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Abstract. We call a metric quasi-Einstein if the m-Bakry-Emery Ricci tensor

is a constant multiple of the metric tensor. This is a generalization of Einstein

metrics, which contains gradient Ricci solitons and is also closely related to
the construction of the warped product Einstein metrics. We study properties

of quasi-Einstein metrics and prove several rigidity results. We also give a

splitting theorem for some Kähler quasi-Einstein metrics.

1. Introduction

Einstein metrics and their generalizations are important both in mathematics
and physics. A particular example is from the study of smooth metric measure
spaces. Recall a smooth metric measure space is a triple (Mn, g, e−fdvolg), where
M is a complete n-dimensional Riemannian manifold with metric g, f is a smooth
real valued function on M , and dvolg is the Riemannian volume density on M .
A natural extension of the Ricci tensor to smooth metric measure spaces is the
m-Bakry-Emery Ricci tensor

(1.1) Ricm
f = Ric + Hessf − 1

m
df ⊗ df for 0 < m ≤ ∞.

When f is constant, this is the usual Ricci tensor. We call a triple (M, g, f) (a Rie-
mannian manifold (M, g) with a function f on M) (m-)quasi-Einstein if it satisfies
the equation

(1.2) Ricm
f = Ric + Hessf − 1

m
df ⊗ df = λg

for some λ ∈ R. This equation is especially interesting in that when m = ∞
it is exactly the gradient Ricci soliton equation; when m is a positive integer, it
corresponds to warped product Einstein metrics (see Section 2 for detail); when f
is constant, it gives the Einstein equation. We call a quasi-Einstein metric trivial
when f is constant (the rigid case).

Many geometric and topological properties of manifolds with Ricci curvature
bounded below can be extended to manifolds with m-Bakry-Emery Ricci tensor
bounded from below when m is finite or m is infinite and f is bounded, see the
survey article [18] and the references there for details.

Quasi-Einstein metrics for finite m and for m = ∞ share some common prop-
erties. It is well-known now that compact solitons with λ ≤ 0 are trivial [8]. The
same result is proven in [10] for quasi-Einstein metrics on compact manifolds with
finite m. Compact shrinking Ricci solitons have positive scalar curvature [8, 5].
Here we show
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Proposition 1.1. A quasi-Einstein metric with 1 ≤ m < ∞ and λ > 0 has positive
scalar curvature.

In dimension 2 and 3 compact Ricci solitons are trivial [6, 8]. More generally
compact shrinking Ricci solitons with zero Weyl tensor are trivial [5, 15, 13]. We
prove a similar result in dimension 2 for m finite.

Theorem 1.2. All 2-dimensional quasi-Einstein metrics on compact manifolds are
trivial.

In fact, from the correspondence with warped product metrics, 2-dimensional
quasi-Einstein metrics (with finite m) can be classified, see [1, Theorem 9.119].
(The proof was not published though.)

In Section 3 we also extend several properties for Ricci solitons (m = ∞) to
quasi-Einstein metrics (general m).

On the other hand we show Kähler quasi-Einstein metrics behave very differently
when m is finite and m is infinite.

Theorem 1.3. Let (Mn, g) be an n-dimensional complete simply-connected Rie-
mannian manifold with a Kähler quasi-Einstein metric for finite m. Then M =
M1 ×M2 is a Riemannian product, and f can be considered as a function of M2,
where M1 is an (n-2)-dimensional Einstein manifold with Einstein constant λ, and
M2 is a 2-dimensional quasi-Einstein manifold.

Combine this with Theorem 1.2 we immediately get

Corollary 1.4. There are no nontrivial Kähler quasi-Einstein metrics with finite
m on compact manifolds.

Note that all known examples of (nontrivial) compact shrinking soliton are
Kähler, see the survey article [3].

Ricci solitons play a very important role in the theory of Ricci flow and are exten-
sively studied recently. Warped product Einstein metrics have considerable interest
in physics and many Einstein metrics are constructed in this form, especially on
noncompact manifolds [1]. It was asked in [1] whether one could find Einstein met-
rics with nonconstant warping function on compact manifolds. From Corollary 1.4
only non-Kähler ones are possible. Indeed in [12] warped product Einstein metrics
are constructed on a class of S2 bundles over Kähler-Einstein bases warped with
Sm for m ≥ 2, giving compact nontrivial quasi-Einstein metrics for positive inte-
gers n ≥ 4, m ≥ 2. When m = 1, there are no nontrivial quasi-Einstein metrics
on compact manifolds, see Remark 3.5 and Proposition 2.1. When n = 3,m ≥ 2 it
remains open.

In Section 4 we also give a characterization of quasi-Einstein metrics with finite
m which are Einstein at the same time.

2. Warped Product Einstein Metrics

In this section we show that when m is a positive integer the quasi-Einstein
metrics (1.2) correspond to some warped product Einstein metrics, mainly due to
the work of [10].

Recall that given two Riemannian manifolds (Mn, gM ), (Fm, gF ) and a positive
smooth function u on M , the warped product metric on M × F is defined by

(2.3) g = gM + u2gF .
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We denote it as M ×u F . Warped product is very useful in constructing various
metrics.

When 0 < m < ∞, consider u = e−
f
m . Then we have

∇u = − 1
m

e−
f
m∇f,

m

u
Hess u = −Hessf +

1
m

df ⊗ df.

Therefore (1.2) can be rewritten as

(2.4) Ric− m

u
Hess u = λg.

Hence we can use equation (2.4) to study (1.2) when m is finite and vice verse.
Taking trace of (2.4) we have

(2.5) ∆u =
u

m
(R− λn) .

Since u > 0 this immediately gives the following result which is similar to the
m = ∞ (soliton) case.

Proposition 2.1. A compact quasi-Einstein metric with constant scalar curvature
is trivial.

In [10] it is shown that a Riemannian manifold (M,g) satisfies (2.4) if and only
if the warped product metric M ×u Fm is Einstein, where Fm is an m-dimensional
Einstein manifold with Einstein constant µ satisfies

µ = u∆u + (m− 1)|∇u|2 + λu2.

(In [10] it is only stated for compact Riemannian manifold, while compactness is
redundant. Also the Laplacian there and here have different sign.) Therefore we
have the following nice characterization of the quasi-Einstein metrics as the base
metrics of warped product Einstein metrics.

Theorem 2.2. (M, g) satisfies the quasi-Einstein equation (1.2) if and only if the
warped product metric M ×

e−
f
m

Fm is Einstein, where Fm is an m-dimensional
Einstein manifold with Einstein constant µ satisfying

(2.6) µe
2
m f = λ− 1

m

(
∆f − |∇f |2

)
.

3. Formulas and Rigidity for Quasi-Einstein Metrics

In this section we generalize the calculations in [14] for Ricci solitons to the
metrics satisfying the quasi-Einstein equation (1.2).

Recall the following general formulas, see e.g. [14, Lemma 2.1] for a proof.

Lemma 3.1. For a function f in a Riemannian manifold

(3.7) 2(div Hessf)(∇f) =
1
2
∆|∇f |2 − |Hessf |2 + Ric(∇f,∇f) + 〈∇f,∇∆f〉,

(3.8) div∇∇f = Ric∇f +∇∆f.
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The trace form of (1.2)

(3.9) R + ∆f − 1
m
|∇f |2 = λn,

where R is the scalar curvature, will be used later.
Using these formulas and the contracted second Bianchi identity

(3.10) ∇R = 2div Ric,

we can show the following formulas for quasi-Einstein metrics, which generalize
some of the formulas in Section 2 of [14].

Lemma 3.2. If Ricm
f = λg, then

1
2
∆|∇f |2 = |Hessf |2 − Ric(∇f,∇f) +

2
m
|∇f |2∆f,(3.11)

1
2
∇R =

m− 1
m

Ric(∇f) +
1
m

(R− (n− 1)λ)∇f,(3.12)

1
2
∆R− m + 2

2m
∇∇fR =

m− 1
m

tr (Ric ◦ (λI − Ric))− 1
m

(R− nλ)(R− (n− 1)λ)

= −m− 1
m

∣∣∣∣Ric− 1
n

Rg

∣∣∣∣2 − m + n− 1
mn

(R− nλ)(R− n(n− 1)
m + n− 1

λ).(3.13)

Proof. From (3.7) we have

(3.14)
1
2
∆|∇f |2 = 2(div Hessf)(∇f) + |Hessf |2 − Ric(∇f,∇f)− 〈∇f,∇∆f〉.

By taking the divergence of (1.2), we have

(3.15) div Ric + div Hessf − 1
m

∆f df − 1
m

(∇∇f∇f)∗ = 0,

where X∗ is the dual 1-form of the vector field X. Using (3.10) we get

(3.16) 2 div Hessf(∇f) = −〈∇R,∇f〉+
2
m

∆f |∇f |2 +
2
m

Hessf(∇f,∇f).

Now taking the covariant derivative of (3.9) yields

(3.17) ∇R +∇∆f − 1
m
∇|∇f |2 = 0.

Plug this into (3.16) and then plug (3.16) into (3.14) we get

1
2
∆|∇f |2 = 〈∇∆f − 1

m
∇|∇f |2,∇f〉+

2
m

∆f |∇f |2 +
2
m

Hessf(∇f,∇f)

+|Hessf |2 − Ric(∇f,∇f)− 〈∇f,∇∆f〉

= |Hessf |2 − Ric(∇f,∇f) +
2
m
|∇f |2∆f,

which is (3.11).
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For (3.12), using (3.10), (3.15), (3.8), and (3.17), we get

∇R = 2div Ric

= −2 div Hessf +
2
m

∆f ∇f +
2
m
∇∇f∇f

= −2Ric(∇f)− 2∇∆f +
2
m

∆f ∇f +
2
m
∇∇f∇f

= −2Ric(∇f) + 2∇R− 2
m
∇|∇f |2 +

2
m

∆f ∇f +
2
m
∇∇f∇f.

Solving for ∇R and noting that ∇|∇f |2 = 2∇∇f∇f , we get

∇R = 2Ric(∇f)− 2
m

∆f ∇f +
2
m
∇∇f∇f.

From (1.2), we have that

∇∇f∇f =
(

λ +
1
m
|∇f |2

)
∇f − Ric(∇f),

so by using this substitution and (3.9) for ∆f , we arrive at (3.12),

1
2
∇R =

m− 1
m

Ric(∇f) +
1
m

(R− (n− 1)λ)∇f.

Taking the divergent of the above equation we have

(3.18)
1
2
∆R =

m− 1
m

div (Ric(∇f)) +
1
m

div ((R− (n− 1)λ)∇f) .

Now

div (Ric(∇f)) = 〈div Ric,∇f〉+ tr (Ric ◦Hessf)

= 〈1
2
∇R,∇f〉+ tr

(
Ric ◦

(
1
m

df ⊗ df + λg − Ric
))

= 〈1
2
∇R,∇f〉+

1
m

Ric(∇f,∇f) + tr (Ric ◦ (λg − Ric))

= 〈1
2
∇R,∇f〉+

1
m− 1

(
〈1
2
∇R,∇f〉 − 1

m
(R− (n− 1)λ) |∇f |2

)
(3.19)

+tr (Ric ◦ (λg − Ric)) ,

where the last equation comes from (3.12). Also

(3.20) div ((R− (n− 1)λ)∇f) = (R− (n− 1)λ) ∆f + 〈∇R,∇f〉.

Plugging (3.19) and (3.20) into (3.18) and using (3.9) we arrive at

1
2
∆R− m + 2

2m
∇∇fR =

m− 1
m

tr (Ric ◦ (λI − Ric))− 1
m

(R− nλ)(R− (n− 1)λ).

Let λi be the eigenvalues of the Ricci tensor, we get

tr (Ric ◦ (λI − Ric)) =
∑

λi(λ− λi)

= −
∣∣∣∣Ric− 1

n
Rg

∣∣∣∣2 + R

(
λ− 1

n
R

)
,

which yields (3.13). �
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As in [14], these formulas give important information about quasi-Einstein met-
rics. Combining the first equation (3.11) in Lemma 3.2 with the maximal principle
we have

Proposition 3.3. If a compact Riemannian manifold satisfying (1.2) and

Ric(∇f,∇f) ≤ 2
m
|∇f |2∆f

then the function f is constant so it is Einstein.

Equation (3.12) gives

Proposition 3.4. When m 6= 1, a quasi-Einstein metric has constant scalar cur-
vature if and only if

Ric(∇f) = − 1
m− 1

(R− (n− 1)λ)∇f.

Remark 3.5. When m = 1, the constant µ in (2.6) is zero, combining with (3.9),
we get R = (n− 1)λ. The scalar curvature is always constant.

Equation (3.13) gives the following results.

Proposition 3.6. If a Riemannian manifold M satisfies (1.2) with m ≥ 1 and
a) λ > 0 and M is compact then the scalar curvature is bounded below by

(3.21) R ≥ n(n− 1)
m + n− 1

λ.

Equality holds if and only if m = 1.
b) λ = 0, the scalar curvature is constant and m > 1, then M is Ricci flat.
c) λ < 0 and the scalar curvature is constant, then

nλ ≤ R ≤ n(n− 1)
m + n− 1

λ

and when m > 1, R equals either of the extreme values iff M is Einstein.

Remark 3.7. When m is finite, a manifold with quasi-Einstein metric and λ > 0
is automatically compact [16].

Remark 3.8. Let m = ∞, we recover the well know result [8] that compact shrink-
ing Ricci soliton has positive scalar curvature, and some results in [14] about gra-
dient Ricci solitons with constant scalar curvature.

Proof. a) Since M is compact, applying the equation (3.13) to a minimal point of
R, we have

−m + n− 1
mn

(Rmin − nλ)(Rmin −
n(n− 1)

m + n− 1
λ) ≥ m− 1

m

∣∣∣∣Ric− 1
n

Rg

∣∣∣∣2 ≥ 0.

So
n(n− 1)

m + n− 1
λ ≤ Rmin ≤ nλ

which gives (3.21).
b) c) Since R is constant, from (3.13)

−m + n− 1
mn

(R− nλ)(R− n(n− 1)
m + n− 1

λ) =
m− 1

m

∣∣∣∣Ric− 1
n

Rg

∣∣∣∣2 ≥ 0.
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So if λ = 0, m > 1, then Ric = 1
nRg and R = 0, thus it is Ricci flat. If λ < 0,

R ∈ [nλ, n(n−1)
m+n−1λ]. �

4. Two Dimensional Quasi-Einstein Metrics

First we recall a characterization of warped product metrics found in [4] (see
also [15]).

Theorem 4.1 (Cheeger-Colding). A Riemannian manifold (Mn, g) is a warped
product (a, b) ×u Nn−1 if and only if there is a nontrivial function h such that
Hess h = kg for some function k : M → R. (u = h′ up to a multiplicative constant)

From this we can give a characterization of quasi-Einstein metrics which are
Einstein.

Proposition 4.2. A complete finite m quasi-Einstein metric (Mn, g, u) is Einstein
if and only if u is constant or M is diffeomorphic to Rn with the warped product
structure R×a−1ear Nn−1, where Nn−1 is Ricci flat, a is a constant (see below for
its value).

Proof. If g is Einstein, then Ric = µg for some constant µ. From (2.4) we have

(4.22) Hess u =
µ− λ

m
u g for some u > 0.

If M is compact, then u (thus f) is constant. So if u is not constant, then M is
noncompact and λ ≤ 0, µ ≤ 0 and µ > λ. So λ < 0, λ < µ ≤ 0 and u is a strictly
convex function. Therefore Mn is diffeomorphic to Rn. By (4.22) and Theorem 4.1,
u = ce

√
µ−λ

m r, where c is some constant. And M is R × Nn−1 with the warped
product metric

g = dr2 + a−2e2arg0,

where a =
√

µ−λ
m . Since g is Einstein we get µ = −(n− 1)µ−λ

m < 0 and g0 is Ricci
flat. �

Remark 4.3. The Taub-NUT metric [7] is a Ricci flat metric on R4 which is not
flat.

Since a 2-dimensional Riemannian manifold satisfies Ric = R
2 g, we get an imme-

diate corollary of Theorem 4.1.

Corollary 4.4. A two dimensional quasi-Einstein metric 2.4 is a warped product
metric.

Now we will prove Theorem 1.2.

Proof. Since M is compact, by [10], we only need to prove the theorem when λ > 0.
From (3.21) we have

(4.23) R ≥ 2
m + 1

λ.

So up to a cover we may assume M is diffeomorphic to S2. Since M is 2-dimensional,
we have Ric = R

2 g. Thus (3.12) becomes

(4.24) ∇R =
m + 1

m

(
R− 2

m + 1
λ

)
∇f.
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Now let u = e−
f
m , then from (2.4) Hess u = u

m

(
R
2 − λ

)
g. In particular, ∇u is

conformal. By the Kazdan-Warner identity [9], we have∫
M

〈∇R,∇u〉 dV = 0.

Thus

− 1
m

∫
〈∇R,∇f〉e−

f
m dV = 0.

Using (4.24), since R ≥ 2
m+1λ, we get ∇f = ∇R = 0. �

5. Kähler Quasi-Einstein Metrics

There are many nontrivial examples of shrinking Kähler-Ricci solitons [2, 17].
In contrast, we will show here that Kähler quasi-Einstein metrics with finite m are
very rigid.

Proof of Theorem 1.3 First, since on a Kähler manifold, the metric and Ricci
tensor are both compatible with the complex structure J , from (2.4) we have
Hess u(JU, JV ) = Hess u(U, V ) for all vector fields U, V . That implies

(5.25) J∇X∇u = ∇JX∇u,

and the φ defined by φ(U, V ) = Hess u(JU, V ) is an (1,1)-form. Note that 2Hess u =
L∇ug. By (5.25) L∇uJX = JL∇uX, so 2φ = L∇uω, where ω is the Kähler form.
Since LXd = dLX and ω is closed we have φ is closed. Furthermore, since the Ricci
form is closed, from (2.4) we get that the (1,1)-form φ

u is also closed, so du∧φ = 0.
Now

(du∧φ)(U, V,W ) = Uu · g(∇JV∇u, W )+V u · g(∇JW∇u, U)+Wu · g(∇JU∇u, V ).

Let U, V ⊥ ∇u, W = ∇u, we have Hess u(JU, V ) = 0 for all U, V ⊥ ∇u. Hence

(5.26) ∇X∇u ‖J∇u for all X ⊥ ∇u.

Let U = ∇u, V = J∇u, W ⊥ ∇u we get ∇∇u∇u ‖∇u.
Now we consider the 2-dimensional distribution T1 that is spanned by ∇u and

J∇u at those points where ∇u is nonzero. We will show that T1 = Span{∇u, J∇u}
is invariant under parallel transport, i.e. if γ is a path in M , and U is a parallel
field along γ, then

(5.27) ∇γ′

(
g(U,∇u)∇u

|∇u|2
+

g(U, J∇u)J∇u

|∇u|2

)
= 0.

Since the covariant derivative is linear in γ′, we can prove this in three cases:

(1) when γ′⊥∇u, J∇u: so γ′⊥∇u and Jγ′⊥∇u, by (5.26) ∇γ′∇u = 0. Since
the complex structure J is parallel, ∇γ′J∇u = J∇γ′∇u = 0. By assump-
tion ∇γ′U = 0, hence (5.27) follows.

(2) when γ′ = ∇u: Using ∇∇u∇u‖∇u, we have
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∇γ′

(
g(U,∇u)∇u

|∇u|2
+

g(U, J∇u)J∇u

|∇u|2

)
= γ′

(
g(U,∇u)
|∇u|2

)
∇u +

g(U,∇u)
|∇u|2

∇γ′∇u + γ′
(

g(U, J∇u)
|∇u|2

)
J∇u +

g(U, J∇u)
|∇u|2

∇γ′J∇u

=
g(U,∇∇u∇u)

|∇u|2
∇u− 2g(∇u,∇∇u∇u)g(U,∇u)

|∇u|4
∇u +

g(U,∇u)
|∇u|2

g(∇u,∇∇u∇u)
|∇u|2

∇u

+
g(U,∇∇uJ∇u)

|∇u|2
J∇u− 2g(∇u,∇∇u∇u)g(U, J∇u)

|∇u|4
J∇u +

g(U, J∇u)
|∇u|2

g(J∇u,∇∇uJ∇u)
|∇u|2

J∇u

=
∇u

|∇u|2

(
Hess u(U,∇u)− Hess u(∇u,∇u)

|∇u|2
g(U,∇u)

)
+

J∇u

|∇u|2

(
−Hess u(JU,∇u) +

Hessu(∇u,∇u)
|∇u|2

g(JU,∇u)
)

=
∇u

|∇u|2
Hess u

(
U − g(U,∇u)

|∇u|2
∇u,∇u

)
− J∇u

|∇u|2
Hess u

(
JU − g(JU,∇u)

|∇u|2
∇u,∇u

)
= 0,

where the last equality follows from (5.26) and that U − g(U,∇u)
|∇u|2 ∇u ⊥ ∇u.

(3) γ′ = J∇u: Using J∇X∇u = ∇JX∇u it reduces to the previous case.
Now we have an orthogonal decomposition of the tangent bundle TM = T1⊕T⊥

1

that is invariant under parallel transport. By DeRham’s decomposition theorem
on a simply-connected manifold [11, Page 187], M is a Riemannian product, and
all the claims in the theorem follow. �

Proof of Corollary 1.4 Since the manifold M is compact, by [10], we can assume
λ > 0. Then, by [16], the universal cover M̃ is also compact. Now the result follows
from Theorem 1.3 and 1.2. �
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