then ∆(bγ) ≥ 0 in
the barrier sense.

Proof. For each p ∈ M, we construct a support function of bγ at p. We
first construct asymptotic rays of γ at p.

Pick ti → ∞. For each i, connect p and γ(ti) by a minimal geodesic σi.
Then {σ′i(0)} ⊂ Sn−1, so there is a subsequential limit γ̃′(0). The geodesic γ̃
is called an asymptotic ray of γ at p; note that γ̃ need not be unique.

We claim that bγ̃(x)+bγ(p) is a support function of bγ at p. For bγ̃(p) = 0,
so the functions agree at p. In addition, γ̃ is a ray, so γ̃(t) is not a cut point of γ̃
along p. Hence d(γ̃(t), ∗) is smooth at p, so bγ̃(x) is smooth in a neighborhood
of p.
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Now

bγ̃(x) = lim
t→∞

t− d(x, γ̃(t))

≤ lim
t→∞

t− d(x, γ(s)) + d(γ̃(t), γ(s))

= lim
t→∞

t + s− d(x, γ(s))− s + d(γ̃(t), γ(s))

= lim
t→∞

t + bγ
s (x)− bγ

s (γ̃(t));

letting s →∞, we obtain

bγ̃(x) ≤ lim
t→∞

t + bγ(x)− bγ(γ̃(t)).

We also have

bγ(p) = lim
i→∞

ti − d(p, γ(ti))

= lim
i→∞

ti − d(p, σi(t))− d(σi(t), γ(ti))

= −d(p, γ̃(t)) + lim
i→∞

ti − d(σi(t), γ(ti))

= −d(p, γ̃(t)) + bγ(γ̃(t))

= −t + bγ(γ̃(t)).

Thus

bγ̃(x) + bγ(p) ≤ lim
t→∞

t + bγ(x)− bγ(γ̃(t))− t + bγ(γ̃(t))

= bγ(x),

so bγ̃(x)+ bγ(p) is a support function for bγ at p. By a similar argument, each
bγ
t (x) + bγ(p) is a support function for bγ at p.

Finally, since RicM ≥ 0,

∆(bγ̃
t (x) + bγ(p)) = ∆(t− d(x, γ̃(t)))

= −∆(x, γ̃(t))

≥ − n− 1

d(x, γ̃(t))
,

which tends to 0 as t →∞. Thus ∆(bγ) ≥ 0 in the barrier sense.
The level sets of bγ

t are geodesic spheres at γ(t). The level sets of bγ
t are

geodesic spheres at γ(∞).
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Lemma 3.4.4 Suppose γ is a line in M, RicM ≥ 0. Then γ defines two rays,
γ+ and γ−. Let b+ and b− be the associated Busemann functions. Then:

1. b+ + b− ≡ 0 on M.

2. b+ and b− are smooth.

3. Given any point p ∈ M there is a unique line passing through p that is
perpendicular to v0 = {x : b+(x) = 0} and consists of asymptotic rays.

Proof. For

1. Observe that

b+(x) + b−(x) = lim
t→∞

(t− d(x, γ+(t))) + lim
t→∞

(t− d(x, γ−(t)))

= lim
t→∞

2t− (d(x, γ+(t))− d(x, γ−(t)))

≤ 2t− d(γ+(t), γ−(t)) = 0.

Since b+(γ(0)) + b−(γ(0)) = 0, 0 is a global maximum. But

∆(b+ + b−) = ∆b+ + ∆b− ≥ 0,

so b+ + b− ≡ 0.

2. We have b+ = −b−. Thus

0 ≤ ∆b+ = −∆b− ≤ 0,

so both b+ and b− are smooth by regularity.

3. At p there are asymptotic rays γ̃+ and γ̃−. We first show that γ̃+ + γ̃−

is a line. Since

d(γ̃+(s1), γ̃
−(s2)) ≥ d(γ̃−(s2), γ

+(t))− d(γ̃+(s1), γ
+(t))

= (t− d(γ̃+(s1), γ
+(t)))− (t− d(γ̃−(s2), γ

+(t)))

holds for all t, we have

d(γ̃+(s1), γ̃
−(s2)) ≥ b+(γ̃+(s1))− b+(γ̃−(s2))

= b+(γ̃+(s1)) + b−(γ̃−(s2))

≥ b̃+(γ̃+(s1)) + b+(p) + b̃−(γ̃−(s2)) + b−(p)

= s1 + s2.
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Thus γ̃+ + γ̃− is a line. But our argument shows that any two asymp-
totic rays form a line, so the line is unique.

Set ṽt0 = (b̃+)−1(t0). Then if y ∈ ṽt0 we have

d(y, γ̃+(t)) ≥ |b̃+(y)− b̃+(γ̃+(t))|
= |t0 − t|
= d(γ̃+(t0), γ̃

+(t)),

which shows γ̃ ⊥ ṽt0 .

Finally, since b̃+(x) + b+(p) ≤ b+(x),

−(b̃+(x) + b+(p)) ≥ −b+(x).

But b̃+ = −b̃− and b+ = −b−, so

b̃−(x) + b−(p) ≥ b−(x).

Since b̃−(x) + b−(p) ≤ b−(x) as well,

b̃−(x) + b−(p) = b−(x).

Thus the level sets of b+ are the level sets of b̃+, which proves the result.

Note that b+ : M → R is smooth. Since b+ is linear on γ with a Lipschitz
constant 1, ‖∇b+‖ = 1. Thus v0 = (b+)−1(0) is a smooth (n-1) submanifold
of M.

Proof of Splitting Theorem. Let φ : R×v0 → M be given by (t, p) 7→
γ(t) = expp tγ′(0), where γ is the unique line passing through p, perpendicular
to v0. By the existence and uniqueness of γ, φ is bijective. Since expp is a
local diffeomorphism and γ′(0) = (∇b+)(v) smooth, φ is a diffeomorphism.

To show that φ is an isometry, set vt = (b+)−1(t) and let m(t) be the
mean curvature of vt. Then m(t) = ∆b+ = 0. In the proof of the Laplacian
comparison, we derived

Ric(N,N) + ‖Hess (r)‖2 = m′(r, θ),

where N = ∇γ. Note that γ is the integral curve of ∇b+ passing through p,
so ∆γ = m(t) and ∇b+ = N.

In our case, Ric(N, N) ≥ 0 and m′(r, θ) = 0, so

‖Hess (b+)‖ = ‖Hess (r)‖ ≤ 0.
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Thus ‖Hess (b+)‖ = 0, so that ∇b+ is a parallel vector field.
Now φ is an isometry in the t direction since expp is a radial isometry.

Suppose X is a vector field on v0. Then

R(N, X)N = ∇N∇XN −∇X∇NN −∇[X,N ]N.

But ∇NN = 0, and we may extend X in the coordinate direction so that
[X, N ] = 0. Since

∇XN = ∇X∇b+ = 0,

we have R(N,X)N = 0.
Let J(t) = φ∗(x) = d

ds
(φ(c(s)))

∣∣
s=t

, where c : (−ε, ε) → v0 has c′(t) = X.
Then J(t) is a Jacobi field, J ′′(t) = 0 and J ⊥ N. Thus J(t) is constant.
Hence ‖φ∗(X)‖ = ‖X‖, so φ is an isometry.

Remark: Since ‖Hess (b+)‖ = 0, we have ∇X∇b+ = 0 for all vector fields
X. By the de Rham decomposition, φ is a locally isometric splitting.

Summary of Proof of Splitting Theorem.

1. Laplcaian Comparison in Barrier Sense

2. Maximal Principle

3. Bochner Formula: Generalizes Ric(N, N) + ‖Hess (r)‖ = m′(r, θ)

4. de Rham Decomposition

Also, the Regularity Theorem was used.

3.5 Applications of the Splitting Theorem

Theorem 3.5.1 (Cheeger-Gromoll 1971) If Mn is compact with RicM ≥
0 then the universal cover M̃

iso' N × Rk, where N is a compact (n − k)-
manifold. Thus π1(M) is almost π1(Flat Manifold), i.e.

0 → F → π1(M) → Bk → 0,

where F is a finite group and Bk is the fundamental group of some compact
flat manifold.
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Bk is called a Bieberbach group.
Proof. By the splitting theorem, M̃ ' N ×Rk, where N has no line. We

show N is compact.
Note that isometries map lines to lines. Thus, if ψ ∈ Iso(M̃), then ψ =

(ψ1, ψ2), where ψ1 : N → N and ψ2 : Rk → Rk are isometries. Suppose N is
not compact, so N contains a ray γ : [0,∞) → N. Let F be a fundamental
domain of M, so F̄ is compact, and let p1 be the projection M̃ → N.

Pick ti →∞. For each i there is gi ∈ π1(M) such that gi(γ(ti)) ∈ p1(F ).
But p1(F̄ ) is compact, so we may assume gi(γ(ti)) → p ∈ N. Set γi(t) =
gi(γ(t+ ti)). Then γi : [−ti,∞) → N is minimal, and {γi} converges to a line
σ in N .

Thus N is compact. For the second statement, let p2 : π1(M) → Iso(Rk)
be the map ψ = (ψ1, ψ2) 7→ ψ2. Then

0 → Ker(p2) → π1(M) → Im(p2) → 0

is exact. Now Ker(p2) = {(ψ1, 0)}, while Im(ψ2) = {(0, ψ2)}. Since Ker(p2)
gives a properly discontinuous group action on a compact manifold, Ker(p2)
is finite. On the other hand, Im(p2) is an isometry group on Rk, so Im(p2)
is a Bieberbach group.

Remark: The curvature condition is only used to obtain the splitting
M̃ ' N × Rk. Thus, if the conclusion of the splitting theorem holds, the
curvature condition is unnecessary.

Corollary If Mn is compact with RicM ≥ 0 and RicM > 0 at one point,
then π1(M) is finite.

Remark: This corollary improves the theorem of Bonnet-Myers. The
corollary can also be proven using the Bochner technique. In fact, Aubin’s
deformation gives another metric that has RicM > 0 everywhere.

Corollary If Mn has RicM ≥ 0 then b1(M) ≤ n, with equality if and

only if Mn iso' T n, where T n is a flat torus.

Definition 3.5.1 Suppose Mn is noncompact. Then M is said to have the
geodesic loops to infinity property if for any ray γ in M, any g ∈ π1(M,γ(0))
and any compact K ⊂ M there is a geodesic loop c at γt0 in M − K such
that g = [c] = [(γ|t00 )−1 ◦ c ◦ γ|t00 ].

Example 3.5.1 M = N × R If the ray γ is in the splitting direction, then
any g ∈ π1(M, γ) is homotopic to a geodesic loop at infinity along γ.
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Theorem 3.5.2 (Sormani, 1999) If Mn is complete and noncompact with
RicM > 0 then M has the geodesic loops to infinity property.

Theorem 3.5.3 (Line Theorem) If Mn does not have the geodesic loops
to infinity property then there is a line in M̃.

Application:(Shen-Sormani) If Mn is noncompact with RicM > 0 then
Hn−1(M,Z) = 0.

3.6 Excess Estimate

Definition 3.6.1 Given p, q ∈ M, the excess function associated to p and q
is

ep,q(x) = d(p, x) + d(q, x)− d(p, q).

For fixed p, q ∈ M, write e(x).If γ is a minimal geodesic connecting p and q
with γ(0) = p and γ(1) = q, let h(x) = min

0≤t≤1
d(x, γ(t)). Then

0 ≤ e(x) ≤ 2h(x).

Let y be the point along γ between p and q with d(x, y) = h(x).
Set

s1 = d(p, x), t1 = d(p, y)
s2 = d(q, x), t2 = d(q, y).

We consider triangles pqx for which h/t1 is small; such triangles are
called thin.

Example 3.6.1 In Rn,

s1 =
√

h2 + t21 = t1
√

1 + (h/t1)2.

For a thin triangle, we may use a Taylor expansion to obtain s1 ≤ t1(1 +
(h/t1)

2). Thus

e(x) = s1 + s2 − t1 − t2

≤ h2/t1 + h2/t2

= h(h/t1 + h/t2)

≤ 2h(h/t),

where t = min{t1, t2}. Thus e(x) is small is h2/t is small.
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If M has K ≥ 0 then the Toponogov comparison shows that s1 ≤√
h2 + t21, so the same estimate holds.

Lemma 3.6.1 e(x) has the following basic properties:

1. e(x) ≥ 0.

2. e|γ = 0.

3. |e(x)− e(y)| ≤ 2d(x, y).

4. If M has Ric ≥ 0,

∆(e(x)) ≤ (n− 1)(1/s1 + 1/s2)

≤ (n− 1)(2/s),

where s = min{s1, s2}.

Proof. (1), (2) and (3) are clear. (4) is a consequence of the following
Laplacian comparison.

Lemma 3.6.2 Suppose M has Ric ≥ (n − 1)H. Set r(x) = d(p, x), and let
f : R→ R. Then, in the barrier sense,

1. If f ′ ≥ 0 then ∆f(r(x)) ≤ ∆Hf |r=r(x) .

2. If f ′ ≤ 0 then ∆f(r(x)) ≥ ∆Hf |r=r(x) .

Proof. Recall that ∆ = ∂2

∂r2 + m(r, θ) ∂
∂r

+ ∆̃, where ∆̃ is the Laplacian
on the geodesic sphere. Hence

∆f(r(x)) = f ′′ + m(r, θ)f ′

= f ′′ + ∆rf ′,

so we need only show ∆r ≤ ∆Hr in the barrier sense.
We have proved the result where r is smooth, so need only prove at cut

points. Suppose q is a cut point of p. Let γ be a minimal geodesic with
γ(0) = p and γ(`) = q. We claim that d(γ(ε), x) + ε is an upper barrier
function of r(x) = d(p, x) at q, as

1. d(γ(ε), x) + ε ≥ d(p, x),
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2. d(γ(ε), q) + ε = d(p, q) and

3. d(γ(ε), x) + ε is smooth near q, since q is not a cut point of γ(ε) for
ε > 0.

Since

∆(d(γ(ε), x) + ε) ≤ ∆H(d(γ(ε), x))

= mH(d(γ(ε), x))

≤ mH(d(p, x)) + cε = ∆H(r(x)) + cε,

we have the result.

Definition 3.6.2 The dilation of a function is

dil(f) = min
x,y

|f(x)− f(y)|
d(x, y)

.

By property (2) of e(x), we have dil(e(x)) ≤ 2.

Theorem 3.6.1 Suppose U : B(y,R + η) → R is a Lipschitz function on
M, RicM ≥ (n− 1)H and

1. U ≥ 0,

2. dil(U) ≤ a,

3. u(y0) = 0 for some y0 ∈ ¯B(y, R) and

4. ∆U ≤ b in the barrier sense.

Then U(y) ≤ ac + G(c) for all 0 < c < R, where G(r(x)) is the unique
function on MH such that:

1. G(r) > 0 for 0 < r < R.

2. G′(r) < 0 for 0 < r < R.

3. G(R) = 0.

4. ∆HG ≡ b.
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Proof. Suppose H = 0, n ≥ 3. We want ∆HG = b. Since ∆H = ∂2

∂r2 +

mH(r, θ) ∂
∂r

+ ∆̃, we solve

G′′ + (n− 1)G′/r = b

G′′r2 + (n− 1)G′r = br2,

which is an Euler type O.D.E. The solutions are G = Gp + Gh, where Gp =
b/2nr2 and Gh = c1 + c2r

−(n−2).
Now G(R) = 0 gives

b

2n
R2 + c1 + c2R

−(n−2) = 0,

while G′ < 0 gives
b

n
r − (n− 2)c2r

−(n−1) > −0

for all 0 < r < R. Thus c2 ≥ b
n(n−2)

Rn.

Hence G(r) = b
2n

(r2 + 2
n−2

r−(n−2) − n
n−2

R2. Note that G > 0 follows from
G(R) = 0 and G′ < 0.

For general H < 0,

G(r) = b

∫ R

r

∫ t

r

(
sinh

√−Ht

sinh
√−Hs

)n−1

dsdt.

Note that ∆HG ≥ b by the Laplacian comparison.
To complete the proof, fix 0 < c < R. If d(y, y0) ≤ c,

U(y) = U(y)− U(y0)

≤ ad(y, y0)

≤ ac

≤ ac + G(c).

If d(y, y0) > c then consider G defined on B(y, R + ε), where 0 < ε < η.
Letting ε → 0 gives the result.

Consider V = G − U. Then ∆V = ∆G − ∆U ≥ 0, V |∂B(R+ε) ≤ 0 and
V (y0) > 0. Now y0 is in the interior of ¯B(y, R + ε) − B(y, c), so V (y′) > 0
for some y′ ∈ ∂B(y, c). Since

U(y)− U(y′) ≤ ad(y, y′) = ac
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and
G(c)− U(y′) = V (y′) > 0,

we have
U(y) ≤ ac + U(y′) < ac + G(c).

We now apply this result to e(x). Here e(x) ≥ 0, a = 2 and R = h(x).
We assume s(x) ≥ 2h(x). On B(x,R),

∆e ≤ 4(n− 1)

s(x)
,

so b = 4(n− 1)/s(x). Thus

e(x) ≤ 2c + G(c)

= 2c +
2(n− 1)

ns
(c2 + frac2n− 2hnc−(n−2) +

n

n− 2
h2)

for all 0 < c < h.
To find the minimal value for ar + G(r), 0 < r < R, consider

a + G′(r) = a +
b

2n
(2r − 2Rnr1−n) = 0.

This gives r(Rn/rn − 1) = an/b. To get an estimate, choose r small. Then
Rn/rn is large, so Rn/rn−1 ≈ an/b. Hence

r =

(
Rnb

an

) 1
n−1

is close to a minimal point.
For the excess function, choose

c =

(
2hn

s

) 1
n−1

≈
(

hn 4(n−1)
s

2n

) 1
n−1

.

Then

G(c) =
2(n− 1)

ns

((
2hn

s

)2/(n−1)

+
2

n− 2
hn

(
2hn

s

)−n−2
n−1

− n

n− 2
h2

)
.
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Now (
2hn

s

) 2
n−1

= h2

(
2h

s

) 2
n−1

,

2h

s
≤ 1

and
n

n− 2
> 1,

so

G(c) ≤ 2(n− 1)

n

2

n− 2

hn

s

(
2hn

s

) 1
n−1

−1

≤ 2(n− 1)

n(n− 2)

(
2hn

s

) 1
n−1

≤ 2c.

Thus

e(x) ≤ 2c + G(c)

= 2c + 2c

=

(
2hn

s

) 1
n−1

≤ 8

(
hn

s

) 1
n−1

.

Remarks:

1. A more careful estimate is

e(x) ≤ 2

(
n− 1

n− 2

)(
c3h

n

2

) 1
n−1

= 8h

(
h

s

) 1
n−1

,

where c3 = n−1
n

(
1

s1−h
+ 1

s2−h

)
and h < min(s1, s2).

2. In general, if RicM ≥ (n−1)H then e(x) ≤ hF (h/s
)

for some continuous

F satisfying F (0) = 0. F is given by an integral; consider the proof of
the estimate in the case RicM ≥ 0.
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3.7 Applications of the Excess Estimate

Theorem 3.7.1 (Sormani, 1998) Suppose Mn complete and noncompact
with RicM ≥ 0. If, for some p ∈ M,

lim sup
r→∞

diam(∂B(p, r))

r
< 4sn,

where

sn =
1

2

1

3n

1

4n−1
,

then π1(M) is finitely generated.

Compare this result with:

Theorem 3.7.2 (Abresch and Gromoll) If M is noncompact with RicM ≥
0, K ≥ −1 and diameter growth o(r

1
n ), then M has finite topological type.

Note: Diameter growth is the growth of diam ∂B(p, r). When Ric ≥ 0,
diam ∂B(p, r) ≤ r. To say M has finite topological type is to say that each
Hi(M,Z) is finite.

To prove Sormani’s result we choose a desirable set of generators for
π1(M).

Lemma 3.7.1 For Mn complete we may choose a set of generators g1, . . . , gn, . . .
of π1(M) such that:

1. gi ∈ span{g1, . . . , gi−1}.
2. Each gi can be represented by a minimal geodesic loop γi based at p

such that if `(γi) = di then d(γ(0), γ(di/2)) = di/2, and the lift γ̃i based
at p̃ is a minimal geodesic.

Proof. Fix p̃ ∈ M̃. Let G = π1(M). Choose g1 ∈ G such that d(p̃, g1(p̃)) ≤
d(p̃, g(p̃)) for all g ∈ G − {e}. Note that since G acts discretely on M̃, only
finitely many elements of G satisfy a given distance restraint.

Let Gi = 〈g1, . . . , gi−1〉. Choose gi ∈ G − Gi such that d(p̃, gi(p̃)) ≤
d(p̃, g(p̃)) for all g ∈ G−Gi. If π1(M) is finitely generated, we have a sequence
g1, . . . , gn, . . . ; otherwise we have a list. The gi’s satisfy (1). Let γ̃i be the
minimal geodesic connecting p̃ to gi(p̃). Set γi = π(γ̃i), where is the covering
π : M̃ → M. We claim that if `(γi) = di then d(γ(0), γ(di/2)) = di/2.
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Otherwise, for some i and some T < di/2, γi(T ) is a cut point of p along
γi. Since M and M̃ are locally isometric, and γ̃i(T ) is not conjugate to p̃
along γ̃, γi(T ) is not conjugate to p along γ. Hence we can connect p to γi(T )
with a second minimal geodesic σ. Set

h1 = σ−1 ◦ γi|[0,T ]

and
h2 = γi|[T,di]

◦ σ.

Now h1 is not a geodesic, so

d(p̃, h1(p̃)) < 2T < di.

Similarly,
d(p̃, h2(p̃)) < T + di − T = di.

Hence h1, h2 ∈ Gi. But then γi = h2 ◦ h1 ∈ Gi, which is a contradiction.

Lemma 3.7.2 Suppose Mn has Ric ≥ 0, n ≥ 3 and γ is a geodesic loop
based at p. Set D = `(γ). Suppose

1. γ|[0,D/2] , and γ|[D/2,D] are minimal.

2. `(γ) ≤ `(σ) for all [σ] = [γ].

Then for x ∈ ∂B(p,RD), R ≥ 1/2 + sn, we have d(x, γ(D/2)) ≥ (R −
1/2)D + 2snD.

Remark: γ(D/2) is a cut point of p along γ. Since d(p, x) > D/2, any
minimal geodesic connecting p and x cannot pass through γ(D/2). Thus

d(γ(D/2), x) > d(p, x)− d(p, γ(D/2))

= RD −D/2 = (R− 1/2)D.

The lemma gives a bound on how much larger d(γ(D/2), x) is.
Proof. It is enough to prove for R = 1/2 + sn. For if R > 1/2 + sn, we

may choose y ∈ ∂B(p, (1/2 + sn)) such that

d(x, γ(D/2)) = d(x, y) + d(y, γ(D/2)).
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Then

d(x, γ(D/2)) ≥ d(x, y) + 3snD

≥ (R− (1/2 + sn))D + 3snD

= (R− 1/2)D + snD.

Suppose there exists x ∈ ∂B(p, (1/2 + sn)D) such that

d(x, γ(D/2)) = H < 3snD.

Let c be a minimal geodesic connecting x and γ(D/2). Let p̃ be a lift of p,
and lift γ to γ̃ starting at p̃. If g = [γ], then γ̃ connects p̃ and g(p̃).

Lift c to c̃ starting at γ̃(D/2), and lift c ◦ γ|[0,D/2] to c̃ ◦ γ̃|[0,D/2] . Then

d(p̃, x̃) ≥ d(p, x)

= (1/2 + sn)D,

and
d(g(p̃), x̃) ≥ (1/2 + sn)D.

Thus

ep̃,g(p̃)(x̃) = d(p̃, x̃) + d(g(p̃), x̃)− d(p̃, g(p̃))

≥ (1/2 + sn)D + (1/2 + sn)D −D = 2snD.

But, by the excess estimate, if s ≥ 2h,

e(x̃) ≤ 8

(
hn

s

) 1
n−1

.

In this case, h ≤ H < 3snD. Also,

s ≥ (1/2 + sn)D > D/2.

Since sn < 1/12 for n ≥ 2, we have s ≥ 2h. Thus

e(x̃) ≤ 8

(
(3snD)n

D/2

) 1
n−1

.

But this gives

2snD ≤ 8D (2(3sn)n)
1

n−1 ,

42



whence

sn >
1

2

1

3n

1

4n−1
.

We may now prove Sormani’s result.
Proof of Theorem. Pick a set of generators {gk} as in the lemma, where

gk is represented by γk. If xk ∈ ∂B(p, (1/2 + sn)dk), where dk = `(γk) →∞,
we showed that d(xk, γ(dk/2)) ≥ 3sndk.

Let yk ∈ ∂B(p, dk/2) be the point on a minimal geodesic connecting p
and xk. Then

lim sup
r→∞

diam(∂B(p, r))

r
≥ lim

k→∞
d(yk, γk(dk/2))

dk/2

≥ lim
k→∞

2sndk

dk/2
= 4sn,

so we have a contradiction if there are infinitely many generators.
The excess estimate can also be used for compact manifolds.

Lemma 3.7.3 Suppose Mn with RicM ≥ (n− 1). Then given δ > 0 there is
ε(n, δ) > 0 such that if d(p, q) ≥ π − ε then ep,q(x) ≤ δ.

This lemma can be used to prove the following:

Theorem 3.7.3 There is ε(n,H) such that if Mn has RicM ≥ (n − 1),
diamM ≥ π − ε and KM ≥ H then M is a twisted sphere.

Proof of Lemma. Fix x and set e = ep,q(x). Then B(x, e/2), B(p, d(p, x)−
e/2) and B(q, d(x, q)− e/2) are disjoint. Thus

vol(M) ≥ vol(B(x, e/2)) + vol(B(p, d(p, x)− e/2)) + vol(B(q, d(q, x)− e/2))

= vol(M)

(
vol(B(x, e/2))

vol(B(x, π))
+

vol(B(p, d(p, x)− e/2))

vol(B(p, π))
+

vol(B(q, d(q, x)− e/2))

vol(B(q, π))

)

≥ vol(M)

(
v(n, 1, e/2) + v(n, 1, d(p, x)− e/2) + v(n, 1, d(q, x)− e/2)

v(n, 1, π)

)
,

where v(n,H, r) = vol(B(r)), B(r) ⊂ Mn
H .
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Now in Sn(1), vol(B(r)) =
∫ r

0
sinn−1 t dt is a convex function of r. Thus

we have

v(n, 1, π) ≥ v(n, 1, e/2) + v(n, 1, d(p, x)− e/2) + v(n, 1, d(q, x)− e/2)

≥ v(n, 1, e/2) + 2v

(
n, 1,

d(p, x) + d(q, x)− e

2

)

= v(n, 1, e/2) + 2v

(
n, 1,

d(p, q)

2

)
.

Hence

v(n, 1, e/2) ≤ v(n, 1, π)− 2v

(
n, 1,

d(p, q)

2

)
,

which tends to 0 as ε → 0. Thus e → 0.
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