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Abstract. In this paper, we consider the rigidity for an n(≥ 4)-dimensional submanifold
Mn with parallel mean curvature in the space form Mn+p

c when the integral Ricci curva-
ture of M has some bound. We prove that, if c+H2 > 0 and ∥Ricλ− ∥n/2 < ϵ(n, c, λ,H)

for λ satisfying n−2
n−1

(c + H2) < λ ≤ c + H2, then M is the totally umbilical sphere
Sn( 1√

c+H2
). Here H is the norm of the parallel mean curvature of M , and ϵ(n, c, λ,H)

is a positive constant depending only on n, c, λ and H. This extends part of the earlier
work of [16] from pointwise Ricci curvature lower bound to integral Ricci curvature lower
bound.

1. Introduction

There is a long history of studying rigidity phenomenon for submanifolds under certain
curvature pinching conditions. A lot of a rigidity theorems for closed minimal submani-
folds in a sphere were proved by Simons, Chern-do Carmo-Kobayashi, Lawson, Yau and
others (see [3–5,7–10,12–14,20,21]). Let Sn(r) and Mn+p

c denote the n-dimensional sphere
with radius r and the (n + p)-dimensional (simply-connected) space form with constant
curvature c respectively, and we will omit the radius r and just denote Sn if r = 1 for
simplicity. In 1979, Ejiri proved the following theorem.

Theorem 1.1 ([4]). Let M be an n-dimensional (n ≥ 4) simply connected compact ori-
entable minimal submanifold immersed in Sn+p. If RicM ≥ n − 2, then M is either the
totally geodesic submanifold Sn, the Clifford torus Sm(

√
1/2) × Sm(

√
1/2) in Sn+1 with

n = 2m, or CP 2
4/3 in S7. Here CP 2

4/3 denotes the 2-dimensional complex projective space
minimally immersed in S7 with constant holomorphic sectional curvature 4/3.

In 1992, Shen [13] proved that any 3-dimensional compact orientable minimal submani-
fold M immersed in S3+p with RicM > 1 must be totally geodesic. Later, Li [10] improved
the pinching constant in Ejiri’s theorem for odd-dimensional cases. In 2011, Xu and Tian
[17] pointed out the assumption that M is simply connected in Ejiri’s theorem can be
removed. In 2013, Xu and Gu proved the following generalized Ejiri rigidity for compact
submanifolds with parallel mean curvature in space forms.

Theorem 1.2 (Theorem 3.3 in [16]). Let M be an n-dimensional (n ≥ 3) compact ori-
entable submanifold with parallel mean curvature in the space form Mn+p

c with c+H2 > 0.
Here H is the norm of the parallel mean curvature of M . If RicM ≥ (n − 2)(c + H2),
then M is either a totally umbilical sphere Sn( 1√

c+H2
), the Clifford torus Sm( 1√

2(c+H2)
)×
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Sm( 1√
2(c+H2)

) in the totally umbilical sphere Sn+1( 1√
c+H2

) with n = 2m, or CP 2
4
3
(c+H2)

in

S7( 1√
c+H2

).

In particular, this gives

Corollary 1.3 (Corollary 3.4 in [16]). Let M be an n(≥ 3)-dimensional oriented compact
submanifold with parallel mean curvature in Mn+p

c with c+H2 > 0. If RicM > (n−2)(c+
H2), then M is the totally umbilical sphere Sn( 1√

c+H2
).

Note that the curvature conditions in both original and generalized Ejiri theorems are
pointwise lower Ricci curvature bounds. It is natural to ask that if we can improve the
pinching condition. In odd-dimensional case, the pinching constant can be lowered down
(see Li [10], Xu-Leng-Gu [18]’s results). In this paper, we will consider the integral Ricci
curvature condition instead of the pointwise Ricci curvature condition.

For each x ∈ M , let ρ(x) be the smallest eigenvalue of the Ricci tensor at x, and
Ricλ−(x) = max{0, (n− 1)λ− ρ(x)} for λ ∈ R. Define

∥Ricλ− ∥q :=
(∫

M
(Ricλ−)

q

)1/q

,

which measures the amount of Ricci curvature lying below the given bound (n − 1)λ. It
is easy to see that ∥Ricλ− ∥q = 0 if and only if RicM ≥ (n− 1)λ.

Now we can state our main theorems.

Theorem 1.4. Let M be an n-dimensional (n ≥ 4) minimal closed submanifold in Sn+p(r).
Given λ satisfying (n− 2)/r2 < (n− 1)λ ≤ (n− 1)/r2, if

∥Ricλ− ∥n/2 < ϵr(n, λ),

then M is totally geodesic. Here ϵr(n, λ) is an explicit constant defined in (3.8).

In [11] Petersen and the second author established the fundamental comparison tools,
the Laplacian and Bishop-Gromov volume comparisons, for integral Ricci curvature lower
bound when q > n

2 . Here we only require smallness of the integral curvature for q = n
2 as

the manifold is special.

Remark 1.5. For a minimal submanifold M in Sn+p(r), the Ricci curvature of M has
the upper bound (n − 1)/r2 from (2.5) in Section 2. That is why we limit the range of λ
in Theorem 1.4.

Theorem 1.4 is a special case of the following result.

Theorem 1.6. Let M be an n-dimensional (n ≥ 4) closed submanifold in Mn+p
c with

parallel mean curvature (PMC). Denote H the norm of the parallel mean curvature of M .
Assume c+H2 > 0. Given λ satisfying (n− 2)(c+H2) < (n− 1)λ ≤ (n− 1)(c+H2), if

∥Ricλ− ∥n/2 < ϵ(n, c, λ,H),

then M is the totally umbilical sphere Sn( 1√
c+H2

). Here ϵ(n, c, λ,H) is an explicit constant
defined in (4.3).

This generalizes Corollary 1.3 for n ≥ 4.
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Remark 1.7. For any q > n/2, we have ∥Ricλ− ∥n/2 ≤ (vol(M))
2
n
− 1

q ∥Ricλ− ∥q by the
Hölder inequality. Aubry [1] shows that vol(M) is bounded from the above by a quantity in
terms of ∥Ricλ− ∥q for λ > 0. So when ∥Ricλ− ∥q is small enough, we have ∥Ricλ− ∥n/2 <

ϵ(n, c, λ,H). Hence, given q > n/2, the conclusion of Theorem 1.6 still holds if ∥Ricλ− ∥q <
ϵ(n, q, c, λ,H) for some constant ϵ(n, q, c, λ,H).
Remark 1.8. Xu [15] proved that, for an n(≥ 3)-dimensional closed M with parallel mean
curvature in the unit sphere Sn+p, if ∥S − nH2∥n/2 < C(n, p,H), then M is Sn( 1√

1+H2
).

From (2.6), S−nH2 = n(n−1)(1+H2)−R. Here S is the norm of the second fundamental
form and R is the scalar curvature. Hence Xu’s result is an integral perturbation of scalar
curvature while our result is an integral perturbation of Ricci curvature. On the other hand
while R ≤ n(n− 1)(1 +H2), it is not clear if Ric ≤ (n− 1)(1 +H2) when H ̸= 0.

The paper is organized as follows. In Section 2 we introduce the notations and recall a
few results from [15] which we will need. In Section 3 we prove Theorem 1.4, the starting
point is the Simons’ identity. In Section 4 we prove Theorem 1.6 by first showing it is
pseudo-umbilical, then reducing it to Theorem 1.4 with dimension reduction.
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2. Preliminaries

In this paper, we will use the following convention on the ranges of indices except special
declaration:

1 ≤ A,B,C, · · · ≤ n+ p; 1 ≤ i, j, k, · · · ≤ n; n+ 1 ≤ α, β, γ, · · · ≤ n+ p.

Assume that Mn is immersed in Nn+p. We choose a local orthonormal frame {e1, · · · , en+p}
such that {e1, · · · , en} are tangent to M and {en+1, · · · , en+p} are normal to M when re-
stricted to M . Let {ωA} be the dual coframe. Denote

h =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα

the second fundamental form of M immersed in N , and define

Aα =(hαij), Hα =
trAα

n
, H =

∑
α

Hαeα, H = |H| =
√∑

α

(Hα)2, S =
∑
i,j,α

(hαij)
2.

It is well known that when N = Mn+p
c , Gauss, Codazzi and Ricci equations are given

by:
Rijkl = c(δikδjl − δilδjk) +

∑
α

(hαikh
α
jl − hαilh

α
jk),(2.1)

hαijk = hαikj ,(2.2)

R⊥
αβij =

∑
k

hαikh
β
kj −

∑
k

hβikh
α
kj ,(2.3)
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where Rijkl and hαijk are the components of Riemannian curvature of M and covariant
derivative of hαij under the orthonormal frame respectively. The Ricci identity shows that

(2.4) hαijkl − hαijlk =
∑
m

Rmiklh
α
mj +

∑
m

Rmjklh
α
im +

∑
β

R⊥
βαklh

β
ij .

From (2.1), we can get the Ricci curvature and the scalar curvature respectively as follows:

Rij = c(n− 1)δij + n
∑
α

Hαhαij −
∑
α,k

hαikh
α
kj ,(2.5)

R = cn(n− 1) + n2H2 − S.(2.6)

Since S ≥ nH2, we have R ≤ n(n− 1)(c+H2). When H = 0, Ric ≤ (n− 1)c.
Next, we recall some results which will be used to prove the main theorems. Using a

Sobolev inequality in [6], Xu proved the following inequality.

Proposition 2.1 (cf. [15]). Let Mn(n ≥ 3) be a closed submanifold in Nn+p. Suppose
N is a simply connected and complete manifold with non-positive curvature. Then for all
t > 0 and f ∈ C1(M), f ≥ 0, we have∫

M
|∇f |2 ≥ A(n, t)

(∫
M

f
2n
n−2

)n−2
n

−B(n, t)

∫
M

H2f2,

where
(2.7)

A(n, t) =
(n− 2)2

4(n− 1)2(1 + t)

1

C2(n)
, B(n, t) =

(n− 2)2

4(n− 1)2t
, C(n) = 2n

(n+ 1)1+1/n

(n− 1)ω
1/n
n

,

and ωn is the volume of the unit ball in Rn.

Now we can prove the following lemma.

Lemma 2.2. Let Mn(n ≥ 3) be a closed submanifold in Mn+p
c . Then for all t > 0 and

f ∈ C1(M), f ≥ 0, we have∫
M

|∇f |2 ≥ A(n, t)

(∫
M

f
2n
n−2

)n−2
n

−B(n, t)

∫
M
(c+ +H2)f2,

where

c+ := max{c, 0} =

{
c, if c ≥ 0;

0, if c ≤ 0.

Proof. When c ≤ 0, it is directly from Proposition 2.1.
When c > 0, considering the composition of isometric immersions M → Sn+p(1/

√
c) →

Rn+p+1, we obtain the conclusion from Proposition 2.1 (cf. [15, 19]). □

3. Minimal Case

In this section, we prove Theorem 1.4.

Proof of Theorem 1.4. At first, we assume that r = 1 . Since λ > n−2
n−1 , we can set

Λ := (n− 1)λ = (n− 2) + δ for some δ > 0.
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Gauss equation (2.6) gives R = n(n − 1) − S. Since R ≥ nρ (recall ρ is the smallest
eigenvalue of the Ricci tensor), we have

(3.1) S − n

n
≤ (n− 2)− ρ.

By definition,

(3.2) (n− 2)− ρ = −δ + (Λ− ρ) ≤ −δ +Ricλ− .

Using (2.1)–(2.4), after a direct computation, we can obtain the well-known Simons’
identity for a minimal submanifold M in the unit sphere Sn+p (cf. [4, 14])

1

2
∆S =

∑
i,j,k,α

(hαijk)
2 + n

∑
i,j,α

(hαij)
2 −

∑
i,j,k,l,α,β

hαijh
β
ijh

α
klh

β
kl −

∑
i,j,α,β

(∑
k

hαikh
β
kj − hαjkh

β
ki

)2

(3.3)

=|∇h|2 + nS −
∑
α,β

N([Aα, Aβ])−
∑
α,β

σ2
αβ,

where [Aα, Aβ] = AαAβ − AβAα, σαβ =
∑

i,j h
α
ijh

β
ij , and N(Ω) = tr(ΩtΩ) is the norm of

matrix Ω.
We claim ∑

α,β

N([Aα, Aβ]) ≤ 4[(n− 1)− ρ]S − 4

n

∑
α

(N(Aα))
2,(3.4)

∑
α,β

σ2
αβ =

∑
α

(N(Aα))
2 ≤ (

∑
α

N(Aα))
2 = S2.(3.5)

(3.5) is obvious, and we use the same argument in [4] to prove (3.4).
For a fixed α, we choose {ei} such that Aα is diagonalized, Aα = diag{λα

1 , · · · , λα
n},

then (2.5) gives ∑
j

∑
β ̸=α

(hβij)
2 ≤ (n− 1)− ρ− (λα

i )
2 for each i,

and ∑
β

N([Aα, Aβ]) =
∑
β ̸=α

N([Aα, Aβ]) =
∑
β ̸=α

∑
i,j

(hβij)
2(λα

i − λα
j )

2

≤2
∑
i,j

∑
β ̸=α

(hβij)
2
(
(λα

i )
2 + (λα

j )
2
)
=

∑
i,j

∑
β ̸=α

4(hβij)
2(λα

i )
2

≤4
∑
i

[(n− 1)− ρ− (λα
i )

2](λα
i )

2

=4[(n− 1)− ρ]N(Aα)− 4N(A2
α).

Now making summation over α, we have∑
α,β

N([Aα, Aβ]) ≤4[(n− 1)− ρ]S − 4

n

∑
α

(N(Aα))
2,

here we used the Cauchy-Schwarz inequality. This completes the proof of (3.4).
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Therefore, from (3.3), (3.4) and (3.5), we have 1
2∆S ≥ |∇h|2 +Q, where

Q :=S

[
n− 4((n− 1)− ρ) +

4− n

n
S

]
=
n− S

n
(n− 4)S − 4

(
(n− 2)− ρ

)
S

≥− (n− 4)
(
(n− 2)− ρ

)
S − 4

(
(n− 2)− ρ

)
S

=− n
(
(n− 2)− ρ

)
S.

Here we used (3.1) for the inequality.
From (3.2) we have ∫

M
Q ≥nδ

∫
M

S − n

∫
M

Ricλ− S

≥nδ

∫
M

S − n∥Ricλ− ∥n/2∥S∥n/(n−2),(3.6)

here we used Hölder’s inequality in (3.6).
To deal with the term |∇h|2, we need the following Kato-type inequality.

Lemma 3.1 (cf. Lemma 1 in [15]). Let Mn be a minimal submanifold in Sn+p. Set
hϵ = (S + npϵ2)1/2 for any constant ϵ ̸= 0 ∈ R.

Then we have

(3.7) |∇h|2 =
∑
α,i,j.k

(hαijk)
2 ≥ n+ 2

n
|∇hϵ|2.

Remark 3.2. In fact, Lemma 3.1 remains true when the ambient space is Mn+p
c .

Here one adds the ϵ term to make sure the radicand is strictly positive, so one can apply
Lemma 2.2 to the function hϵ.

Now we continue the proof. From (3.7) and Lemma 2.2, we have∫
M

|∇h|2 ≥
∫
M

n+ 2

n
|∇hϵ|2

≥n+ 2

n
A(n, t)∥h2ϵ∥n/(n−2) −

n+ 2

n
B(n, t)

∫
M

h2ϵ ,

where A(n, t),B(n, t) are defined as in (2.7). Letting ϵ → 0, we have∫
M

|∇h|2 ≥ n+ 2

n
A(n, t)∥S∥n/(n−2) −

n+ 2

n
B(n, t)

∫
M

S.

Then choosing t0 such that n+2
n B(n, t0) = nδ and from above inequalities, we have

0 =

∫
M

1

2
∆S ≥

(n+ 2

n
A(n, t0)− n∥Ricλ− ∥n/2

)
∥S∥n/(n−2) ≥ 0

provided ∥Ricλ− ∥n/2 < n+2
n2 A(n, t0). Hence we have S ≡ 0, i.e. M is totally geodesic if we

set ϵ(n, λ) = n+2
n2 A(n, t0).

Now set ϵr(n, λ) = ϵ(n, λr2), we can prove the theorem for arbitrary r > 0 by rescaling.
□
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Remark 3.3. In fact,

ϵr(n, λ) = ϵ(n, λr2) =
Pn

1 + 1/r2

(n−1)λ−(n−2)/r2
Pn

· 1

C2(n)
.(3.8)

where Pn = (n+2)(n−2)2

4n2(n−1)2
. It is easy to see that ϵ(n, λ) → 0+ as λ → (n−2

n−1)
+.

4. Parallel Mean Curvature Case

In this section, we will prove Theorem 1.6. First we prove the following proposition.

Proposition 4.1. Let M be an n-dimensional (n ≥ 3) submanifold in Mn+p
c with parallel

mean curvature. Assume c+H2 > 0 and H ̸= 0. For each λ satisfying (n− 2)(c+H2) <
(n− 1)λ ≤ (n− 1)(c+H2), if

∥Ricλ− ∥n/2 < ϵ(n, c, λ,H),

then M is pseudo-umbilical.

Remark 4.2. (1) We recall that (cf. Page 43 in [2]) M is called pseudo-umbilical (resp.
totally umbilical) if

⟨h(X,Y ),H⟩ = H2⟨X,Y ⟩ (resp. h(X,Y ) = ⟨X,Y ⟩H)
for all tangent vector fields X,Y on M .

(2) When the codimension p = 1, “pseudo-umbilical” is just “totally umbilical”.
(3) When H is nowhere zero, we always choose en+1 = H/H, and {ei} diagonalizing

An+1, i.e. hn+1
ij = λn+1

i δij . Denote

SH =
∑
i,j

(hn+1
ij )2, µn+1

i = H − λn+1
i , B2 = SH − nH2 =

∑
i

(µn+1
i )2.

It is easy to check that M is pseudo-umbilical if and only if B2 = 0; M is totally umbilical
if and only if B2 = 0 and

∑
i,j;α ̸=n+1(h

α
ij)

2 = 0.

Proof. Set Λ := (n− 1)λ = (n− 2)(c+H2) + δ for some δ > 0. From Gauss equation we
have
(4.1) S − nH2 ≤ n

[
(n− 1)(c+H2)− ρ

]
≤ n

[
− δ + (c+H2) + Ricλ−

]
.

By some direct computations (see (3.7) in [16] for details), we obtain the following
estimate:

1

2
∆SH ≥

∑
i,j,k

(hn+1
ijk )2 +B2Q,

where
Q = n(c+H2)− n− 3

n− 2
(S − nH2)− 1

n− 2
n
[
(n− 1)(c+H2)− ρ

]
.

There is an analogous version of Lemma 3.1 for submanifolds with parallel mean cur-
vature.

Lemma 4.3 (cf. Lemma 1 in [15]). Let Mn be a submanifold with parallel mean curvature
in Mn+p

c . Assume that H ̸= 0. Set fϵ = (SH − nH2 + nϵ2)1/2 for any constant ϵ ̸= 0 ∈ R.
Then

(4.2)
∑
i,j,k

(hn+1
ijk )2 ≥ n+ 2

n
|∇fϵ|2.
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Now similar as in the proof of Theorem 1.4, by using (4.1), (4.2) and Lemma 2.2, we
have ∫

M
B2Q ≥nδ

∫
M

B2 − n∥Ricλ− ∥n/2∥B2∥n/(n−2).∫
M

∑
i,j,k

(hn+1
ijk )2 ≥n+ 2

n
A(n, t)∥B2∥n/(n−2) −

n+ 2

n
B(n, t)(c+ +H2)

∫
M

B2.

Choose t1 such that n+2
n B(n, t1)(c+ +H2) = nδ, then

0 =

∫
M

1

2
∆SH ≥

(n+ 2

n
A(n, t1)− n∥Ricλ− ∥n/2

)
∥B2∥n/(n−2) ≥ 0

provided ∥Ricλ− ∥n/2 < n+2
n2 A(n, t1). Hence we have B2 ≡ 0, i.e. M is pseudo-umbilical if

we set ϵ(n, c, λ,H) = n+2
n2 A(n, t1). □

Remark 4.4. In fact,

(4.3) ϵ(n, c, λ,H) =
Pn

1 + c++H2

(n−1)λ−(n−2)(c+H2)
Pn

· 1

C2(n)
,

where c+ is defined as in Lemma 2.2.
We also have ϵ(n, c, λ,H) = ϵ1/

√
c+H2(n, λ) for c ≥ 0, and ϵ(n, c, λ,H) < ϵ1/

√
c+H2(n, λ)

for c < 0 from Remark 3.3.

Proof of Theorem 1.6. The proof is same as the proof of Theorem 3.3 in [16] and the
following lemma on reduction of codimension due to Yau [20] will be used.

Lemma 4.5 (Theorem 1 in [20]). Let N be a conformally flat manifold. Let N1 be a
sub-bundle of the normal bundle of M with fiber dimension k. Suppose M is umbilical
with respect to N1 and N1 is parallel in the normal bundle. Then M lies in an n +
p− k dimensional umbilical submanifold N ′ of N such that the fiber of N1 is everywhere
perpendicular to N ′.

When H = 0, that is Theorem 1.4.
When H ̸= 0. If p = 1, then the conclusion is from Proposition 4.1.
If p ≥ 2, we can conclude M is a minimal submanifold in Sn+p−1( 1√

c+H2
). The detail

can be found in [16], but we restate it briefly for convenience of the reader. From Lemma
4.5, M actually lies in Mn+p−1

c̃ . Then H is decomposed orthogonally into two parts
H = H1 +H2,

where H1 is the mean curvature of M in Mn+p−1
c̃ , and H2 is normal to Mn+p−1

c̃ in Mn+p
c .

But H ⊥ H1 from Lemma 4.5 again, we have H1 = 0, which means M is minimal in
Mn+p−1

c̃ , and H = |H| = |H2|. By Gauss equation we have c̃ = c+H2.
Since ϵ(n, c, λ,H) ≤ ϵ1/

√
c+H2(n, λ) from Remark 4.4, by applying Theorem 1.4, we

conclude that M = Sn( 1√
c+H2

), which is totally umbilical in Mn+p
c . □
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