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Abstract. We obtain a differential sphere and Ricci flow convergence theorem

for positive scalar curvature Yamabe metrics with Ln/2-pinched curvature in

general dimensions n. Previously, E. Hebey and M. Vaugon obtained in [HV96]
a corresponding result for Lp-pinching with p > n/2.

1. Introduction

Let Mn be a compact smooth manifold of dimension n ≥ 3 and g a smooth
Riemannian metric on M . Recall that the Yamabe invariant of the conformal class
of g, [g] = {eug, u ∈ C∞(M)}, is defined to be

Y ([g]) ≡ Y (M, [g]) = inf
g̃∈[g],

volg̃(M)=1

∫
M

Rg̃ d volg̃,

where R denotes the scalar curvature. We will also call Y (M, [g]) the Yamabe
invariant of (M, g) or g and denote it by Y (M, g) or Y (g). Recall also that the
σ-invariant σ(M) of M is defined to be

σ(M) = sup{Y (M, g) : g is a smooth metric on M}.
By the solution of the Yamabe problem [Yam60, Tru68, Aub76, Sch84], we know

that the infimum Y (M, [g]) is achieved in the conformal class [g] for any smooth
metric g on M . The minimizers, i.e. the infimum achieving metrics, have con-
stant scalar curvature of the same sign as that of Y (M, [g]) and are referred to
as Yamabe metrics. In this paper we will focus on Yamabe metrics with positive
scalar curvature and establish a sphere and Ricci flow convergence theorem for such
metrics (i. e. for Riemannian manifolds whose metrics are Yamabe metrics) with
Ln/2-pinched curvature.

Let

Y+(M) = {Yamabe metrics g on M : Rg > 0, volg(M) = 1}.
Let Rm denote the Riemann curvature tensor and Z the concircular curvature
tensor:

Z = Rm− R

2n(n− 1)
g©∧ g.

Note that Z ≡ 0 if and only if the metric g has constant sectional curvature.
Employing the Ricci flow, G. Huisken, C. Margerin and S. Nishikawa obtained
differential sphere theorems for Riemannian manifolds satisfying pointwise pinching
conditions of the form |Z| < c(n)R [Hui86, Mar, Nis86], where the scalar curvature
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is assumed to be positive and c(n) is a sufficiently small positive constant depending
only on the dimension n. Subsequently, R. Ye obtained a differential sphere and
Ricci flow convergence theorem for Riemannian manifolds satisfying an integral
pinching condition in terms of the concircular curvature tensor Z [Ye93]. In [Ye93],
the L2-norm is employed for integral curvature pinching, but a pointwise upper
bound for |Rm| is assumed. An integral pinching condition allows large deviation
of Z from 0 in some places, and hence is significant geometrically. On the other
hand, although the pointwise upper bound assumed for |Rm| in [Ye93] is natural, it
is not an integral condition. It is very desirable to remove this pointwise curvature
bound.

In [HV96] a differential sphere and Ricci flow convergence theorem for Lp-integral
pinching with p > n/2 without involving pointwise curvature bounds was obtained
for Yamabe metrics. An Ln/2-pinching theorem was also obtained in [HV96], but
it is valid only under the assumption that the given conformal class is locally con-
formally flat or contains an Einstein metric. Note that the Ln/2 formulation with
the critical exponent n/2 is most natural from a geometrical point of view, as the
integral

∫
M
|Z|n/2dvol is scaling invariant. In contrast, the integral

∫
M
|Z|pdvol

with p > n/2 needs to be multiplied e. g. by a power of the volume to become
scaling invariant. The work [Gur94] contains a sphere theorem (Theorem B) for
4-dimensional manifolds with positive Euler characteristic, where the metric is as-
sumed to have L2-pinched Weyl curvature tensor W , which is a part of the con-
circular curvature tensor Z. Note that this pinching condition is a conformally
invariant one. A Ricci flow convergence result for Yamabe metrics under the said
conditions follows from the proof of Theorem B in [Gur94].

We would also like to mention that A. Chang, M. Gursky and P. Yang obtained
a deep differential sphere theorem for 4-dimensional Riemannian manifolds which
have positive Yamabe invariant and satisfy a sharp L2-pinching condition for the
Weyl tensor [CGY03]. Previously, Margerin obtained a sphere theorem in dimension
4 with a sharp pointwise pinching condition [Mar98]. Sphere theorems in dimension
4 for

∫
|Rm |2- and

∫
|Z |2-pinching were obtained in [Str12], [Bou10] respectively,

in which the gradient flows of the corresponding functionals were employed. See
[BC17] for a related sphere theorem in dimension 3.

Our main result is as follows.

Theorem 1.1. There exists a constant Λ(n) > 0 depending only on n ≥ 3 such that
if (Mn, g0) is a compact Riemannian manifold of dimension n ≥ 3 with g0 ∈ Y+(M)
and

‖Z‖n
2
< Λ(n)Rg0 ,(1.1)

then Mn is diffeomorphic to an isometric quotient of Sn. Moreover, the volume-
normalized Ricci flow starting from (Mn, g0) exists for all positive times and con-
verges smoothly to a spherical space form at the time infinity.

The 4-dimensional case of this theorem can also be derived from Theroem B
and its proof in [Gur94], as the

∫
|Z|2-pinching implies positivity of the Euler

characteristic in this dimension via Chern-Gauss-Bonnet theorem.
There are several good reasons for considering Yamabe metrics in the set-up.

These metrics are important because of their minimizing and constant curvature
property. They are also abundant as they exist in every conformal class of metrics.
Indeed, they can be used to represent conformal classes. (In general Yamabe metrics
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are not unique in a conformal class. But one can consider all Yamabe metrics in
a conformal class.) In this regard, our main theorem can be reformulated as a
differential sphere theorem about conformal classes, in which the condition is that
a given conformal class contains a Yamabe metric satisfying the conditions of the
above main theorem. Of course, the 4-dimensional formulations in [Gur94, CGY03]
are more powerful as they apply to any metric in a given conformal class. Note
however that in [Gur94] Yamabe metrics or nearly Yamabe metrics serve as the key
bridge leading to the conclusion about the conformal class. In [CGY03], instead of
Yamabe metrics some other geometrically special metrics are employed.

Another point about Yamabe metrics is their role for the sigma invariant. Thus
our main theorem can also be related to this topic. Furthermore, the limit behavior
of a sequence of Yamabe metrics gk on a manifold M with Y (gk) → σ(M) can be
exploited to understand existence of Einstein metrics (possibly with singularities)
on M . We would also like to note that in dimensions higher than 4 one does not
expect the smallness of

∫
M
|Z|n/2dvol to be sufficient for a sphere theorem to hold

true for general metrics, as this integral condition alone does not imply enough
control of geometrical structures. Finally, the assumption of Yamabe metrics is
very natural from a geometrical as well as an analytical point of view, as Yamabe
metrics enjoy a natural Sobolev inequality, which plays a crucial role for our main
result.

We would like to mention that there are a couple of delicate points in the proofs
for the main theorem and lemmas below.

Recently the first named author [Che22] showed that the Ricci flow deforms an
asymptotically flat metric with Ln/2-pinching of curvature to a Euclidean metric.
The present paper is in part inspired by that work. A key tool is a Sobolev inequality
along the Ricci flow obtained using [Ye15], see Theorem 2.2. Using the approach
of [Che22] and this paper, we obtained in [CWY21] several other Ln/2-pinching
results, in particular generalizing Gromov’s almost flat manifold theorem to the
Ln/2 pinching case. We expect further applications of this approach.

2. Preliminaries

Our starting point is that if g0 ∈ Y+(Mn), then it satisfies the Sobolev inequality

(2.1) ‖u‖22n
n−2
≤ c(n)

R0

∫
|∇u|2 dV0 +

∫
u2 dV0 for all u ∈ C∞(Mn),

where c(n) = 4n−1n−2 , R0 = Rg0 and dV0 = d volg0 . This was used in [HV96], and is
an easy consequence of the minimizing property of g0 and the elementary formulae

(2.2)

∫
M

Rgd volg =

∫
M

(c(n)|∇g0u|2g0 +Rg0u
2)d volg0 , volg =

∫
M

u
2n

n−2 d volg0

for g = u
4

n−2 g0.
We will also use the fact that for any Riemannian metric g,

(2.3) Y (Mn, [g]) ≤ Y (Sn) = n(n− 1)ω2/n
n ,

where ωn is the volume of Sn, see [Aub76].
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Recall that the Ricci flow and normalized Ricci flow starting from (Mn, g0) are
respectively given by{

∂
∂tg = −2Ricg,

g(0) = g0,

{
∂
∂tg = −2Ricg + 2

n R̄g,

g(0) = g0,
(2.4)

where R̄ is the average of the scalar curvature R.
From the Sobolev inequality (2.1) we can argue as in [Ye15] to deduce the fol-

lowing log-Sobolev inequality.

Proposition 2.1. Let (M, g0) be a compact manifold, and g0 ∈ Y+(M). Then
there exists d(n) > 0 such that the following log-Sobolev inequality holds for any
u ∈ W 1,2 with

∫
u2 dVt = 1 and all σ > 0 along the Ricci flow starting from

(Mn, g0):

∫
M

u2 log u2 dVg(t) ≤ σ
∫
M

(
|∇u|2 +

R

4
u2
)
dVg(t) −

n

2
log σ +

n

2
log

c(n)

R0
+ d(n).

(2.5)

Proof. In what follows we refer extensively to notations and results of [Ye15]. Since
g0 ∈ Y+(Mn), we have the Sobolev inequality (2.1) which implies that in the

notation of [Ye15], we have C2
S(M, g0) = c(n)

R0
and C̃2

S(M, g0) = max{ c(n)R0
, 1}. By

the resolution of the Yamabe problem we have two cases:

(i) c(n) ≤ R0 ≤ Y (Sn, [g0]); then C̃S(M, g0) = 1.

(ii) 0 < R0 ≤ c(n); then C̃S(M, g0) = c(n)
R0

.

One may check explicitly that both cases are possible. We will now go through
the log Sobolev inequalities of [Ye15, Theorems 1.1, 1.2], in our particular situation
when g0 ∈ Y+(M).

By [Ye15, Theorem 1.1], in the two cases described above, we have

(i) For each σ > 0 and t ∈ [0, T ), there holds∫
M

u2 log u2 dVt ≤ σ
∫
M

(
|∇u|2 +

R

4
u2
)
dVt −

n

2
log σ

+ 4
R0

c(n)

(
t+

σ

4

)
+
n

2
(log n− 1).(2.6)

(ii) For each σ > 0 and t ∈ [0, T ), there holds∫
M

u2 log u2 dVt ≤ σ
∫
M

(
|∇u|2 +

R

4
u2
)
dVt −

n

2
log σ

+ 4
R0

c(n)

(
t+

σ

4

)
+
n

2
log

c(n)

R0
+
n

2
(log n− 1).(2.7)

To apply [Ye15, Theorem 1.2], first we note that λ0 ≥ R0

4 , where λ0 is the first

eigenvalue of −∆ + R0

4 , and that

δ0 =
1

1 + λ0
c(n)
R0

≤ 1

1 + c(n)
4

,

σ0 =
n

2

[
log

(
1 +

R0

λ0c(n)

)
− 1

]
≤ n

2
log

(
1 +

4

c(n)

)
− n

2
.

In particular, δ0 and σ0 are bounded by dimensional constants. Thus in both cases
described above we obtain the same statement:
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Let t ∈ [0, T ) and σ > 0 satisfy t+σ ≥ n
8CS(M, g0)2δ0. Then there

holds∫
M

u2 log u2 dVt ≤ σ
∫
M

(
|∇u|2 +

R

4
u2
)
dVt −

n

2
log σ

+
n

2
log n+

n

2
log

c(n)

R0
+ σ0.(2.8)

We can now conclude Proposition 2.1, which is in fact a strengthened version of

[Ye15, Theorem 1.3] in the case g0 ∈ Y+(Mn). Note that n
8CS(M, g0)2δ0 ≤ nc(n)

8R0
δ0.

For any fixed t, suppose that t + σ < nc(n)
8R0

δ0. Then by putting (2.6) and (2.8)

together in the first case, and (2.7) and (2.8) together in the second case, we obtain

the result. Here we are using the fact that log c(n)
R0

can be bounded from below by

the dimensional constant log c(n)
Y (Sn,[g0])

in order to deal with (2.6) where the term
n
2 log c(n)

R0
does not appear. �

Now (2.5) combined with [Ye15] gives the following Sobolev inequality along
Ricci flow, which is our main analytic tool. Note that the explicit dependence on
the coeffients is very important here.

Theorem 2.2. Let (Mn, g0) be a compact manifold, and g0 ∈ Y+(M). Then there
exists C(n) > 0 such that the following Sobolev inequality holds for any u ∈ C∞(M)
along the Ricci flow starting from (Mn, g0):(∫

u
2n

n−2 dVg(t)

)n−2
n

≤ C(n)

Rg(0)

(∫
|∇u|2 +Rg(t)u

2 dVg(t)

)
(2.9)

Proof of Theorem 2.2. Again, in what follows we refer extensively to notations and
results of [Ye15]; dimensional constants below may change in size at different points
of the argument. Apply [Ye15, Theorem 5.5] to the log Sobolev inequality (2.5)
of Proposition 2.1 and take σ∗ → ∞. To conclude it suffices to check that the
constant C(C, µ) in [Ye15, (5.18)] becomes C(n) 1

R0
, with µ = n. From [Ye15,

(5.22)] we check that from (2.5), we have C = C(n)R
−n

4
0 . Then from [Ye15, (9.32)],

we check that C(C, n) = K(n)C
4
n , which gives us the conclusion. �

We will also use a standard parabolic Moser iteration argument. In particular,
we will use the following statement in which the dependence of estimates on uniform
Sobolev constants and integral bounds are made explicit, due to D. Yang [Yan92].

Theorem 2.3 ([Yan92, Theorem 4]). Let f, b be smooth nonnegative functions
satisfying on M × [0, T ],

∂

∂t
f ≤ ∆f + bf,

where ∆ is the Laplace-Beltrami operator of the metric gt, and suppose ∂
∂tdVgt =

htdVgt . Let A,B > 0 be such that

‖u‖22n
n−2
≤ A‖∇u‖22 +B‖u‖22,

for all u ∈ C∞(M) and for all t ∈ [0, T ], and assume that for some q > n/2,

max
0≤t≤T

(‖b‖q + ‖ht‖q) ≤ β.
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Then given p0 > 1, there exists a constant C = C(n, q, p0) such that for all x ∈M
and t ∈ (0, T ],

|f(x, t)| ≤ CA
n

2p0

[
B

A
+A

n
2q−n β

2q
2q−n +

1

t

]n+2
2p0
(∫ t

0

∫
fp0 dVt dt

) 1
p0

.(2.10)

Finally we will need the following pointwise pinching result.

Theorem 2.4 ([Mar], see also [Hui86, Nis86]). For a compact Riemannian manifold
(Mn, g), if

|Z| <

√
1

2n(n− 1)(n− 2)
R,(2.11)

then the normalized Ricci flow starting from (Mn, g) exists for all positive times
and converges to a spherical space form at the time infinity.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into several steps. The first key step is
to establish that for the Ricci flow starting from (Mn, g0) with pinching condition
(1.1), the pinching is controlled for a uniform time whenever Ricci flow exists.
Compare to [Che22, Lemma 4.2], where it is shown the pinching is non-increasing
along the flow, which is not the case here.

For simplicity we often use subscripts of 0 and t to denote geometric quantities
at certain times along the flow as before; for instance R0 denotes Rg(0). Below,
“.” indicates an inequality which holds when the terms involved are multiplied by
appropriate positive dimensional constants.

Lemma 3.1. There exist Λ(n) > 0 and δ(n) > 0 such that if (Mn, g0) is a compact
manifold satisfying the hypotheses of Theorem 1.1, and the Ricci flow of (Mn, g0)
exists on [0, T0), then on [0, T0) ∩ [0, δ(n)R−10 ] along the flow we have the bound

‖|Z|+ (R−R0)‖n
2
< 2Λ(n)R0.(3.1)

Proof. Under the Ricci flow, we have [HV96]

∂

∂t
|Z| . ∆|Z|+ |R||Z|+ |Z|2,

∂

∂t
R = ∆R+ 2|Ric|2 . ∆R+ |Z|2 +R2.

Moreover, the evolution equation for R together with the maximum principle im-
plies R−R0 ≥ 0, and we have

∂

∂t
(R−R0) . ∆(R−R0) + |Z|2 + (R−R0)2 +R2

0.

Let P = |Z|+ (R−R0), then

∂

∂t
P . ∆P + P 2 +R2

0.(3.2)

Since
∂

∂t
(dVt) = −Rt dVt,
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and Rt > 0, we have

d

dt

∫
P

n
2 dVt . −

∫
|∇P n

4 |2 dVt +

∫
P

n
2 +1 +R2

0P
n
2−1 dVt.(3.3)

We have that ‖P0‖n
2
< Λ(n)R0. Let T ∈ (0, T0) be such that ‖P‖n

2
< 2Λ(n)R0 on

[0, T ]. Then applying (2.9) with u = P
n
4 , we have∫

|∇P n
4 |2 dVt & R0

(∫
P

n
2

n
n−2 dVt

)n−2
n

−
∫
RtP

n
2 dVt

≥ R0

(∫
P

n
2

n
n−2 dVt

)n−2
n

−
∫
P

n
2 +1 dVt −R0

∫
P

n
2 dVt.

By Hölder’s inequality∫
P

n
2 +1 ≤ ‖P‖n

2

(∫
P

n
2

n
n−2 dVt

)n−2
n

≤ 2Λ(n)R0

(∫
P

n
2

n
n−2 dVt

)n−2
n

.

Plugging this into (3.3) we find that for Λ(n) > 0 sufficiently small,

d

dt

∫
P

n
2 dVt . −R0

(∫
P

n
2

n
n−2 dVt

)n−2
n

+R0

∫
P

n
2 dVt +R2

0

∫
P

n
2−1 dVt

(3.4)

≤ R0

∫
P

n
2 dVt +R2

0vol(gt)
2
n

(∫
P

n
2 dVt

)n−2
n

. R0

(∫
P

n
2 dVt +R

n
2
0

)
,

where we have applied Hölder’s and Young’s inequalities in the second and third
lines above, respectively, and used the fact that vol(gt) ≤ vol(g0) = 1. Hence∫

P
n
2 dVt +R

n
2
0 ≤

(∫
P

n
2 dV0 +R

n
2
0

)
exp (C(n)R0t) ,(3.5)

for some dimensional constant C(n) > 0. We therefore conclude that there exists a
δ(n) > 0 such that ‖P‖n

2
< 2Λ(n)R0 on [0, T0) ∩ [0, δ(n)R−10 ]. Recall that by (2.3)

R0 = Y (Mn, [g0]) is bounded above by the dimensional constant Y (Sn), hence R−10

is uniformly bounded below by a positive dimensional constant. �

Remark. The constant of the Sobolev inequality (2.9) is C(n)
R0

, and hence becomes
large when R0 is small. On the other hand, the larger the Sobolev constant is,
the worse the estimate in Theorem 2.3 becomes. So the time δ(n)R−10 in the above

lemma seems to be in conflict with the Sobolev constant C(n)
R0

and in fact has exactly

the right dependence on R0 to allow us to prove Theorem 1.1. (Note that this time
leads to a similar consequence for the existence time of the Ricci flow.) This delicate
phenomenon seems to be new and is very interesting.

With the pinching assumption (3.1) the Sobolev inequality (2.9) immediately
gives a uniform Sobolev inequality without the scalar curvature term by an appli-
cation of Hölder’s inequality.



8 ERIC CHEN, GUOFANG WEI, AND RUGANG YE

Lemma 3.2. Let (Mn, g0) be a compact manifold with g0 ∈ Y+(M). Suppose that
the Ricci flow starting from (Mn, g0) exists on [0, T ] so that the bound (3.1) holds
along [0, T ]. Then the following uniform Sobolev inequality holds along the flow for
all u ∈ C∞(M) along the Ricci flow starting from (Mn, g0):

(∫
u

2n
n−2 dVg(t)

)n−2
n

≤ C(n)

R0

∫
|∇u|2 dVt + C(n)

∫
u2 dVt,(3.6)

where C(n) > 0 is a dimensional constant which is different from the constant of
(2.9) of Theorem 2.2.

With the Sobolev inequality (3.6) and the Ln/2 smallness of P = |Z|+ (R−R0),
since P satisfies the nonlinear evolution equation (3.2) it is known that we can
improve the estimate and get an Ln/2+1 (higher power) bound of P , in fact also
small.

Lemma 3.3. Let (Mn, g0) be a compact manifold with g0 ∈ Y+(M), and the bound
(3.1) holds along the Ricci flow starting from (Mn, g0) in the interval [0, T ]. Then
for t ∈ [0, T ], ∫

P
n
2 +1 dVt . Λ(n)

n
2 (R0t+ 1)

(
R0 +

1

t

)
R

n
2
0 .(3.7)

As mentioned before the bootstrap to get some bound is standard. But since we
need an explicit dependence of the bound on R0 later, which is not in the literature,
we present a proof. Compare [Gur94, Lemma 4.2].

Proof. By Lemma 3.2, Sobolev inequality (3.6) holds.
From (3.2) we have (see (3.3))

1

q

d

dt

∫
P q dVt ≤ −C1

4(q − 1)

q2

∫
|∇P

q
2 |2 dVt + C2

∫
P q+1 +R2

0P
q−1 dVt,

where C1, C2 > 0 are dimensional constants independent of q. Using this for q = n
2

as before as well as for q = n
2 + 1, we find as for (3.4) by using (3.6) that for

Λ(n) > 0 sufficiently small,

d

dt

∫
P

n
2 dVt +R0

(∫
P

n
2

n
n−2 dVt

)n−2
n

.
∫
R0P

n
2 +R2

0P
n
2−1 dVt

d

dt

∫
P

n
2 +1 dVt +R0

(∫
P (n

2 +1) n
n−2 dVt

)n−2
n

.
∫
R0P

n
2 +1 +R2

0P
n
2 dVt.

Thus, if we take 0 < τ < τ ′ < T , and define ψ by

ψ(t) =


0, 0 ≤ t ≤ τ,
t−τ
τ ′−τ , τ ≤ t ≤ τ ′,
1, τ ′ ≤ t ≤ T.
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Multiply above inequalities by ψ(t) and integrate from τ to t0 ∈ [τ ′, T ], we have∫
P

n
2 dVt0 +R0

∫ t0

τ ′

(∫
P

n
2

n
n−2 dVt

)n−2
n

(3.8)

.

(
R0 +

1

τ ′ − τ

)∫ t0

τ

∫
P

n
2 +R0P

n
2−1 dVt dt,∫

P
n
2 +1 dVt0 +R0

∫ t0

τ ′

(∫
P (n

2 +1) n
n−2 dVt

)n−2
n

(3.9)

.

(
R0 +

1

τ ′ − τ

)∫ t0

τ

∫
P

n
2 +1 +R0P

n
2 dVt dt.

Let t0 = t, and τ = t
2 , τ
′ = 3

4 t in (3.9) and τ = t
4 , τ
′ = t

2 in (3.8), we obtain∫
P

n
2 +1 dVt .

(
R0 +

1

t

)(
sup
s∈[ t2 ,t]

(∫
P

n
2 dVs

) 2
n

)∫ t

t
2

(∫
P

n
2

n
n−2 dVs

)n−2
n

ds

+

(
R0 +

1

t

)∫ t

t
2

∫
R0P

n
2 dVs ds

. Λ(n)

(
R0 +

1

t

)2 ∫ t

t
4

∫
P

n
2 +R0P

n
2−1 dVs ds

+ (R0t+ 1)Λ(n)
n
2R

n
2 +1
0

. Λ(n)
n
2 (R0t+ 1)

(
R0 +

1

t
+R0

)
R

n
2
0 ,

which is the desired estimate. �

With this Ln/2+1 bound we can use Theorem 2.3 to get an L∞ bound of |Z| +
(R−R0) and a uniform lower bound on the time of existence of the Ricci flow.

Proposition 3.4. Let (Mn, g0) be as in the hypotheses of Theorem 1.1. Then the
Ricci flow starting from (Mn, g0) exists on the interval of time [0, δ(n)R−10 ], where
δ(n) > 0 is as in Lemma 3.1.

Proof. Let (Mn, g0) be as in the hypotheses of Theorem 1.1, and suppose the Ricci
flow starting from (Mn, g0) exists on [0, T0). We first claim that in the notation of
Lemma 3.1, δ(n)R−10 < T0. Suppose not; then T0 ≤ δ(n)R−10 , so on [0, T0),

‖|Z|+ (R−R0)‖n
2
< 2Λ(n)R0.(3.10)

Therefore by Lemma 3.3, we see that ‖|Z| + (R − R0)‖n
2 +1 is uniformly bounded

(by some constant depending on n, R0 and T0) on [T0

2 , T0). Thus, ‖Rm‖n
2 +1 is

uniformly bounded on [T0

2 , T0). Also by Lemma 3.2 we have the uniform Sobolev
inequality (3.6). Recall that under the Ricci flow, |Rm| satisfies

∂

∂t
|Rm| ≤ ∆|Rm|+D(n)|Rm|2

for some D(n) > 0. Therefore we can apply Moser’s weak maximum principle as
stated in Theorem 2.3: let f = |Rm|, b = D(n)|Rm|, ht = −Rt, and take q = n

2 +1,

p0 = n
2 . Since

(∫ T0
T0
4

∫
|Rm|n2 dVt dt

) 2
n

< ∞ by (3.10), we conclude that |Rm|
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must be bounded by a uniform constant in
[
T0

2 , T0
)
, and hence does not blow up as

t→ T0, which contradicts the maximality of T0. Hence δ(n)R−10 < T0 and the Ricci
flow of (Mn, g0) exists as claimed on the uniform time interval [0, δ(n)R−10 ]. �

We can now use Theorem 2.3 a second time to control |Z| uniformly along the
Ricci flow starting from (Mn, g0) and thus prove Theorem 1.1.

Proof of Theorem 1.1. Let f = |Z|; then we have ∂
∂tf ≤ ∆f + |Rm|f , and by

Lemma 3.3 we have that ‖Rm‖q ≤ β for q = n
2 + 1, where β = c(n)R0 for some

c(n) > 0, on the interval
[
δ(n)R−1

0

2 , δ(n)R−10

]
along the Ricci flow starting from

(Mn, g0). We also have the uniform Sobolev inequality of Lemma 3.2 in this interval,

so that in the notation of Theorem 2.3, A = C(n)
R0

and B = C(n).

We now apply Theorem 2.3 to estimate |Z| on the time interval
[
δ(n)R−1

0

2 , δ(n)R−10

]
with q = n

2 +1 and p0 = n
2 . Note that the factor

[
B
A +A

n
2q−n β

2q
2q−n + 1

t

]n+2
2p0

appear-

ing in the right-hand side of (2.10) involves a sum of three different terms, and this
complication may appear to make troubles for our scheme. However, applying our
earlier estimates established on this particular time interval we can readily bound
each of these terms by a constant multiple of R0. Putting everything together
we obtain exactly the correct power of R0 on the right needed to apply pointwise
pinching results:

|Z| . R
2
n
0

(∫ t

0

∫
|Z|n2 dVt dt

) 2
n

. R
2
n
0

(
Λ(n)R

−1+n
2

0

) 2
n

. Λ(n)
2
nR0.

If we assume that Λ(n) is sufficiently small, then since the scalar curvature of
(M, gt) is everywhere greater than R0, we have at the time t = δ(n)R−10 the pinching

|Z| <

√
1

2n(n− 1)(n− 2)
R.(3.11)

By Theorem 2.4, we may therefore conclude that the normalized Ricci flow starting
from (Mn, g0) exists for all times and converges to a spherical space form. �
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