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Abstract. We establish two surprising types of Weyl’s laws for some compact

RCD(K,N)/Ricci limit spaces. The first type could have power growth of any
order (bigger than one). The other one has an order corrected by logarithm

similar to some fractals even though the space is 2-dimensional. Moreover

the limits in both types can be written in terms of the singular sets of null
capacities, instead of the regular sets. These are the first examples with such

features for RCD(K,N) spaces. Our results depend crucially on analyzing and

developing important properties of the examples constructed in [61], showing
them isometric to the α-Grushin halfplanes. Of independent interest, this also

allows us to provide counterexamples to conjectures in [20, 47].

1. Introduction

Weyl’s law describes the asymptotic behavior of eigenvalues of the Laplace-
Beltrami operator. Its study has a long rich history extended over a century, and
plays an important role both in mathematics and physics. See for instance [42] for
a survey.

For a closed Riemannian manifold Mn = (Mn, g), the minus Laplacian −∆ =
−∆g has discrete unbounded spectrum as follows:

(1.1) 0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞,

where λi is counted with multiplicities. It satisfies the following well-known Weyl’s
law

(1.2) lim
λ→∞

N(λ)

λn/2
=

ωn

(2π)n
vol(Mn),

where vol = volg denotes the Riemannian volume measure,

(1.3) N(λ) = ] {i ∈ N | λi ≤ λ} ,
and ωn is the volume of the n-dimensional Euclidean unit ball.

In this paper we discuss the validity of similar Weyl’s law for singular spaces with
Ricci curvature bounded below, the so-called Ricci limit spaces, and more generally
we deal with RCD(K,N) spaces.

Roughly speaking, an RCD(K,N) space (X, d,m) is a metric measure space
with Ricci curvature bounded below by K and dimension bounded above by N in

Key words and phrases. Weyl’s law, RCD space, Ricci limit space, heat kernel asymptotic.
X. Dai is partially supported by the Simons Foundation Grant 635115.

S. Honda is partially supported by the Grant-in-Aid for Scientific Research (B) of 20H01799,

the Grant-in-Aid for Scientific Research (B) of 21H00977 and Grant-in-Aid for Transformative
Research Areas (A) of 22H05105.

G. Wei is partially supported by NSF DMS 2104704.

1



2

a synthetic sense. Moreover the heat flow ht on X is linear. The linearity of the
heat flow allows us to define the heat kernel H on X and the short time behavior
of H should be related to the validity of expected Weyl’s law on X as in the case
of closed Riemannian manifolds. Let us emphasize that the reference measure m is
not necessarily a Hausdorff measure. See §2 for the preliminaries on this topic.

An RCD(K,N) space is called a Ricci limit space if it can be approximated by
smooth Riemannian manifolds with Ricci curvature bounded below and dimension
bounded above. See for instance [19, 20, 21, 22] for the structure theory on Ricci
limit spaces. An important example of Ricci limit spaces is a closed weighted Rie-
mannian manifold (Mn, g, e−fdvol) for some f ∈ C∞(Mn) (see [52]). In this case
the corresponding (metric measure) Laplacian coincides with the Witten Laplacian
∆g − g(∇f,∇·) and (1.2) is still satisfied.

In order to state our results, here we recall the following. Let (X, d,m) be an
RCD(K,N) space for some K ∈ R and some finite N ∈ [1,∞). Then it is proved
in [14, Theorem 0.1] (after [24] for Ricci limit spaces) that there exists a unique
n ∈ N∩ [1, N ] such that the n-dimensional regular set Rn has m-full measure. This
n is called the rectifiable dimension or the essential dimension of (X, d,m). A point
x ∈ X is called n-regular if

(1.4)

(
X,

1

r
d,

m

m(Br(x))
, x

)
pmGH→

(
Rn, dRn ,

Hn

ωn
, 0n

)
, as r → 0+.

It is called singular if it is not k-regular for any integer k.
For a compact RCD(K,N) space (X, d,m), the canonical inclusion

ι : H1,2(X, d,m) ↪→ L2(X,m)

is a compact operator. Hence the eigenvalues of the minus Laplacian still satisfies
(1.1). Its Weyl’s law has been studied in [5, 69], see the earlier work [31] for Ricci
limit spaces. In these works, in particular in [5], the asymptotic is related to the
Hausdorff (not reference) measure of the reduced regular set R∗

n of the rectifiable
dimension n under the assumption that

(1.5) lim
r→0+

∫
X

rn

m(Br(x))
dm =

∫
X

lim
r→0+

rn

m(Br(x))
dm <∞.

Moreover (1.5) is equivalent to the validity of such Weyl’s law:

(1.6) lim
λ→∞

N(λ)

λn/2
=

ωn

(2π)n
Hn(R∗

n) <∞.

See Theorem 5.5 for the precise statement. In this paper we call (1.6) regular Weyl’s
laws. It seems to us that experts may believe the validity of (1.5) for any compact
RCD(K,N) space. It is worth mentioning that if (X, d,m) is non-collapsed, then
(1.5) is easily satisfied, thus (1.6) holds. See Remark 5.8.

In this paper we show Weyl’s law relating to the singular set, giving the first
example with this feature. This is an unexpected result, since in particular (1.5) is
not satisfied.

Theorem 1.1 (Corollary 4.8). For any β ∈ (2,∞), there is a compact RCD(−1, N)
space (X, d,m) for N big depending on β, whose rectifiable dimension is 2, such that
the following limit exists

0 < lim
λ→∞

N(λ)

λβ/2
<∞.
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Moreover the limit coincides with the Hausdorff measure of the singular set S of X
up to multiplication by a “canonical” constant.

Note that β may not be an integer, unlike all earlier results, and that the canoni-
cal constant stated above is determined by the short time behavior of the heat kernel
H(x, x, s2) on the diagonal near the singular set. See also Theorem 4.7. Moreover,
it is worth mentioning that the regular set R2 of the example above is a smooth
weighted 2-dimensional (incomplete) Riemannian manifold and that the singular
set S = X \R2 has null 2-capacity with respect to m, in particular the eigenvalues
on X coincides with that of the Dirichlet Laplacian on R2. See Proposition 3.14.

In another direction we also show the surprising case that the power law N(λ) ∼
λβ is not satisfied for any β ≥ 0 as λ→ ∞. Namely,

Theorem 1.2 (Theorem 4.9). There is a compact RCD(−1, 10) space (X, d,m)
with both the Hausdorff and rectifiable dimensions 2 such that

lim
λ→∞

N(λ)

λ log λ
=

1

4π
.

Note that the metric structure of any examples above is not an Alexandrov spaces
though they are topologically 2-dimensional. This fact should be compared with [49,
54]. Moreover the value 1

4π also coincides with the 2-dimensional Hausdorff measure
of the singular set S up to multiplication by a “canonical” constant; see Theorem
4.9. It is worth mentioning that any neighborhood of S has infinite 2-dimensional
Hausdorff measure, a very different situation from Theorem 1.1 where the space
has a finite β-dimensional Hausdorff measure; see Remark 3.7. In particular this
also provides a counterexample to [20, Conjecture 1.34]; see Remark 3.8.

Remark 1.3. There are many studies of Weyl’s law for singular, or subRiemannian,
or almost Riemannian incomplete metrics with various measures, see e.g. [51,
12, 23, 30]. The techniques do not apply to our case though. In [12, 23], the
measure blows up at the singular set while our measure degenerates at the singular
set. In [30] the measure is regular (i.e., neither blows up nor degenerates at the
singularity). Moreover in these three papers the spaces are not RCD, and the power
of the asymptotic growth is always rational (integer or half integer) while our power
could be irrational. With a change of variable as in Remark 3.4, a weak form of our
results (i.e. only the rate of growth instead of precise asymptotics) can be derived
from [51, 5.3]. But the method in [51] does not allow one to obtain the precise
asymptotics, as examples in that paper show. Indeed, without curvature condition,
precise asymptotics do not necessarily exist in that case (note that such a behavior
is known in the fractal setting [8, Corollary 7.2]). Our focus is to find the precise
asymptotics as well as the exact leading order term. Moreover we can write down
the limit of N(λ) as λ → ∞ in terms of the singular set explicitly. The surprising
points in the examples above are; the spaces have lower bounds of Ricci curvature
in a synthetic sense and the limits can be written by sets of null-capacity (note
that any set of null 2-capacity can be removable from the point of view of potential
theory). Such behaviors seem to be unknown even in the fractal setting.

In another direction, if one considers Schrödinger operators on complete non-
compact manifolds, then Weyl’s law could also involve log term, see [26, Theorem
1.1 and Remark 1.2]. For related results on the small time heat kernel expansion
of Witten Laplacian, see [25, Theorem 1.1]. Such expansion implies a Weyl law by
the Karamata-Tauberian type theorem [26, Theorem 2.4]
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Crucial to our construction we further develop the examples constructed by the
last two authors in [61]. These examples are the first Ricci limit spaces whose
Hausdorff dimensions may not be integer and moreover, the Hausdorff dimension
of the singular set is bigger than that of the regular set, see Theorem 3.1. Thus
the examples obtained above are actually Ricci limit spaces and we call the above
asymptotic behaviors of eigenvalues singular Weyl’s laws.

Let us explain how to achieve the results above. By Karamata theorem [32, Page
445, Theorem 2]
(1.7)

lim
λ→∞

N(λ)

λα/2L(λ−1)
= C ∈ [0,∞) ⇐⇒ lim

t→0+

√
t
α

L(t)

∑
i

e−λit = Γ(α+ 1)C ∈ [0,∞)

for any slowly varying function L(t) : R+ → R+ as t → 0+ (i.e. limt→0+
L(at)
L(t) = 1

for any fixed a > 0). We will apply this to L a constant function for Theorem 1.1
and L the log function for Theorem 1.2. Hence the asymptotic of the eigenvalues is
reduced to the short time behavior of the heat trace. To understand the heat kernel,
we first derive a complete and explicit description of the metric and measure of the
Pan-Wei examples Y in §3.1, 3.2. Surprisingly it turns out that Y is isometric to the
2α-Grushin halfplane. The Grushin plane is a well known space in sub-Riemannian
geometry [9, Section 3.1]; see [60] for further connection of Ricci limit space and
sub-Riemannian geometry. In particular the space Y has important metric dilations
as follows.

Theorem 1.4. For each λ > 0, there is a homeomorphism Fλ : Y → Y such that

d(Fλ(y1), Fλ(y2)) = λ · d(y1, y2)

for all y1, y2 ∈ Y .

See Theorem 3.5 for more detail.
For Riemannian manifolds, only the standard Euclidean space Rn has such di-

lation property. For Alexandrov spaces with metric dilations, they must be metric
cones. The Pan-Wei examples are the first Ricci limit spaces with dilations that are
not metric cones. Note that in [56] a (nonpolar) Ricci limit space is constructed as
a tangent cone at infinity which is invariant under certain scales, but not all scales.
We also mention that the Carnot groups admit dilations, but these spaces are not
RCD spaces; they even cannot be CD(K,N) for any K ∈ R, N ≥ 1 [46].

Even with the explicit metric and measure, computing the heat kernel is still a
challenge. By Li-Yau’s estimate (2.9), the study of the asymptotic rate (although
not the precise asymptotic) can be reduced to that of the measure of small balls
instead of the heat kernel. Still, the measure of balls cannot be computed explicitly;
instead we give good effective estimates with the help of explicit description of
the metric and measure. To get a grip on the small time asymptotic of the heat
kernel, we consider the ratios of the measure of balls to suitable rectangular shaped
domains whose measures can be computed explicitly. With sophisticated use of
the dilation property we obtain formulas for integrals of the heat kernel in terms of
certain functions, some explicit and some not, but with good control of asymptotics.
These allow us to estimate and compute several limits playing important role for
later study of asymptotic behaviors; see Theorem 3.19. These are carried out in
§3.3-3.5.
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The space Y above is a noncompact RCD(0, N) space. To construct the compact
RCD(−1, N) space X, first we study the heat kernel of quotient Ȳ = Y/Z by
extending the relation of heat kernels between covering spaces for manifolds in [50]
to RCD space, see Proposition 4.1. For α = 1

2 , the eigenvalues and eigenfunctions

of Ȳ with respect to the unweighted measure have been computed explicitly in
[12]. Amazingly in this case the eigenvalues for weighted measure with n = 9 turns
out to be exactly the same as in the unweighted case, see Subsection 4.2. In this
case Ȳ is RCD(0, 10) (10 is the smallest to have RCD 0 lower bound. See Remark
4.3). Then we do a perturbation of Ȳ , and a doubling to obtain X. By keeping
track of the heat kernels in each step, we show that the small time asymptotic of
the heat kernel of X is essentially determined by that of the heat kernel of Y , see
Theorem 4.6.

Applying the above while changing the geometric parameters appeared in the
process, we finally establish the results above.

Naively, for a metric measure space, the short time behavior of the heat kernel
depends more on the distance/metric as compared to the large time behavior, where
the measure character shows up more. Therefore it is natural to make the following
conjecture.

Conjecture 1.5. For a compact RCD(K,N) space (X, d,m) with Hausdorff di-
mension β, the limit limt→0 t

β/2
∫
X
H(x, x, t)dm(x) is the Hausdorff measure of X

up to multiplication by a “canonical” constant.

Note that the conjecture includes the case when Hβ(X) = ∞. Actually for
the example (X, d,m) in Theorem 1.2, the regular part of any open ball at any
singular point has infinite 2-dimensional Hausdorff measure; see Remark 3.7. This
property has an independent interest and of course, gives supporting evidence for
the conjecture. We plan to show the valid of the conjecture for a large class of RCD
spaces in a future paper.

Finally in connection with the validity of Weyl’s law, we also deal with the asymp-
totic behavior of eigenfunctions in §5.2. In particular, after introducing a negative
answer to a question by Ding in [31], we provide related Weyl type asymptotics.
See Theorem 5.6 and Proposition 5.9.

Acknowledgments. The first named author thanks Junrong Yan for useful dis-
cussions. The second named author wishes to thank Atsushi Katsuda and Tatsuya
Tate for explaining him on the quantum ergodicity, in particular [43]. Moreover he
is very grateful to Naotaka Kajino and Takashi Kumagai for suggestions on Theo-
rem 1.2 which help improve the result. The third named author would like to thank
Richard Montgomery for introducing him the Grushin planes. Finally we wish to
thank the referee for valuable suggestions for the revision.

2. Preliminaries: Heat Kernels on RCD(K,N) spaces

All terminologies for singular spaces we will discuss in the sequel are prepared
from the theory of metric measure spaces with Ricci curvature bounded below in
a synthetic sense (namely RCD(K,N) spaces). Here we give a quick introduction
on the terminology and results that will be needed later. See for instance [1] for a
nice survey.

A triple (X, d,m) is said to be a metric measure space if (X, d) is a complete
separable metric space and m is a Borel measure on X, where this is finite on each
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bounded subset and the support coincides with X. Roughly speaking a metric
measure space (X, d,m) is said to be an RCD(K,N) space for some K ∈ R and
some N ∈ [1,∞] if the Ricci curvature is bounded below by K and the dimension
is bounded above by N in a synthetic sense, moreover the H1,2-Sobolev space
H1,2(X, d,m) is a Hilbert space.

The precise definition is as follows. Define the Cheeger energy Ch : L2(X,m) →
[0,∞) by

(2.1) Ch(f) := inf
{fi}i

{
lim inf
i→∞

∫
X

(Lipfi)
2dm

}
,

where the infimum of the right hand side above runs over all bounded Lipschitz
functions fi ∈ L2(X,m) L2-converging to f on X and Lipf(x) denotes the local
slope of f at x (see also [18]). Then the H1,2-Sobolev space H1,2(X, d,m) is defined
by the finiteness domain of Ch. We denote by |∇f | ∈ L2(X,m) the minimal object
as in the right hand side of (2.1), so-called the minimal relaxed slope of f , then we
know the following equality

(2.2) Ch(f) =

∫
X

|∇f |2dm.

Note that in general H1,2(X, d,m) equipped with the norm

(2.3) ‖f‖H1,2 =
(
‖f‖2L2 +Ch(f)

)1/2
is a Banach space. We say that (X, d,m) is infinitesimally Hilbertian (IH) if
H1,2(X, d,m) is Hilbert. In the sequel let us assume that (X, d,m) is IH.

Then for all fi ∈ H1,2(X, d,m)(i = 1, 2),

(2.4) 〈∇f1,∇f2〉 = lim
ϵ→0

|∇(f1 + εf2)|2 − |∇f1|2

2ε
∈ L1(X,m).

is well-defined. The domain D(∆) of the Laplacian ∆ of (X, d,m) is defined by the
set of all f ∈ H1,2(X, d,m) such that there exists a unique h ∈ L2(X,m), denoted
by ∆f , with

(2.5)

∫
X

〈∇f,∇φ〉dm = −
∫
X

hφdm, for any φ ∈ H1,2(X, d,m).

We are ready to introduce the heat flow ht : L2(X,m) → L2(X,m). It is defined
by a continuous curve t 7→ htf ∈ L2(X,m) on [0,∞), which is locally absolutely
continuous on (0,∞) (more strongly smooth, namely in C∞((0,∞),H1,2(X, d,m)),
see [36, Proposition 5.2.12]), with htf ∈ D(∆) for t > 0, h0f = f and

(2.6)
d

dt
htf = ∆htf, for L1-a.e. (or equivalently for any) t > 0.

This will play the core role to define a main target of the paper, so-called the heat
kernel below.

We are now in a position to introduce the RCD(K,N) condition. An IH metric
measure space (X, d,m) is said to be an RCD(K,N) space for some K ∈ R and
some N ∈ [1,∞] if the following three conditions are satisfied.

• (Volume growth) There exist C > 1 and x ∈ X such thatm(Br(x)) ≤ CeCr2

holds for any r > 1.
• (Sobolev-to-Lipschitz) If f ∈ H1,2(X, d,m) satisfies |∇f |(x) ≤ 1 for m-a.e.
x ∈ X, then f has a 1-Lipschitz representative.
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• (Bochner inequality) It holds that

(2.7)
1

2
∆|∇f |2 ≥ (∆f)2

N
+ 〈∇∆f,∇f〉+K|∇f |2

in a weak sense.

See for instance [2, 3, 6, 15, 35, 33] for the details above. We often say that X is
an RCD(K,N) space, without noting the distance and measure, for short.

By Bishop-Gromov inequality ([53, Theorem 5.31] and [66, Theorem 2.3]), and
a (1, 1)-Poincaré inequality ([63, Theorem 1]), it is known from [64, Proposition
2.3] and [65, Corollary 3.3] that there exists a unique continuous function H :
X ×X × (0,∞) → (0,∞), so-called the heat kernel of (X, d,m), such that

(2.8) htf(x) =

∫
X

f(y)H(x, y, t)dm(y)

for any f ∈ L2(X,m). Moreover by [45, Theorem 1.2], Li-Yau inequality is satisfied
in this setting, namely we know the following Gaussian estimates for H: for any
ε ∈ (0, 1)

C−1
1

m(B√
t(x))

exp

(
−d(x, y)2

(4− ε)t
− C2t

)
≤ H(x, y, t)

≤ C1

m(B√
t(x))

exp

(
−d(x, y)2

(4 + ε)t
+ C2t

)
(2.9)

for some C1 = C1(K,N, ε) > 1 and some C2 = C2(K,N, ε) ≥ 0. Moreover C2 = 0
when K = 0.

Furthermore, with [44, Theorem 1.2] and [27, Theorem 4] we have

(2.10) |∇xH(x, y, t)| ≤
C1√

tm(B√
t(x))

exp

(
−d(x, y)2

(4 + ε)t
+ C2t

)
,

which shows that H is locally Lipschitz, and

(2.11) |∆xH(x, y, t)| =
∣∣∣∣ ddtH(x, y, t)

∣∣∣∣ ≤ C1

tm(B√
t(x))

(
−d(x, y)2

(4 + ε)t
+ C2t

)
.

It is worth pointing out that if K = 0, then C2 can be chosen as 0 (see [45] for the
details) and that the heat flow can be extended to Lp(X,m) for any 1 ≤ p ≤ ∞ by
(2.8) based on the estimates above (or by density).

Note that under rescaling (X, ad, bm) for some a > 0 and some b > 0, the space
is an RCD(a−2K,N) space and we have the following:

(2.12) H(X,ad,bm)(x, y, t) = b−1H(X,d,m)(x, y, a
−2t).

When (X, d,m) is compact, denoting by fi a corresponding eigenfunction of λi
with ‖fi‖L2 = 1, the standard functional analysis allows us to show that {fi}i (can
be chosen to) form an L2-orthonormal basis of L2(X,m) and that

(2.13) H(x, y, t) =
∑
i

e−λitfi(x)fi(y), in C(X ×X)

is satisfied.
Finally let us mention that the all objects above are preserved by isomorphisms

of metric measure spaces. In particular if T : (X1, d1,m1) → (X2, d2,m2) is an iso-
morphism, namely isometry and measure preserving, between RCD(K,N) spaces,
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then

(2.14) H(X2,d2,m2)(T (x), T (y), t) = H(X1,d1,m1)(x, y, t).

Remark 2.1. The local isomorphism preserves the gradient operators and the Lapla-
cians because of their localities, however it does not preserve the heat kernel in
general as discussed in §4.1.

3. Geometry of Pan-Wei’s examples

First we recall the construction of the Ricci limit space Y in [61]. Consider
M =Mn+1 = [0,∞)×f Sn−1 ×h S1, with

f(r) = r(1 + r2)−
1
4 ∼

√
r, h(r) = (1 + r2)−α ∼ r−2α as r → ∞,

where α > 0. Then M is a Riemannian manifold diffeomorphic to Rn × S1. When
integer n ≥ max{4α+ 3, 16α2 + 8α+ 1}, M has positive Ricci curvature.

Let p ∈ M be a point in {r = 0}, (M̃, p̃) be the universal cover of (M,p). Let

Y be the asymptotic cone of (M̃, p̃). Then Y is clearly an RCD(0, N) space with
N = n+ 1.

Theorem 3.1 (Pan-Wei). When α ≥ 1/2, the Hausdorff dimension of the Ricci
limit space Y is 1+ 2α, which can be arbitrarily large by raising α and n, while the
rectifiable dimension of Y is 2. One can also construct a compact RCD(K,n + 1)
space X with this feature for some negative K.

For more details, see [61, Theorem A]; for construction of a compact X, see [61,
Remark 1.8] and §4.4. Also see [62], where similar constructions give examples
whose Busemann functions at a point are not proper.

In order to study the Weyl’s law of X, we derive precise descriptions of the
distance, metric, measure of Y in the subsections below, extending the distance
estimate in [61].

3.1. Metric and dilations of Y . Let S be a surface of revolution [0,∞) ×h S1

with boundary and let S̃ be its universal cover. Let q ∈ S at r = 0 and let q̃ ∈ S̃
be a lift of q.

Lemma 3.2. Let ri → ∞ be a sequence. Then the two sequences (r−1
i M̃, p̃) and

(r−1
i S̃, q̃) are equivalent in the pointed Gromov-Hausdorff topology, namely, pointed

Gromov-Hausdorff distances between (r−1
i M̃, p̃) and (r−1

i S̃, q̃) go to 0 as i→ ∞.

Proof. We write (r, v) as a point in S, where r ∈ [0,∞) and v ∈ S1 = [−1/2, 1/2]/ ∼.

This also naturally defines an (r, v)-coordinate on S̃, where r ∈ [0,∞) and v ∈ R,
such that the preimage of (r, 0) ∈ S is {(r, v)|v ∈ Z}. Recall that the Riemann-
ian metric on S is given by gS = dr2 + h(r)2dv2; this expression also gives the

Riemannian metric on S̃.
OnM , we can write each point in the form of (r, x, v), where r ∈ [0,∞), x ∈ Sn−1,

and v ∈ S1. From g on M , it is clear that

dg((r, x, v), (r, x′, v)) ≤ f(r)dn−1(x, x
′),

where dn−1 is the standard distance on the unit sphere Sn−1. We fix a point
x0 ∈ Sn−1 and define an immersion

φ : S →M, (r, v) 7→ (r, x0, v).
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Note that φ is indeed a Riemannian immersion and φ(S) is convex. For r > 0, we
write

Sr = {(r, v)|v ∈ S1}, Mr = {(r, x, v)|x ∈ Sn−1, v ∈ S1}.
φ(Sr) is f(r)-dense in Mr.

Similar to S̃, we can naturally assign an (r, x, v)-coordinate on M̃ . We also write

S̃r = {(r, v) ∈ S̃|v ∈ R}, M̃r = {(r, x, v) ∈ M̃ |x ∈ Sn−1, v ∈ R}.

The map φ lifts to a Riemannian immersion

φ̃ : S̃ → M̃, (r, v) 7→ (r, x0, v)

with a convex image. Moreover, φ̃(S̃r) is f(r)-dense in M̃r. Now the result follows
from the fact that f(r) ∼

√
r as r → ∞. □

Lemma 3.3. We write S̃+ = {(r, v) ∈ S̃|r > 0, v ∈ R} and set a reference point

z = (1, 0) ∈ S̃+. Then as λ → ∞, (S̃+, λ
−2gS̃ , (1, 0)) converges (smoothly on each

compact subset of (0,∞)× R) to a limit (incomplete) Riemannian metric

(3.1) g∞ = dr2 + r−4αdv2

defined on (0,∞) × R; moreover, the reference point z converges to (0, 0), a point
in the metric completion of g∞.

Proof. For convenience, we write λ−2gS̃ = gλ below. We apply a change of variables

s = λ−1r and w = λ−1−2αv. Then

gλ = λ−2(dr2 + (1 + r2)−2αdv2)

= ds2 +

(
1 + λ2s2

λ2

)−2α

dw2.

In other words, the space (S̃+, gλ, z) is isometric to

((0,∞)× R, ds2 + ((1 + λ2s2)/λ2)−2αdw2, (λ−1, 0)).

Let λ→ ∞, then the result follows. □

Remark 3.4. The coordinate change y = ( r
1+2α )

1+2α, x = v
(1+2α)2α turns the metric

into the form
dx2 + dy2

y2c
, c =

2α

1 + 2α
.

Note that the hyperbolic metric corresponds to c = 1.

Theorem 3.5. M̃ has a unique asymptotic cone (Y, y) with the following properties:
(1) Y has an (r, v)-coordinate, where (r, v) ∈ [0,∞)× R, and y = (0, 0);
(2) the distance function d on Y is induced by the incomplete Riemannian metric
g∞ = dr2 + r−4αdv2 defined on (0,∞)× R;
(3) for each λ > 0, the map Fλ : (r, v) 7→ (λr, λ1+2αv) is a metric dilation of Y
with scale λ, that is,

d(Fλ(y1), Fλ(y2)) = λ · d(y1, y2)
for all y1, y2 ∈ Y ;

(4) d((0, v), (0, 0)) = C|v|
1

1+2α for all v ∈ R, where C > 0 is a constant.
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Proof. (1) and (2) follow directly from Lemmas 3.2 and 3.3.
We prove (3). It is direct to check that Fλ satisfies

F ⋆
λg∞ = λ2g∞.

Therefore, Fλ is a metric dilation with scale λ on (0,∞)× R. We extend Fλ to Y
by continuity. The result follows.

For (4), we assume v > 0 without lose of generality. Applying the metric dilation

Fλ with λ = v
1

1+2α , we have

d((0, v), (0, 0)) = d(Fλ(0, 1), (0, 0)) = λd((0, 1), (0, 0)).

□

We make some remarks related to Theorem 3.5.

Remark 3.6. It follows from the metric dilations in Theorem 3.5(3) that Y is scaling
invariant, that is, (sY, y) is isometric to (Y, y) for all s > 0. In particular, the
tangent cone of Y at y and the one at infinity are both unique and isometric to Y .

Remark 3.7. Take a box B = (0, 1]× [0, 1] ⊆ R. Then

H2(B) =

∫
B

r−2αdrdv =

∫ 1

0

r−2αdr.

The indefinite integral is finite if and only if α < 1/2. Recall that dimH(S) = 1+2α
and dimH(R) = 2. Thus in these examples, we always have

dimH(S) < dimH(R) ⇐⇒ H2(B) <∞.

Remark 3.8. When α = 1/2, Y has both Hausdorff dimension and rectifiable
dimension 2. Based on Remark 3.7, we can see that (Y, d,H2) does not sat-
isfy the doubling condition. In fact, let x = (1, 0) ∈ Y expressed in the rv-
coordinate and let r = 2/3. Then by triangle inequality, B2r(x) contains the set
D = [0, 1/3] × [−(1/3C)2, (1/3C)2], where C is the constant in Theorem 3.5(4).
D, thus B2r(x), has infinite H2 measure from Remark 3.7. On the other hand,
H2(Br(x)) is finite. Therefore, there is no upper bound for the ratio

H2(B2r(x))

H2(Br(x))
.

This answers [20, Conjecture 1.34] in the negative even in the case when the space
is 2-dimensional with the full support H2.

Remark 3.9. The Grushin plane is R2 with a subRiemannian metric (see [9, Section
3.1]). Under the (x, y)-coordinate, its distribution is generated by X = ∂x and
Y = |x|∂y. Setting {X,Y } orthonormal defines a subRiemannian metric on R2.
Note that Y degenerates only along the y-axis. Thus the distribution has full
rank almost everywhere; a sub-Riemannian manifold with this property are called
almost-Riemannian. One can also define the α-Grushin planes by alternatively
setting Y = |x|α∂y, where α > 0. Outside the y-axis, the sub-Riemannian metric
becomes Riemannian and equals

g = dx2 + |x|−2αdy2.

By Theorem 3.5, our example Y is isometric to the 2α-Grushin halfplane.
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Remark 3.10. It is conjectured in [47] that any RCD(K,N) space with an upper
curvature bound in the sense of Alexandrov, namely CAT(κ) space, satisfies that the
topological dimension coincides with the Hausdorff dimension. See [47, Theorem
3.15] and a sentence afterwords. Since the metric structure of Y is CAT(0) (the
proof is the same to that of a standard fact that any Hadamard manifold is a
CAT(0) space, because the smooth part of Y has nonpositive sectional curvature
and all two points in Y can be joined by a unique minimal geodesic), Y gives a
counterexample to this conjecture.

Let

γ : Y → Y, (r, v) 7→ (r, v + 1),

which is an isometry of Y . We prove the following distance estimate which will be
used later.

Lemma 3.11. There is a function C(r) > 0 such that

C(r)l
1

1+2α ≤ d(γlx, x) ≤ 3l
1

1+2α

holds for all x = (r, v) ∈ Y and all l ∈ Z+.

Proof. Without lose of generality, we assume that x = (r, 0). When r = 0, we have

d(γlx, x) = d((0, l), (0, 0)) = Cl
1

1+2α

from (4) of Theorem 3.5. Below we assume r > 0.
Let s > 0 and we consider a path σs from x to γl(x) = (r, l) as follows: σs first

go through a horizontal segment from (r, 0) to (r+ s, 0), then go through a v-curve
to (r + s, l), then go back to (r + s, 0) via a horizontal segment. We have

d(γlx, x) ≤ length(σs) = 2s+ (r0 + s)−2αl

for all s ≥ 0. Using s = l
1

1+2α , we have

d(γlx, x) ≤ 2l
1

1+2α +
(
r + l

1
1+2α

)−2α

l ≤ 3l
1

1+2α .

Let c be a minimal geodesic from (r, 0) to (r, l). We set

R := max{t− r|(t, v) ∈ c} ≥ 0.

Then

d(γlx, x) = length(c) ≥ (r +R)−2αl.

Together with the upper bound, they yield

(r +R)−2αl ≤ 3l
1

1+2α .

Thus

R ≥ C1l
1

1+2α − r,

where C1 = 3−1/(2α). When 2r ≤ C1l
1

1+2α , we have

d(γlx, x) ≥ 2R ≥ 2C1l
1

1+2α − 2r ≥ C1l
1

1+2α .

Next, we consider the case 2r > C1l
1

1+2α , that is, r−2αl < (2/C1)
1+2αr. Note

that

R ≤ 1

2
d(γlx, x) ≤ 1

2
r−2αl.
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Thus

d(γlx, x) ≥ (r +R)−2αl ≥
(
r +

1

2
r−2αl

)−2α

l

≥

(
r +

1

2

(
2

C1

)1+2α

r

)−2α

l

= C2r
−2αl ≥ C2r

−2αl
1

1+2α ,

where C2 = (1 + 22α/C1+2α
1 )−2α. The last inequality holds because l ≥ 1.

In conclusion, we choose C(r) = min{C1, C2r
−2α}. Then the desired inequality

holds. □

3.2. Limit measure. In this subsection we derive the limit measure of Y .

Lemma 3.12. Let m be a limit measure on Y . Then

(3.2) dm = cmr
n−1
2 −2αdrdv

for some constant cm ∈ [C1, C2], where C1, C2 > 0 are constants depending only on
n and α.

Proof. We fix a sequence λi → ∞. We first estimate the volume of Bλi
(p̃). We

continue to use the (r, x, v)-coordinate on M̃ , introduced in the proof of Lemma
3.2. By [61, Lemma 1.1], we have distance estimate

C1|l|
1

1+2α − 2 ≤ d((0, x, 0), (0, x, l)) ≤ C2|l|
1

1+2α

for all l ∈ Z large. We denote

Di = {(r, x, v)|0 ≤ r ≤ λi, x ∈ Sn−1, |v| ≤ C3λ
1+2α
i } ⊆ M̃,

where C3 = (2C1)
−1−2α. Di has volume

vol(Di) = 2C3λ
1+2α
i

∫ λi

0

f(r)n−1h(r)dr.

Note that the boundary ∂Di equals(
[0, λi]× Sn−1 × {±C3λ

1+2α
i }

)
∪
(
{λi} × Sn−1 × [−C3λ

1+2α
i , C3λ

1+2α
i ]

)
By triangle inequality, for any (r, x, v) ∈ Di,

d(p̃, (r, x, v)) ≤ C2|v|
1

1+2α + 1 + r ≤ (C2C
1

1+2α

3 + 1)λi + 1.

Also, when (r, x, v) ∈ {λi} × Sk−1 × [−C3λ
1+2α
i , C3λ

1+2α
i ],

d(p̃, (r, x, v)) ≥ λi;

when (r, x, v) ∈ [0, λi]× Sk−1 × {±C3λ
1+2α
i },

d(p̃, (r, x, v)) ≥ d(p̃, (0, x, v))− d((0, x, v), (r, x, v)) ≥ C1|v|
1

1+2α − λi ≥ λi.

Therefore,

Bλi
(p̃) ⊆ Di ⊆ BC4λi

(p̃)

holds for all i large, where C4 = C2C
1

1+2α

3 +2. By Bishop-Gromov inequality, there
is a constant C5 > 0, depending on n and α, such that

C5vol(Di) ≤ vol(Bλi
(p̃)) ≤ vol(Di).
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Passing to a subsequence of λi, we assume that

vol(Bλi
(p̃))

vol(Di)
→ c0 ∈ [C5, 1]

as i→ ∞.
To check that the limit measure m on Y has the stated expression, it suffices to

check m on each rectangle in Y . Let

R = [a, b]× [c, d] ⊆ Y

written in (r, v)-coordinate of Y , where 0 ≤ a < b and c < d. Let

Ri = {(r, x, v)|r ∈ [λia, λib], x ∈ Sn−1, v ∈ [λ1+2α
i c, λ1+2α

i d]} ⊆ M̃.

By Lemma 3.2 and the proof of Lemma 3.3, Ri converges to R with respect to the
convergent sequence

(M̃, λ−2
i g

M̃
, p̃)

GH−→ (Y, d, y).

Ri has volume

vol(Ri) = λ1+2α
i (c− d)

∫ λib

λia

f(r)n−1h(r)dr.

Then

m(R) = lim
i→∞

vol(Ri)

vol(Bλi(p̃))
= lim

i→∞

vol(Ri)

c0vol(Di)

= c−1
0 lim

i→∞

λ1+2α
i (c− d)

∫ λib

λia
f(r)n−1h(r)dr

2C3λ
1+2α
i

∫ λi

0
f(r)n−1h(r)dr

= (2c0C3)
−1 · (c− d) ·

(
b

n+1
2 −2α − a

n+1
2 −2α

)
=

∫
R

cmr
n−1
2 −2αdrdv,

where cm = (2c0C3)
−1 · (n+1

2 − 2α)−1. Here in order to realize the limit formula for
m(R), we used a fact that the boundary of R is m-negligible which is justified by,
for instance, [22, Theorem 4.6]. □

Remark 3.13. One can show directly that our Y = [0,∞) × R with the metric

dr2 + r−4αdv2(α > 0), and measure r
n−1
2 −2αdrdv is RCD(0, n + 1) when n ≥

max{4α + 3, 16α2 + 8α + 1} by checking the n-Bakry-Èmery Ricci curvature is
nonnegative under the condition in the interior and that the second fundamental
form of the boundary of Yr0 = [r0,∞) × R is strictly positive for r0 > 0, and let
r0 → 0.

Let us introduce another immediate consequence of the lemma above. For any
open subset U , H1,2

0 (U, d,m) denotes the H1,2-closure of Lipc(U, d). See for instance
[10] for the definition of the capacity.

Proposition 3.14. The singular set S has null 2-capacity with respect to m, namely
H1,2(Y, d,m) = H1,2

0 (R, d,m). In particular H1,2(Y, d,m) coincides with the H1,2-
closure of C∞

c (R).
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Proof. It is enough to check that for any f ∈ Lipc(X, d) there exists a sequence
fi ∈ Lipc(R, d) such that fi → f in H1,2(X, d,m). First the lemma above tells us
that for any bounded open subset U

(3.3)

∫
U

1

d2S
dm <∞

holds, where dS is the distance function from S. Take cut-off functions φr with
φr = 0 on Br(S), φr = 1 on Y \ B2r(S) and |∇φr| ≤ r−1. Then the sequence
φrf ∈ Lipc(R, d) satisfies

(3.4)

∫
Y

|∇(φrf)|2dm ≤ 2 sup |f |2
∫
Y

|∇φr|2dm+ 2

∫
Y

|∇f |2dm ≤ C <∞

because of (3.3), namely φrf is a bounded sequence inH1,2(Y, d,m). Thus φrf H
1,2-

weakly converge to f as r → 0+. Thus Mazur’s lemma completes the proof. □

Remark 3.15. We can prove that if

(3.5)

∫
U

1

d4S
dm <∞

for any bounded open subset U ⊂ Y , then D(∆) coincides with the closure of
C∞

c (R), where the norm of D(∆) is (‖f ||2H1,2 + ‖∆f‖2L2)1/2. In particular the
Laplacian of any f ∈ D(∆) can be approximated in L2 by the Witten Laplacians
of smooth functions with compact supports in R. Since this is not directly related
to our works below, let us only give a sketch of the proof as follows.

Let f ∈ D(∆). Considering the heat flow htf (which converge to f in D(∆)
as t → 0+), it is enough to consider the case when f is smooth on R (c.f. [38,
Theorem 7.20]). Recalling the proof of the existence of good cut-off functions in
[57, Lemma 3.1], applying such cut-off functions, with no loss of generality, we can
assume that f has bounded support and that for any 0 < r < 1 we can find a
smooth cut-off function φr ∈ C∞(R) with φr = 0 on Br(S), φr = 1 on Y \B2r(S),
and r|∇φr|+ r2|∆φr| ≤ C. Then a similar argument as in the proof of Proposition
3.14 with (3.5) allows us to conclude that a sequence of finite convex combinations
of φrif converge to f in D(∆), where ri → 0+. Thus we get the desired result.

It is worth pointing out that (3.5) is satisfied if n is large.

3.3. Heat Kernel of Y . In the rest of this subsection we denote by H(x, y, t) the
heat kernel of the Ricci limit space (Y, d,m).

Since Fλ : (Y, λd,m) → (Y, d, (Fλ)∗m) is an isomorphism, and

(Fλ)∗m = λ−
n+3
2 m,

by (2.14) and (2.12) we have

(3.6) H(x, y, t) = λ
n+3
2 H(Fλ(x), Fλ(y), λ

2t).

Denote s =
√
t, and put

q(x, y, s) = m(Bs(x)) · H(x, y, s2).

Since m(Bs(x)) = s
n+3
2 m(B1(F1/s(x))), combining with (3.6), we have

(3.7) q(x, y, s) = q(Fλ(x), Fλ(y), λs).

For x = (r, v) ∈ Y , q(x, x, s) only depends on r, s. Denote h(r, s) = q(x, x, s).
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Lemma 3.16. h is invariant under the space-time scaling, i.e. for all λ > 0, s >
0, r ≥ 0

h(λr, λs) = h(r, s).

In particular h(0, s) = h(0, 1). Moreover for some C = C(n) > 1

C−1 ≤ h(r, s) ≤ C.

Proof. The space-time scaling invariance is a reformulation of (3.7) by setting x =
y = (r, 0). The inequality follows from that Y is an RCD(0, n + 1) space and the
Li-Yau estimate (2.9) when K = 0. □

3.4. Measure of balls in Y . First we give the following estimate on m(Bs(x))
when the ball is away from the singular set of Y .

Lemma 3.17. For x = (r0, v0) ∈ Y and r0 > s > 0, we have

(3.8) cmπs
2(r0 − s)

n−1
2 ≤ m(Bs(x)) ≤ cmπs

2(r0 + s)
n−1
2 .

In particular, m(Bs(x)) = cmπs
2r

n−1
2

0 [1 +O(r−1
0 s)] when s→ 0 or r0 >> s.

Proof. Since the distance on the regular set of Y is induced by the Riemannian
metric

g = dr2 + r−4αdv2,

we have Bs(x) ⊆ {(r, v) | r0 − s < r < r0 + s} and

Bg2
s (x) ⊆ Bs(x) ⊆ Bg1

s (x),

where g1 = dr2 + (r0 + s)−4αdv2, g2 = dr2 + (r0 − s)−4αdv2 are Euclidean metrics
on regular set of Y . Hence

m(Bs(x)) ≤
∫
B

g1
s (x)

dm = cm

∫
B

g1
s (x)

r
n−1
2 −2αdrdv

≤ cm

∫
B

g1
s (x)

(r0 + s)
n−1
2 −2αdrdv = (r0 + s)

n−1
2 volg1(Bg1

s (x))

= cm(r0 + s)
n−1
2 πs2.

Similarly we have the lower bound. □

In general, to get a handle on m(Bs(x)), we compare it to a “rectangular” domain
which is easier to compute, as follows.

Note Bs(x) = Fs(B1(xs)), where xs = F−1
s (x) = (r0s

−1, v0s
−2α−1) for x =

(r0, v0) ∈ Y . Denote the “unit rectangle” at xs by

C1(xs) = {(r, v) | (r0s−1 − 1)+ < r < r0s
−1 + 1,−1 < v < 1}.

Then

(3.9)
m(Bs(x))

m(Fs(C1(xs)))
=

m(B1(xs))

m(C1(xs))
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Since Fs(C1(xs)) = {(r, v) | (r0 − s)+ < r < r0 + s, −s2α+1 < v < s2α+1}, we
compute, as n+ 1 > 4α,

m(Fs(C1(xs)))

= cm

∫ s1+2α

−s1+2α

∫ r0+s

(r0−s)+

r
n−1
2 −2αdrdv

= cm
2

n+1
2 − 2α

s1+2α
(
(r0 + s)

n+1
2 −2α − (r0 − s)

n+1
2 −2α

+

)
=

4cm
n+ 1− 4α

s1+2αr
n+1
2 −2α

0

(
(1 + sr−1

0 )
n+1
2 −2α − (1− sr−1

0 )
n+1
2 −2α

+

)
= 4cms

2+2αr
n−1
2 −2α

0 [1 +O(r−1
0 s)] when r0 >> s.

Combining the above with Lemma 3.17, we have for r0 >> s,

m(Fs(C1(xs)))

m(Bs(x))
=

4

π
(sr−1

0 )2α[1 +O(r−1
0 s)].

Since xs = (r0s
−1, v0s

−2α−1) and the measure is independent of the v-coordinate,
m(C1(xs))
m(B1(xs))

is a continuous function of r0s
−1 only. Denote

τ = sr−1
0 ,

m(C1(xs))

m(B1(xs))
= f(τ−1).

In summary we have

Proposition 3.18. Let C = 4cm
n+1−4α . For x = (r0, v0) ∈ Y , when r0 > 0,

(3.10)
1

m(Bs(x))
= C−1s−1−2αr

−n+1
2 +2α

0 G(τ),

where

(3.11) G(τ) =
(
(1 + τ)

n+1
2 −2α − (1− τ)

n+1
2 −2α

+

)−1

f(τ−1).

Moreover, f is a continuous function with f(0) > 0 and f(τ−1) = 4
π τ

2α[1 + O(τ)]
when τ → 0.
When r0 = 0,

(3.12) m(Bs(x)) =
C

f(0)
s

n+3
2 .

3.5. Heat Trace Integral. Using the estimates from the above two subsections,
we can compute the integral of the heat kernel on any rectangular coordinate region
{(r, v)|0 ≤ r1 ≤ r ≤ r2 ≤ ∞, −∞ < v1 ≤ v ≤ v2 <∞} ⊆ Y .

Recall that, for x = (r, v) (we also say that r = r(x)),

H(x, x, s2) =
1

m(Bs(x))
q(x, x, s) =

1

m(Bs(x))
h(r, s).
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Set τ = s
r . Using (3.10) and Lemma 3.16 (also denoting C ′ = n+1−4α

4 )∫ v2

v1

∫ r2

r1

H(x, x, s2)dm(3.13)

= C ′s−1−2α

∫ v2

v1

∫ r2

r1

h(r, s)r−
n+1
2 +2αG( sr )r

n−1
2 −2αdrdv

= C ′s−1−2α(v2 − v1)

∫ r2

r1

h(1, sr )r
−1G( sr )dr

= C ′s−1−2α(v2 − v1)

∫ s/r1

s/r2

h(1, τ)τ−1G(τ)dτ.(3.14)

Since h is bounded (Lemma 3.16) and n− 1 > 4α, by (3.11), the integral is conver-
gent at τ = ∞. When τ → 0, since f(τ−1) ∼ τ2α, the integrand is ∼ τ2α−2. Thus
the integral is convergent at τ = 0 when α > 1

2 ; diverges when α ≤ 1
2 . Therefore,

by taking various r1, r2, we obtain

Theorem 3.19. For α > 1
2 , k = 2α+ 1,

0 < lim
s→0

sk
∫ v2

v1

∫ ∞

0

H(x, x, s2)dm <∞,

lim
s→0

sk
∫ v2

v1

∫ ∞

r1

H(x, x, s2)dm = 0 for any r1 > 0,

lim
L→∞

lim
s→0

sk
∫ v2

v1

∫ ∞

sL

H(x, x, s2)dm = 0.

For α = 1
2 , k > 2,

lim
s→0

sk
∫ v2

v1

∫ r2

0

H(x, x, s2)dm = 0.

For 0 < α < 1
2 , k = 2,

0 < lim
s→0

s2
∫ v2

v1

∫ r2

0

H(x, x, s2)dm <∞.

When α < 1
2 , k = 2, it is in the setting studied in [5, Theorem 4.3], and the

condition [5, (4.10)] (namely (5.9)) is satisfied.
For the critical case α = 1

2 , when r1 = 0, we can show the integral in (3.14)
diverges slowly like log.

Lemma 3.20. For any fixed r2 > 0, let L̃(s) =
∫∞
s/r2

h(1, τ)τ−1G(τ)dτ . Then for

α = 1
2 , s ∈ (0, s0] and s0 finite,

L̃(s) =
1

(n− 1)π
(− log s+ log r2) + C̃0 +O(s)

for some constant C̃0 given explicitly in the proof. In particular L̃ is slowly varying
as s→ 0+, i.e. for any a > 0 fixed,

lim
s→0+

L̃(as)

L̃(s)
= 1.
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Proof. By Lemma 3.16, h(1, τ) is bounded between two positive constant. Since
(1, 0) ∈ Y is a regular point with tangent cone R2, in fact a smooth point contained
in a smooth neighborhood a definite distance away from the singular set, by the
standard small time asymptotic expansion of the heat kernel, for small τ ,

h(1, τ) =
1

4
+O(τ).

When α = 1
2 , by Proposition 3.18 G(τ) is bounded on (0,∞) and, for small τ ,

G(τ) =
4

π
· 1

n− 1
+O(τ).

Recall the integral
∫
h(1, τ)τ−1G(τ)dτ is always convergent at infinity. Denote

C0 =
∫∞
1
h(1, τ)τ−1G(τ)dτ . Then

L̃(s) =

∫ 1

s/r2

h(1, τ)τ−1G(τ)dτ + C0

=

∫ 1

s/r2

τ−1

(
h(1, τ)G(τ)− 1

(n− 1)π

)
dτ +

∫ 1

s/r2

τ−1

(n− 1)π
dτ + C0

=
−1

(n− 1)π
(log(s/r2)) + C0 +

∫ 1

s/r2

τ−1

(
h(1, τ)G(τ)− 1

(n− 1)π

)
dτ.

The last integral is∫ 1

0

τ−1

(
h(1, τ)G(τ)− 1

(n− 1)π

)
dτ −

∫ s/r2

0

τ−1

(
h(1, τ)G(τ)− 1

(n− 1)π

)
dτ.

Since h(1, τ)G(τ)− 1
(n−1)π = O(τ), the first integral is convergent at τ = 0 and the

second one is O(s). □

As a consequence, for the critical case,

Theorem 3.21. For α = 1
2 , k = 2, and s ∈ (0, s0], s0 finite,

s2
∫ v2

v1

∫ r2

0

H(x, x, s2)dm =
v2 − v1
4π

(− log s+ log r2) + C̃ +O(s),

where C̃ = (n−1)(v2−v1)
4 C̃0. And

0 < lim
s→0

s2
∫ v2

v1

∫ r2

r1

H(x, x, s2)dm <∞ for any r1 > 0.

Remark 3.22. Similarly in above theorems we can show that for any continuous
function ϕ(x) with compact support, the same results hold for

lim
s→0

sk
∫
ϕ(x)H(x, x, s2)dm.

For the statements about the nonzero limit, one needs to make sure that the support
of ϕ contains the singular set S = {r = 0}.
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4. Heat Kernel and Weyl’s Law of X

4.1. Heat Kernel and Covering Spaces. Let Ȳ = Y/Z with the quotient dis-
tance d̄ and the measure m̄, and H̄(x, y, t) be its heat kernel, where the Z-action
is generated by the translation isomorphism γ : Y → Y, (r, v) 7→ (r, v + 1). This
is also an RCD(0, n+ 1) space (see [61, Remark 1.8]). In this subsection we study
the heat kernel H̄ of Ȳ .

First we prove the following relation of heat kernels for covering spaces of RCD
spaces which is of independent interest.

Proposition 4.1. Let (X, d,m) be an RCD(K,N) space for some K ∈ R and

some N ∈ [1,∞), X̃ a connected covering space with lifted metric d̃ and measure

m̃ and deck transformation Γ (then (X̃, d̃, m̃) is also an RCD(K,N) space because
of the same reason as in [59, Lemma 2.8]). Assume that there exists a fundamental

domain D such that m̃(∂D) = 0. Then for all x̃, ỹ ∈ X̃, and x = π(x̃), y = π(ỹ),
we have

(4.1) HX(x, y, t) =
∑
γ∈Γ

HX̃(x̃, γỹ, t).

We call D as above a metric measure fundamental domain (Definition A.4). See
also Remarks A.5 and A.7.

When (X, d,m) is an unweighted Riemnnian manifold with Ricci curvature bounded
from below, Proposition 4.1 is proved in [50, Pages 182-186] (see also [11, Propo-
sition 2.12]). The same strategy works in the setting of Proposition 4.1, but it is
more technical. We write the proof in the appendix §A.2. From now on we will
abuse notation and simply denote [x] by x.

Clearly our Ȳ has a fundamental domain D = (0,∞) × (0, 1) with m(∂D) = 0,
thus we can apply Proposition 4.1 to Ȳ . Combining with Lemma 3.11, we can then
quickly get

Proposition 4.2. For x = (r, v) ∈ Ȳ , as s→ 0,

m̄(BȲ
s (x))H̄(x, x, s2) = h(r, s) +O(e−

C(r0)

6s2 ).

Moreover

(4.2) lim
s→0

sk
∫ 1

0

∫ r0

0

H̄(x, x, s2)dm̄ = lim
s→0

sk
∫ 1

0

∫ r0

0

H(x, x, s2)dm

for any 0 < r0 <∞ and all cases of α, k in Theorem 3.19.

Proof. When s << 1, m̄(BȲ
s (x)) = m(BY

s (x)), therefore

m̄(BȲ
s (x))H̄(x, x, s2) = m(BY

s (x))

H(x, x, s2) +
∑

l∈Z,l ̸=0

H(x, γlx, s2)


= q(x, x, s) +

∑
l∈Z,l ̸=0

q(x, γlx, s).

By the Li-Yau estimate (2.9)

q(x, γlx, s) ≤ C(n) exp(− d̄2(x, γlx)
6s2 ).

By Lemma 3.11,

d(x, γlx) ≥ C(r0)|l|
1

1+2α
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for all x = (r, v) with 0 ≤ r ≤ r0 and all l ∈ Z. Therefore∑
l∈Z,l ̸=0

q(x, γlx, s) ≤ C(p, α)e−
C(r0)

6s2 for s ∈ (0, 1)

is exponentially decaying as s→ 0. This proves the first equation.
The second equation follows from the first since 1

m̄(BȲ
s (x))

grows at most polyno-

mially of degree n+3
2 . □

4.2. Eigenvalues of Ȳ when α = 1
2 . We use separation of variables (see e.g. [16,

Page 41]) to study the eigenvalues of Ȳ = [0,∞)×S1. First we do the computation
with general α. Recall Ȳ equipped with the metric g = dr2 + r−4αdθ2 (Theorem

3.5), the weighted measure dm̄ = cr
n−1
2 −2αdrdθ (Lemma 3.12). Therefore the

weighted Laplacian is

∂2

∂r2
+

1

r

(
n− 1

2
− 2α

)
∂

∂r
+ r4α

∂2

∂θ2
.

Write the eigenfunction u = ϕ(r)ψ(θ), then we have

ψ′′ = −k2ψ, k ∈ Z

and

ϕ′′(r) +
(
n−1
2 − 2α

) 1
r
ϕ′(r)− k2r4αϕ = −λϕ.

The change of variable y(r) = ϕ(r)r
n−1
4 −α gives

y′′(r) =

[(
n−1
4 − α

) (
n−1
4 − α− 1

) 1

r2
+ k2r4α − λ

]
y.

When n = 1 or 9 and α = 1
2 , this becomes

y′′(r) =
[
3
4

1
r2 + k2r2 − λ

]
y.

For n = 1, it corresponds to the Grushin half cylinder with unweighted measure
studied in [12]. Surprisingly for n = 9 it gives the same constant 3

4 in above. For

k 6= 0, with the change of variable z = |k|r2, and divide by 4k2r2, we have 1

∂2y

∂z2
+
z

2

∂y

∂z
=

(
3

16z2
+

1

4
− λ

4|k|z

)
y.

Letting φ(z) = z
1
4 y(z) gives

φ′′ =

(
1

4
− λ

4|k|z

)
φ,

which is the Whittaker equation. Following [12], the eigenvalues are λn,k = 4|k|n
for n ∈ N, k ∈ Z/{0} (k = 0 leads to the continuous spectrum).

Remark 4.3. If (Ȳ , d̄, m̄) is an RCD(K,N) space, then the N -Bakry-Èmery Ricci
curvature on the regular set of Ȳ is bounded below by K. For our Ȳ with α = 1

2 , the

N -Bakry-Èmery Ricci curvature is nonnegative if and only if N ≥ 10. In particular
the optimal dimension to have nonnegative Ricci curvature in the RCD sense is
indeed 10, i.e., n = 9. The same observation is valid for Y .

1In [12] the sentence after equation (3.2) is not exactly correct; we would like to thank Prof.

Dario Prandi for communicating this and explaining the correction.
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Therefore this allows us to conclude that the optimal dimension to have a lower
bound in the RCD sense for our 2-(Hausdorff) dimensional spaces is also equal to
10 because of the following two facts;

• any tangent cone at any point of any RCD(K,N) space is an RCD(0, N)
space;

• any tangent cone at any singular point of such spaces is isometric to Y .

4.3. Heat Kernel of Compact Space X. We consider the compact space X
obtained by perturbing the warping function of Ȳ to h̃ = constant for r ≥ 2, and

then double. Precisely let Ỹ be the finite cylinder [0, 3]×S1 with the singular metric

dr2 + h̃(r)2dv2, where

h̃(r) =

{
r−2α 0 < r ≤ 1
1
2 2 ≤ r ≤ 3

and connect smoothly between r = 1 and r = 2 with decreasing and convex func-

tion. Correspondingly, the measure dm̃ = h̃−
n−1
4α +1dr dv. Let X = Ỹ ∪ Ỹ by gluing

at the smooth end r = 3. Then Ỹ and X are RCD(K,n + 1) spaces with K some
negative number.

Remark 4.4. The above X can be constructed as the limit of a sequence of closed

manifolds Ni with Ric ≥ K, where K < 0 (see [61, Remark 1.8]); then Ỹ ⊆ X
is the limit of a sequence of open convex subsets in Ni. We also point out that

nonnegative Ricci curvature cannot hold on Ni; otherwise, the universal cover Ñi

would split off a line isometrically, resulting in X being isometric to a standard
bounded cylinder.

Since Ỹ is a smooth weighted Riemannian manifold near the end r = 3, each

eigenfunction on Ỹ is smooth near the smooth end and it satisfies the Neumann
boundary value condition because of the elliptic regularity theorem. In particular

the heat kernel HỸ of Ỹ is smooth near the smooth end with the same boundary
value condition by (2.13).

By the symmetry of X, the heat kernel HX of X can be identified with the

heat kernel of Ỹ with the Neumann boundary condition at the smooth end. Now

the heat kernel of Ỹ can be constructed by gluing the heat kernel of Ȳ , with the
Neumann heat kernel of cylinder Ŷ = [1/2, 3]× S1 as a smooth weighted manifold.

The warping function ĥ of Ŷ is defined as ĥ = h̃ for r ∈ [ 12 , 3] and the measure

dm̂ = ĥ−
n−1
4α +1dr dv.

Following [7], let ρ(a, b) ∈ C∞(R) be a smooth increasing cut-off function such
that ρ ≡ 0 when r ≤ a and ρ ≡ 1 when r ≥ b.

Define φ1, φ2, ψ1, ψ2 as follows.

ψ1 = 1− ψ2, ψ2 = ρ(1 + 1
4 , 2−

1
4 ), φ1 = 1− ρ(2, 3), φ2 = ρ( 12 , 1).

Then
ψ1 + ψ2 ≡ 1, φi ≡ 1 on suppψi, dR(suppφ

′
i, suppψi) ≥ 1

4 .

It follows that

(4.3) d̃(suppφ′i, suppψi) ≥ 1
4 .

Here d̃ is the distance of Ỹ .
Let

K(x, y, t) = φ1(r(x))HȲ (x, y, t)ψ1(r(y)) + φ2(r(x))HŶ (x, y, t)ψ2(r(y)),
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where HŶ (x, y, t) is the heat kernel of the smooth weighted manifold Ŷ with Neu-

mann boundary condition. Then K is a parametrix of the heat equation on Ỹ .
Indeed

(4.4) (∂t−∆x)K(x, y, t) = −φ′′1HȲ ψ1−〈∇φ1,∇HȲ 〉ψ1−φ′′2HỸ ψ2−〈∇φ2,∇HỸ 〉ψ2,

where ∆x means the Laplacian acting on the x-variable. Similarly the gradient
∇ is with respect to the x-variable as well. Note that by our choice of the cut-off
functions, the right hand side of (4.4) is away from the singular set in the x-variable,
and, by the regularity theory, the differentiations can be taken in the usual sense.
Let

Q(x, y, t) = (∂t −∆x)K(x, y, t).

By (4.4), Q(x, y, t) is nonzero only when r(x) ∈ suppφ′1 and r(y) ∈ suppψ1 or when
r(x) ∈ suppφ′2 and r(y) ∈ suppψ2. By the Li-Yau estimates (2.9), (2.10) and (4.3),
we deduce for 0 ≤ s < t and r(z) ∈ suppφ′1 ∪ suppφ′2 ⊂ [1/2, 1] ∪ [2, 3] ,

|Q(z, y, t− s)| ≤ C1

(t− s)m(B√
t−s(z))

exp

(
− 1

90(t− s)
+ C2(t− s)

)
≤ C3

(t− s)
exp

(
− 1

90(t− s)
+ C2(t− s)

)
≤ C4 exp

(
− 1

180(t− s)
+ C2(t− s)

)
≤ C5 exp

(
− 1

180t

)
(4.5)

for 0 ≤ s < t ≤ 1. Duhamel Principle expresses the heat kernel HỸ (x, y, t) in terms
of the parametrix K(x, y, t) (i.e. the approximate solution) and an error term.

Lemma 4.5 (Duhamel Principle). We have

(4.6) HỸ (x, y, t) = K(x, y, t)−
∫ t

0

∫
Ỹ

HỸ (x, z, s)Q(z, y, t− s)dm̃(z)ds.

This is well known in the smooth case; see [17] for the most general formulation.
The proof of the lemma goes by directly checking the heat equation. Namely, it
follows from a direct calculation that the right hand side of (4.6) solves the heat
equation. Then the lemma follows by a similar argument as in Proposition 4.1. See
§A.3 for the detail.

Plugging (4.5) into (4.6), we obtain

(4.7) HỸ (x, y, t) = K(x, y, t) +O(e−C/t)

for C = 1
180 . From here, we obtain by using Theorems 3.19 and 3.21

Theorem 4.6. For α > 1
2 , k = 2α+ 1, the following limit exists and

(4.8) 0 < lim
s→0

sk
∫
X

HX(x, x, s2)dm = 2 lim
s→0

sk
∫ 1

0

∫ 3

0

HY (x, x, s
2)dm <∞.

Here v is from 0 to 1, r is from 0 to 3, and 3 can be replaced by any positive number.
For α = 1

2 , k = 2, and s small,

(4.9) s2
∫
X

HX(x, x, s2)dm = 2s2
∫ 1

0

∫ 3

0

HY (x, x, s
2)dm =

1

2π
(− log s) +O(1).
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For α = 1
2 , k > 2,

lim
s→0

sk
∫
X

HX(x, x, s2)dm = 0.

For 0 < α < 1
2 , k = 2,

0 < lim
s→0

s2
∫
X

HX(x, x, s2)dm <∞.

Proof. By the symmetry of X and (4.7) we have

sk
∫
X

HX(x, x, s2)dm = 2sk
∫
Ỹ

HỸ (x, x, s
2)dm

= 2sk
∫
Ȳ

HȲ (x, x, s
2)ψ1(r(x))dm

+2sk
∫
Ŷ

HŶ (x, x, s
2)ψ2(r(x))dm+O(e−C′/s2)

= 2sk
∫ 1

0

∫ 3

0

HY (x, x, s
2)ψ1(r(x))dm(4.10)

+2sk
∫
Ŷ

HŶ (x, x, s
2)ψ2(r(x))dm+O(e−C′/s2),

where we have made use of (4.2) in the last identity. The first term can be dealt
with by Theorems 3.19 and 3.21 (more specifically Remark 3.22), while the second
term is classical (or we can use [5]). The desired results follow. □

4.4. Weyl’s Law of X. We are now in a position to introduce our main results,
singular Weyl’s laws on compact Ricci limit, thus RCD(K,N) spaces (X, d,m)
constructed in the previous subsection with the parameter α. In order to introduce
a surprising result (Corollary 4.8), we prepare the following.

Theorem 4.7. Let α > 1
2 and k = 2α+ 1. Then

(4.11) skH(x, x, s2)dm(x) → c · 1S dHk, weakly as s→ 0+

for some constant c > 0, where S = X \ R2 is the singular set. Moreover the
support of 1S dHk coincides with S.

Proof. By Theorem 4.6,

0 < lim
s→0+

sk
∫
X

HX(x, x, s2)dm <∞.

Therefore for any sequence si → 0+, there is a subsequence such that the left hand
side of (4.11) converges to a Radon measure weakly. Take a sequence si → 0+ and
a Radon measure ν on X such that

(4.12) (si)
kH(x, x, (si)

2)dm(x) → ν, weakly as i→ ∞.

For any z = (r0, v0) ∈ Ỹ , denote Box(r1,v1)(z) = {(r, v)|0 ≤ r0 < r < r1 ≤ 3, 0 ≤
v0 < v < v1 ≤ 1}. Then the weak convergence gives

(4.13) lim inf
i→∞

∫
Box(r1,v1)(z)

(si)
kH(x, x, (si)

2)dm(x) ≥ ν(Box(r1,v1)(z))
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and

(4.14) lim sup
i→∞

∫
Box(r1,v1)(z)

(si)
kH(x, x, (si)

2)dm(x) ≤ ν(Box(r1,v1)(z)).

On the other hand, by (4.10) and (3.14), we know

(4.15) lim
ϵ→0+

(
lim sup
s→0+

∫
Box(r1,v1)(z)\Box(r1,v1−ϵ)(z)

skH(x, x, s2)dm(x)

)
= 0.

Combining (4.13), (4.14) with (4.15) shows

(4.16) lim
i→∞

∫
Box(r1,v1)(z)

(si)
kH(x, x, (si)

2)dm(x) = ν(Box(r1,v1)(z)),

and

(4.17) ν(Box(r1,v1)(z)) = ν(Box(r1,v1)(z)).

Next let us prove that the support of ν coincides with S. Theorem 3.19 and
(4.10) allow us to conclude that for any compact subset A in R,

(4.18)

∫
A

skH(x, x, s2)dm → 0, as s→ 0+.

This implies that the support of ν is included in S. Theorem 3.19 and (4.10) also
imply ν(Box(r1,v1)(z)) > 0 whenever z ∈ S. Hence the support of ν coincides with
S.

Moreover Theorem 3.5 (4) with (3.14) and (4.16) shows that there exist C > 0
and δ > 0 such that ν(Br(z)) = Crk holds for all z ∈ S and 0 < r < δ. Combining
this with the observation above easily implies ν = c1SdHk for some c > 0. Finally
since we have

c = Hk(S)−1 · lim
s→0+

sk
∫
X

HX(x, x, s2)dm

which does not depend on the sequence si → 0+, we conclude because si is arbitrary.
□

We are now in a position to introduce a main result of this subsection. Let us
emphasize that k is not necessarily an integer.

Corollary 4.8. Let α > 1
2 and k = 2α+ 1. Then

(4.19) lim
λ→∞

N(λ)

λk/2
=

c

Γ(k + 1)
Hk(S) ∈ (0,∞),

where c is given in (4.11).

Proof. This is a direct consequence of Theorem 4.7 and (1.7) with L = 1 □

The following is another surprising result which is an immediate consequence of
Theorem 4.6 with the same techniques as in the proof above. It in particular shows
that for general compact RCD(K,N) spaces, the eigenvalue counting function N(λ)
defined in (1.3) does not satisfy the following asymptotic formula:

N(λ) ∼ λβ , for some β ≥ 0 as λ→ ∞.

In connection with (4.20) below, we recall that any neighborhood of any singular
point has infinite 2-dimensional Hausdorff measure; see Remark 3.7.
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Theorem 4.9. Let α = 1
2 . Then

(4.20)
s2

− log s
H(x, x, s2)dm(x) → c · 1S dH2, weakly as s→ 0+

for some constant c > 0. In particular

(4.21) lim
λ→∞

N(λ)

λ log λ
=

c

Γ(3)
H2(S) = 1

4π
.

Proof. Applying a similar argument as in the proof of Theorem 4.7 with Theorem
3.21 shows (4.20). Then the first equality in (4.21) follows from (1.7) with L = log,
and the second equality comes from (4.9).

□

5. Asymptotics of eigenfunctions

5.1. Questions and negative answer. Let us start by recalling a question raised
by Ding in [31, page 511].

Question 5.1 (Ding). For any integer n ≥ 2, does there exist a positive small
number εn > 0 such that

(5.1)

∫
Mn\A

f2dvolg >
1

2

∫
Mn

f2dvolg

holds for any n-dimensional closed Riemannian manifold (Mn, g) with nonnegative
Ricci curvature, any eigenfunction f of −∆g on Mn and any Borel subset A ⊂Mn

with volgA < εnvol
gMn?

It is easy to see from [43, Theorem 1.1] that the question has a negative answer
even for the n-dimensional canonical unit sphere Sn. Actually for any great circle c
in Sn, we can find an L2-orthonormal basis {fj}j consisting of j-th eigenfunctions
fj of Sn and a subsequence i(j) satisfying that

(5.2) f2i(j)dvol
g → νc, weakly,

where νc denotes the canonical probability 1-dimensional measure whose support
coincides with c. Then it is easily checked that the sequence fi(j) provides a coun-
terexample to Question 5.1. Namely the question above is related to the quantum
ergodicity (see also [68]).

Since it is also well-known that it is really hard to determine all limit measures
appeared as in (5.2), let us switch the question above to a weaker one;

Question 5.2. How many eigenfunctions satisfy (5.1)?

This new question should be related to Weyl’s law.
The main purpose of this section is to give positive answers to this new question

for more general spaces, namely RCD(K,N) spaces. The obtained results later
will be related to the validity of “regular” Weyl’s law which is completely different
from the results in the previous sections. Thus let us start the next subsection by
introducing the regular Weyl’s law for compact RCD(K,N) spaces.
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5.2. Regular Weyl’s law and its consequence. We start this subsection by
giving the following elementary lemma.

Lemma 5.3. Let (X, d,m) be an RCD(K,N) space for some K ∈ R and some
N ∈ [1,∞). Then for any l ≥ 0 and any Borel subset A ⊂ X, we have

(5.3) Hl(A) ≤ C(N, l) lim inf
s→0+

∫
Bs(A)

sl

m(Bs(x))
dm.

Proof. This is essentially the same as [31, Lemma 7.11]. Let us take a maximal
s-separated set {xi}i of A. Then

(5.4)
∑
i

sl ≤ C(N)
∑
i

∫
Bs(xi)

sl

m(Bs(x))
dm(x) ≤ C(N)

∫
Bs(A)

sl

m(Bs(x))
dm(x),

where in the first inequality in (5.4), we used

(5.5) m(Bs(xi)) ≥ c(N)m(B2s(xi)) ≥ c(N)m(Bs(x))

on Bs(xi). Note that the first inequality in (5.5) is a direct consequence of Bishop-
Gromov inequality (for small s > 0) and that the second inequality follows from
the inclusion Bs(x) ⊂ B2s(xi). Then letting s→ 0+ in (5.4) implies (5.3). □

Remark 5.4. The dependence on l in the constant in the lemma above comes from
the definition of the l-dimensional Hausdorff measure;

(5.6) Hl(A) = lim
δ→0+

Hl
δ(A),

where

(5.7) Hl
δ(A) = inf

{∑
i

clr
l
i

∣∣∣A ⊂
⋃
i

Bri(xi), ri < δ

}
for some constant cl > 0. When l is an integer, we always choose cl as ωl =
Hl(B1(0l)).

Let us introduce the following result, where R∗
n denotes the reduced n-regular

set of (X, d,m) defined by the set of all n-dimensional regular points x ∈ X with
the existence of a finite positive limit:

(5.8) lim
r→0+

m(Br(x))

rn
∈ (0,∞).

Note that m(X \ R∗
n) = 0 and that m and Hn are absolutely continuous to each

other on R∗
n (see [5, Theorem 4.1]).

Theorem 5.5 (Regular Weyl’s law). Let (X, d,m) be a compact RCD(K,N) space
for some K ∈ R and some N ∈ [1,∞) and let n be the rectifiable dimension. Then

(5.9) lim
r→0+

∫
X

rn

m(Br(x))
dm =

∫
X

lim
r→0+

rn

m(Br(x))
dm <∞

holds if and only if Weyl’s law is satisfied in a regular sense, namely

(5.10) lim
λ→∞

N(λ)

λn/2
=

ωn

(2π)n
Hn(R∗

n) <∞.

Moreover if (5.9) is valid, then Hn(X) <∞, in particular the Hausdorff dimension
of X is equal to n.
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Proof. The desired equivalence is already obtained in [5, Theorem 4.3]. The re-
maining one comes from Lemma 5.3 □

In the sequel, we always fix an L2-orthonormal basis {fj}j consisting of j-th
eigenfunctions fj of L2(X,m). The following is a main result of this subsection,
which also gives a Weyl type asymptotics.

Theorem 5.6. Let (X, d,m) be a compact RCD(K,N) space for some K ∈ R
and some finite N ∈ [1,∞) whose rectifiable dimension is equal to n. If (5.9) is
satisfied, then for all 0 < δ < ε < 1 and any Borel subset A ⊂ X with Hn(A∩R∗

n) ≤
δHn(R∗

n), letting
(5.11)

mA,ϵ(λ) = ]

{
j ∈ N

∣∣∣ ∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm and λj ≤ λ

}
for any λ > 0,

we have

(5.12) mA,ϵ(λ) ∼ λn/2, as λ→ ∞.

In particular

(5.13)

∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm

is satisfied for infinitely many eigenfunctions fj of −∆ on X.

Proof. Since mA,ϵ(λ) ≤ N(λ), thanks to the validity of (5.10) with [5, Proposition
5.6], it is enough to prove that

(5.14) lim inf
s→0+

sn
∑
i∈M

e−λis
2

> 0,

where

(5.15) M =

{
j ∈ N

∣∣∣ ∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm

}
.

Note ∫
X

snH(x, x, s2)dm

= sn
∑
j∈M

e−λjs
2

+ sn
∑
j ̸∈M

e−λjs
2

≥ sn
∑
j∈M

e−λjs
2

+
sn

1− ε

∑
j ̸∈M

e−λjs
2

∫
X\A

f2j dm

≥ sn
∑
j∈M

e−λjs
2

+
1

1− ε

∫
X\A

snH(x, x, s2)dm− sn

1− ε

∑
j∈M

e−λjs
2

,(5.16)

namely

(5.17) sn
∑
j∈M

e−λjs
2

≥ 1

ε

∫
X\A

snH(x, x, s2)dm− 1− ε

ε

∫
X

snH(x, x, s2)dm.
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Letting s→ 0+ shows

lim inf
s→0+

sn
∑
j∈M

e−λjs
2

≥ 1

(4π)n/2ε
Hn(R∗

n \A)− 1− ε

(4π)n/2ε
Hn(R∗

n)

≥ 1− δ

(4π)n/2ε
Hn(R∗

n)−
1− ε

(4π)n/2ε
Hn(R∗

n)

=
ε− δ

(4π)n/2ε
Hn(R∗

n) > 0(5.18)

because it is known from the proof of [5, Theorem 4.3] that (5.9) implies the L1-
strong convergence of snH(x, x, s2) to (4π)−n/21R∗

n
as s → 0+. Thus we conclude.

□

Note that the proposition above can be applied to a metric measure space
([0, 1], dR, sin

N−1 tdt), see [5, Example 4.5].

Remark 5.7. In connection with the theorem above, it is worth mentioning that
under the assumption that Hn(R∗

n) <∞ (in particular it is satisfied if (5.9) holds),
for any ε > 0 there exists δ > 0 such that if a Borel subset A ⊂ X satisfies m(A) ≤ δ,
then Hn(A ∩R∗

n) ≤ ε. The proof of this fact is as follows.
Denoting

(5.19) dHn = φdm, for some φ : R∗
n → [0,∞)

on R∗
n, since

(5.20)

∫
R∗

n

φdm =

∫
R∗

n

dHn = Hn(R∗
n) <∞,

we have φ ∈ L1(R∗
n,m). In particular for any ε > 0 there exists δ > 0 such that if

a Borel subset B ⊂ R∗
n satisfies m(B) < δ, then

(5.21)

∫
B

φdm < ε.

which proves the desired statement.

Remark 5.8. Introduced in [29, Definition 1.1], an RCD(K,N) space (X, d,m)
is said to be non-collapsed if m = HN , which is a synthetic counterpart of vol-
ume non-collapsed Ricci limit spaces. It is known from [29, 48] that non-collapsed
RCD(K,N) spaces have finer properties than that of general RCD(K,N) spaces.
Note that any noncollapsed RCD(K,N) space has the rectifiable dimension N and
that (5.9) is satisfied as n = N by Bishop-Gromov inequality if it is compact.

In connection with this, we point out that the following three conditions for a
compact RCD(K,N) space (X, d,m) are equivalent.

(1) We have

lim inf
λ→∞

N(λ)

λN/2
> 0.

(2) N is an integer with m = cHN for some c > 0.
(3) N is an integer with

lim
λ→∞

N(λ)

λN/2
=

ωN

(2π)N/2
HN (X) ∈ (0,∞).
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The nontrivial part is the implication from (1) to (2). If (1) holds, then [5, (5.5)]
with (2.9) implies

0 < lim inf
s→0+

sN
∫
X

p(x, x, s2)dm ≤ C lim inf
r→0+

∫
X

rN

m(Br(x))
dm = C

∫
X

lim
r→0+

rN

m(Br(x))
dm,

where the final equality comes from Bishop-Gromov inequality and the dominated
convergence theorem. In particular

m

({
x ∈ X| lim

r→0+

rN

m(Br(x))
> 0

})
> 0.

Thus we can apply [13, Theorem 1.3] or [41, Corollary 1.3] to prove that (2) holds.

Finally let us give an answer to a similar question for X as in Theorem 4.7,
namely in the case of singular Weyl’s law.

Proposition 5.9. Let (X, d,m) be as in Theorem 4.7. For all 0 < δ < ε < 1 and
any closed subset A ⊂ X with Hk(∂A ∩ S) = 0 and Hk(A ∩ S) ≤ δHk(S), letting
(5.22)

mA,ϵ(λ) = ]

{
j ∈ N

∣∣∣ ∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm and λj ≤ λ

}
for any λ > 0,

we have

(5.23) mA,ϵ(λ) ∼ λk/2, as λ→ ∞.

In particular

(5.24)

∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm

is satisfied for infinitely many eigenfunctions fj of −∆ on X.

Proof. The proof is similar to that of Theorem 5.6 via

(5.25)

∫
X\A

skH(x, x, s2)dm → cHk(S \A).

□
Remark 5.10. It is a direct consequence of the proposition above that for any
0 < ε < 1 and any compact subset A ⊂ R2, we have

(5.26) mA,ϵ(λ) ∼ λk/2

which should be compared with [43, Theorem 1.1] referred at the beginning of the
subsection.

We are also able to disucuss similar asymptotic behaviors of the eigenfunctions
for X as in Theorem 4.9.

Proposition 5.11. Let (X, d,m) be as in Theorem 4.9. For all 0 < δ < ε < 1 and
any closed subset A ⊂ X with H2(∂A ∩ S) = 0 and H2(A ∩ S) ≤ δH2(S), letting
(5.27)

mA,ϵ(λ) = ]

{
j ∈ N

∣∣∣ ∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm and λj ≤ λ

}
for any λ > 0,

we have

(5.28) mA,ϵ(λ) ∼ λ log λ, as λ→ ∞.
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In particular

(5.29)

∫
X\A

f2j dm ≥ (1− ε)

∫
X

f2j dm

is satisfied for infinitely many eigenfunctions fj of −∆ on X.

Proof. The proof is essentially same to that of Proposition 5.9. The only difference
is to find the “t/(− log t), λ log λ” version of [5, Propositions 5.5 and 5.6] instead of
“tγ , λγ”, respectively. Since the proofs of [5, Propositions 5.5 and 5.6] still work in
this setting, we omit it. □

Appendix A. Proofs of Proposition 4.1 and Lemma 4.5

A.1. Fundamental domain. let (X, d,m) be an RCD(K,N) space for some K ∈
R and some N ∈ [1,∞), and let π : X̃ → X be a connected covering space with

the lifted metric d̃ and measure m̃ and the deck transformation Γ. Then (X̃, d̃, m̃)
be an RCD(K,N) space because of the same reason as in [59, Lemma 2.8]. Let us
begin with recalling the following standard notion;

Definition A.1 (Fundamental domain). An open connected subset D of X̃ is said

to be a fundamental domain (of the covering π : X̃ → X) if
(1) D ∩ γD = ∅ holds for any γ ∈ Γ with γ 6= 1, and

(2) X̃ =
⋃

γ∈Γ γD.

To obtain a fundamental domain, we follow the standard construction of Dirichlet

domain. We fix a point x̃ ∈ X̃. For every γ 6= 1 in Γ, we put

Hγ(x̃) = {y ∈ X̃|d̃(y, x̃) < d̃(y, γx)}.

Proposition A.2 (Dirichlet domain). For any x̃ ∈ X̃, we define

(A.1) D(x̃) :=
⋂

1 ̸=γ∈Γ

Hγ(x̃),

and call it the Dirichlet domain centered at x̃. Then D(x̃) is a fundamental domain.

The proof is essentially the same as the Riemannian case. We include the proof
for readers’ convenience.

Lemma A.3. Let γ 6= 1 and let σ : [0, L] → X̃ be a minimal geodesic from x̃. If

σ(t0) satisfies d̃(σ(t0), x̃) = d̃(σ(t0), γx̃) for some t0 ∈ [0, L], then σ(t) ∈ Hγ(x̃) for

all t ∈ [0, t0) and σ(t) ∈ X̃ −Hγ(x̃) for all t ∈ (t0, L].

Proof. Let us prove the first statement by contradiction. If not, then there exists
s ∈ [0, t0) such that d̃(σ(s), x̃) = d̃(σ(s), γx̃). Then

d̃(γx̃, σ(t0)) = d̃(x̃, σ(t0)) = d̃(x̃, σ(s)) + d̃(σ(s), σ(t0))

= d̃(γx̃, σ(s)) + d̃(σ(s), σ(t0)),

which in particular proves that a minimal geodesic from σ(t0) to γx̃ can be branched
at σ(s). This contradicts a fact that any minimal geodesic in X is nonbranching
[28, Theorem 1.3].
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Next, let us prove the second statement by contradiction again. If not, then
there exists s′ ∈ (t0, L] such that d̃(σ(s′), x̃) ≤ d̃(σ(s′), γx̃). If the equality holds,
then we have a contradiction by the first statement. Thus we have

d̃(σ(s′), γx̃) > d̃(σ(s′), x̃) = d̃(σ(s′), σ(t0)) + d̃(σ(t0), x̃)

= d̃(σ(s′), σ(t0)) + d̃(σ(t0), γx̃) ≥ d̃(σ(s′), γx̃),

which is also a contradiction. □

Proof of Proposition A.2. We first prove the claim below.

Claim 1: The family of closed sets {X̃ −Hγ(x̃)}γ ̸=1 is locally finite. In fact, let

y ∈ X̃ and let r = d(y, x̃). Note that for all γ 6= 1 and all z ∈ (X̃ −Hγ(x̃))∩B1(y),

d̃(z, γy) ≤d̃(z, y) + d(y, γx̃) + d̃(γx̃, γy)

<1 + d̃(y, x̃) + d̃(x̃, y) = 1 + 2r.

This proves that

(X̃ −Hγ(x̃)) ∩B1(y) ⊂ B1+2r(γy) ∩B1(y).

Because there are only finitely many γy in B2+2r(y), the right hand of the above
inclusion relation is non-empty only for finitely many γ. Claim 1 follows.

It follows from Claim 1 that D(x̃) is an open subset of X̃.
By Lemma A.3, for every y ∈ D(x̃), there is a minimal geodesic σ from x̃ to y

such that σ is contained in Hγ(x̃) for all γ 6= 1, thus in D(x̃). This shows that
D(x̃) is connected.

Next, we define a set of representative points, denoted as F : for each orbit Γy,
we choose a point in the orbit such that it is the closest to x̃.

Claim 2: D(x̃) ⊂ F ⊂ D(x̃). In fact, by the definition of D(x̃), any y ∈ D(x̃)
satisfies

d̃(y, x̃) < d̃(y, γx̃) = d̃(γ−1y, x̃)

for all γ 6= 1. Thus y ∈ F and we see that D(x̃) ⊂ F . We prove the other inclusion.

Let y ∈ F and let σ : [0, L] → X̃ be a minimal geodesic from x̃ to y. Note that

d̃(y, x̃) ≤ d̃(γ−1y, x̃) = d̃(y, γx̃)

for all γ 6= 1. By Lemma A.3, the image of σ|[0,L) is contained in Hγ(x̃) for all

γ 6= 1, thus in D(x̃). Hence y = σ(L) ∈ D(x̃). This proves Claim 2.
With Claim 2, now we prove that D(x̃) is a fundamental domain. To prove (1)

in Definition A.1, suppose that there is γ 6= 1 and y1, y2 ∈ D(x̃) such that γy1 = y2.
By Claim 2, both y1, y2 belong to F . Since the orbit Γy1 only has one point in F ,
we must have y1 = y2, that is, γy1 = y1. This contradicts the facts that Γ-action
is free and γ 6= 1. To prove (2) in Definition A.1, note that

X̃ =
⋃
γ∈Γ

γF ⊂
⋃
γ∈Γ

γD(x̃).

□

Definition A.4. A fundamental domainD of the covering π : (X̃, d̃, m̃) → (X, d,m)
is said to be a metric measure fundamental domain if m̃(∂D) = 0.
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Since γD ∩ D ⊂ ∂D holds for any γ 6= 1 and any fundamental domain D, we
have

(A.2)

∫
X

fdm =

∫
X̃

f̃dm̃

for any nonnegative function f̃ : X̃ → [0,∞] if D is a metric measure fundamental

domain, where f(x) =
∑

γ∈Γ f̃(γx̃) and π(x̃) = x. The proof of (A.2) is as follows.

Fistly, since π is a local isomorphism as metric measure spaces, we have m(X \
π(D)) = 0. Then the monotone convergence theorem allows us to compute∫

X

fdm =

∫
π(D)

fdm =

∫
π(D)

∑
γ∈Γ

f̃(γx̃)dm̃(x̃) =
∑
γ∈Γ

∫
D

f̃(γx̃)dm̃(x̃)

=
∑
γ∈Γ

∫
γD

f̃(x̃)dm̃(x̃) =

∫
X̃

f̃dm̃.(A.3)

This argument will play a role in the next subsection.

Remark A.5. A minimal geodesic σ : [−ε, ε] → X̃ in X̃ is said to be strongly non-
branching if a minimal geodesic η : [−δ, δ] → X for some δ < ε satisfy σ(0) = η(0)
and ∠σ̇η̇(0) = 0, then σ = η on [−δ, δ] (see [39, 40] for the definition of angles).

Then if any minimal geodesic in X̃ is strongly nonbranching, then a Dirichlet do-
main is a metric measure fundamental domain. The proof of this fact is as follows.

Since the boundary of D(x̃) is included in

(A.4)
⋃

1 ̸=γ∈Γ

{
z ∈ X̃

∣∣∣d̃(z, x̃) = d̃(z, γx̃)
}
,

it is enough to prove that the set (A.4) is m̃-negligible. If not, then there exists
γ 6= 1 such that

(A.5) m̃
({
z ∈ X̃

∣∣∣d̃(z, x̃) = d̃(z, γx̃)
}
\ (Cut(x̃) ∪ Cut(γx̃))

)
> 0

because the proof of [37, Lemma 3.1] allows us to conclude that the cut locus Cut(z̃)

of any point z̃ in X̃ is m̃-negligible. On the other hand the locality of the minimal
relaxed slope yields

(A.6) |∇(d̃x̃ − d̃γx̃)|2 = 0, for m̃-a.e. z̃ ∈
{
z ∈ X̃

∣∣∣d̃(z, x̃) = d̃(z, γx̃)
}
,

where d̃z̃ denotes the distance function from z̃. In particular (A.5) and (A.6) imply
that there exists z̃ ∈ X \ (Cut(x̃) ∪ Cut(γx̃)) such that all two minimal geodesics
σ, η from z̃ to x̃, γx̃ respectively satisfy ∠σ̇η̇(0) = 0 which contradicts the strongly
nonbranching property. Thus m̃(∂D(x̃)) = 0.

Note that this strongly nonbranching property does not follow the nonbranching
property established in [28, Theorem 1.3].

Remark A.6. We can easily see that Proposition A.2 can be generalized to geo-
desic metric spaces with nonbranching property. It is worth mentioning that any
Alexandrov space satisfies the strongly nonbranching property by definition. Thus
in particular all of the above discussion can be applied to Alexandrov spaces with
any Borel measure.
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Remark A.7. A result in a very recent preprint [67] proves that the right hand side
of (A.4) is actually m-negligible without assuming strongly nonbranching property,
thus the Dirichlet domain centered at any point is actually a metric measure fun-
damental domain. See [67, Theorem 4].

A.2. Proof of Proposition 4.1; the heat kernel on a covering space. We
continue our discussion with the same setting as in the previouse subsection.

For the simplicity of notation we give a proof of Proposition 4.1 only in the case
when K = 0, however it is easy to generalize it to the general case when K < 0 via
the Li-Yau inequalities (2.9), (2.10) and (2.11). The proof is divided into several
lemmas as follows.

For any y ∈ X, take (a sufficiently small) r(y) > 0 satisfying that the preimage
π−1(Bs(y)) consists of the pairwise disjoint union of {Bs(γỹ)}γ∈Γ for any s ∈
(0, r(y)], where π(ỹ) = y. Without loss of generality we can assume

(A.7) inf
y∈A

r(y) > 0, for any bounded subset A ⊂ X.

Let us recall our main target; for any t > 0, define a symmetric function on X×X;

(A.8) H1(x, y, t) :=
∑
γ∈Γ

HX̃(x̃, γỹ, t) ∈ (0,∞],

where x, y ∈ X and x̃, ỹ ∈ X̃ with π(x̃) = x and π(ỹ) = y. Note that the right
hand side of (A.8) does not depend on the choices of x̃, ỹ, thus it is well-defined.

Lemma A.8. H1 is finite. More precisely for any s ∈ (0, r(y)], we have

m(Bs(y))H1(x, y, t) ≤ C(N) exp

(
s2

4t

)∫
X̃

HX̃(x̃, z̃, 2t)dm̃(z̃)

≤ C(N) exp

(
s2

4t

)
m̃(B√

t(x̃)).(A.9)

Proof. Applying the parabolic Harnack inequality proved in [34, Theorem 1.4] and
in [44, Theorem 1.3] implies

m̃(Bs(ỹ))HX̃(x̃, ỹ, t) ≤ C(N) exp

(
s2

4t

)∫
Bs(ỹ)

HX̃(x̃, z̃, 2t)dm̃(z̃).

Thus

m(Bs(y))H1(x, y, t) =
∑
γ∈Γ

m̃(Bs(γỹ))HX̃(x̃, γỹ, t)

≤ C(N) exp

(
s2

4t

)∫
X̃

HX̃(x̃, z̃, 2t)dm̃(z̃).

The final inequality in (A.9) comes from the Li-Yau inequality (2.9), Bishop-Gromov
inequality and [13, Lemma 2.7]. □

Corollary A.9. If s ∈ (0, r(y)], then

(A.10)
∑
γ∈Γ

exp

(
− d̃(x̃, γỹ)2

3t

)
≤ C(N) exp

(
s2

4t

)
m̃(B√

t(x̃))
2

m(Bs(y))
.
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Proof. Since the Li-Yau inequality (2.9) implies

H1(x, y, t) =
∑
γ∈Γ

HX̃(x̃, γỹ, t) ≥ C(N)

m̃(B√
t(x̃))

∑
γ∈Γ

exp

(
− d̃(x̃, γỹ)2

3t

)
,

we have (A.10) because of (A.9). □

In order to continue the proof of Proposition 4.1, let us recall local notions of
Sobolev functions and Laplacian.

Definition A.10 (Local Sobolev and Laplacian). Let us denote by H1,2
loc (X, d,m)

the set of all f ∈ L2
loc(X,m) satisfying that φf ∈ H1,2(X, d,m) for any φ ∈

Lipc(X, d) and that |∇f | ∈ L2
loc(X,m), where |∇f | makes sense on X because of the

locality of the minimal relazed slope, where Lipc(X, d) denotes the set of all Lips-
chitz functions on X with compact supports. Moreover we denote by Dloc(∆) the

set of all f ∈ H1,2
loc (X, d,m) satisfying that there exists a (unique) ψ ∈ L2

loc(X,m),
denoted by ψ = ∆f if no confusion, such that

(A.11)

∫
X

〈∇f,∇φ〉dm = −
∫
X

ψφdm, for any φ ∈ Lipc(X, d).

The stability properties of local Sobolev functions and of local Laplacian can be
found in [4].

Lemma A.11. H1 is locally Lipschitz continuous. Moreover for all y ∈ X and
t > 0, H1(x, y, t) viewed as a function of x on X, is in Dloc(∆) with

(A.12) ∆xH1(x, y, t) =
∑
γ∈Γ

∆xHX̃(x̃, γy, t) =
∑
γ∈Γ

d

dt
HX̃(x, γy, t), in L2(X,m).

Proof. Let A be a finite subset of Γ. Then for any s ∈ (0, r(y)] by (2.10) and
Corollary A.9 we have∣∣∣∣∣∣∇x̃

∑
γ∈A

HX̃(x̃, γỹ, t)

∣∣∣∣∣∣ ≤
∑
γ∈Γ

|∇x̃HX̃(x̃, γỹ, t)|

≤ C(N)√
tm̃(B√

t(x̃))

∑
γ∈Γ

exp

(
− d̃(x̃, γỹ)2

5t

)

≤ C(N)√
tm̃(B√

t(x̃))
· exp

(
s2

t

)
·
m̃(B√

5t/3
(x̃))2

m(Bs(y))

≤ C(N) exp

(
s2

t

)
m̃(B√

t(x̃))√
tm(Bs(y))

(A.13)

which gives an equi-local Lipschitz continuity of {
∑

γ∈A HX̃(x̃, γỹ, t)}A⊆Γ on X̃ ×
X̃ × (0,∞) because of (A.7). Thus letting A ↑ Γ completes the proof of the desired
local Lipschitz continuity.

The remaining statements come from the dominated convergence theorem, the
stability of the Laplacian and an estimate;∣∣∣∣∣∣ ddt

∑
γ∈A

HX̃(x̃, γỹ, t)

∣∣∣∣∣∣ ≤ C(N) exp

(
s2

t

)
·
m̃(B√

t(x̃))

tm(Bs(y))
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which is proved by a similar way as in (A.13) via (2.11). □

Lemma A.12. For all x ∈ X and t > 0, H1(x, y, t) viewed as a function of y on
X, is in D(∆) if some fundamental domain D of X has the m-negligible topological
boundary.

Proof. Since∫
X

H1(x, y, t)
2dm(y) =

∑
γ1,γ2∈Γ

∫
D

HX̃(x̃, γ1ỹ, t)HX̃(x̃, γ2ỹ, t)dm̃(ỹ)

=
∑

γ1,γ2∈Γ

∫
D

HX̃(γ−1
1 x̃, ỹ, t)HX̃(x̃, γ2ỹ, t)dm̃(ỹ)

=
∑

γ1,γ2∈Γ

∫
D

HX̃(γ2γ
−1
1 x̃, γ2ỹ, t)HX̃(x̃, γ2ỹ, t)dm̃(ỹ)

=
∑
γ2∈Γ

∫
D

∑
γ1∈Γ

HX̃(γ2γ
−1
1 x̃, γ2ỹ, t)

HX̃(x̃, γ2ỹ, t)dm̃(ỹ)


=
∑
γ2∈Γ

∫
D

∑
γ∈Γ

HX̃(γx̃, γ2ỹ, t)

HX̃(x̃, γ2ỹ, t)dm̃(ỹ)


=
∑
γ∈Γ

∑
γ2∈Γ

∫
X1

HX̃(γx̃, γ2ỹ, t)HX̃(x̃, γ2ỹ, t)dm̃(ỹ)


=
∑
γ∈Γ

∫
X̃

HX̃(γx̃, ỹ, t)HX̃(x̃, ỹ, t)dm̃(ỹ)

= H1(x̃, x̃, 2t) <∞,(A.14)

we have H1 ∈ L2(X,m). On the other hand,∫
X

|∇yH1|2(x, y, t)dm(y) =

∫
D

〈
∇ỹ

∑
γ∈Γ

HX̃(x̃, γỹ, t),∇ỹ

∑
γ∈Γ

HX̃(x̃, γỹ, t)

〉
dm̃(ỹ)

≤
∑

γ1,γ2∈Γ

∫
D

∣∣∇ỹHX̃(x̃, γ1ỹ, t)
∣∣ · ∣∣∇ỹHX̃(x̃, γ2ỹ, t)

∣∣ dm̃(ỹ).(A.15)

Since the Li-Yau inequalities (2.9) and (2.10) show for x̃, ỹ ∈ X̃

|∇ỹHX̃(x̃, ỹ, t)| ≤ C(N)√
tm(B√

t(ỹ))
exp

(
− d̃(x̃, ỹ)2

5t

)
≤ C(N)√

t
HX̃(x̃, ỹ, 2t),

the right hand side of (A.15) is bounded above by

C(N)

t

∑
γ1,γ2∈Γ

∫
D

HX̃(x̃, γ1ỹ, 2t)HX̃(x̃, γ2ỹ, 2t)dm̃(ỹ)

which is also bounded above by C(N)t−1H1(x, x, 4t) because of (A.14). Thus H1 ∈
H1,2(X, d,m). Similarly, using Lemma A.11 with

|∆ỹHX̃(x̃, ỹ, t)| ≤ C(N)t−1HX̃(x̃, ỹ, 2t)
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which is justified by the Li-Yau inequalities (2.9) and (2.11) (or [27, Theorem 3]),
we have ∫

X

(∆yH1(x, y, t))
2
dm(y) ≤ C(N)

t2
HX̃(x̃, x̃, 4t) <∞.

Thus H1 ∈ D(∆). □

From now on we assume that some fundamental domain D has the m-negligible
topological boundary (see also Remark A.7). Note that∫

X

H1(x, y, t)dm(ỹ) =
∑
γ∈Γ

∫
D

HX̃(x̃, γỹ, t)dm̃(ỹ) =

∫
X̃

HX̃(x̃, ỹ, t)dm̃(ỹ) = 1.

Then thanks to Lemma A.12, for all f ∈ L2(X,m), x ∈ X and t > 0,

h1t f(x) :=

∫
X

H1(x, y, t)f(y)dm(y)

is well-defined.

Lemma A.13. Let f ∈ Cc(X). Then we have the following;

(1) h1t f(x) = ht(f ◦ π)(x) with h1t f(x) → f(x) as t → 0+ for any x ∈ X. In
particular h1t f L

2-locally strongly converge to f as t→ 0+;
(2) for any t > 0, h1t f ∈ D(∆) with d

dth
1
t f = ∆h1t f in L2(X,m).

Proof. Since (2) is a direct consequence of Lemma A.11, let us check (1). By

definition of X̃, we have

ht(f ◦ π)(x̃) =
∫
X̃

HX̃(x̃, ỹ, t)f ◦ π(ỹ)dm̃(ỹ)

=
∑
γ∈Γ

∫
D

HX̃(x̃, γỹ, t)f ◦ π(ỹ)dm̃(ỹ)

=

∫
X

H1(x, y, t)f(y)dm(y) = h1t f(x).(A.16)

On the other hand since f ◦ π ∈ Cb(Y ), thanks to [58, Lemma 2.54], we know
ht(f ◦ π)(x) converges to f ◦ π(x), namely h1t f(x) → f(x). The final statement of
(1) comes from this with the dominated convergence theorem and a fact |h1t f(x)| ≤
sup |f |. □

As an immediate consequence of Lemma A.13 (1), we have h1tifi(x) → f(x) for
all x ∈ X, ti → 0+ and uniform convergent sequence fi → f in Cc(X). We are now
in a position to prove Proposition 4.1.

Lemma A.14. We have H1 = HX . Namely Proposition 4.1 holds.

Proof. Fix w ∈ X. For any R ≥ 1, take a Lipschitz cut-off φR : X → [0, 1] with
φR ≡ 1 on BR(w), suppφR ⊂ B2R(w) and |∇φR| ≤ 2R−1. Then Lemma A.13 (1)
with the continuity of H1 allows us to show

(A.17) H(x, y, t)−H1(x, y, t) =

∫ t

0

d

ds

∫
X

φR(z)
2H1(x, z, t− s)HX(z, y, s)dm(z)ds.
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Moreover, Lemma A.13 (2) also allows us to prove that the right hand side of (A.17)
is equal to

−
∫ t

0

∫
X

φR(z)
2∆zH1(x, z, t− s) · HX(z, y, s)dm(z)ds

+

∫ t

0

∫
X

φR(z)
2H1(x, z, t− s)∆zHX(z, y, s)dm(z)ds,(A.18)

namely, H− H1 is equal to

2

∫ t

0

∫
X

φR(z)HX(z, y, s) 〈∇zH1(x, z, t− s),∇φR(z)〉 dm(z)ds

− 2

∫ t

0

∫
X

φR(z)H1(x, z, t− s) 〈∇zHX(z, y, s),∇φR(z)〉 dm(z)ds.(A.19)

On the other hand the first term of (A.19) can be estimated as;

2

∣∣∣∣∫ t

0

∫
X

φR(z)HX(z, y, s) 〈∇zH1(x, z, t− s),∇φR(z)〉 dm(z)ds

∣∣∣∣
≤ 4

R

∫ t

0

(∫
B2R(w)\BR(w)

H2
X(z, y, s)dm(z)

) 1
2

·

(∫
B2R(w)\BR(w)

|∇zH1(x, z, t− s)|2dm(z)

) 1
2

ds

≤ 4

R

∫ t

0

(∫
X\BR(w)

H2
X(z, y, s)dm(z)

) 1
2

·

(∫
X\BR(w)

|∇zH1(x, z, t− s)|2dm(z)

) 1
2

ds.

(A.20)

Thus letting R → ∞ with the monotone convergence theorem and Lemma A.12
shows that the first term of (A.19) converges to 0. Similarly we see that under the
same limit of R → ∞, the second term of (A.19) also converges to 0. Thus letting
R→ ∞ in (A.17), we have H = H1. □

A.3. Proof of Lemma 4.5; Duhamel principle. Since the proof is essentially
similar to the discussions in the previous subsection, let us provide only an outline
of the proof because this situation is simpler than the previous one since the space

Ỹ is compact. Firstly let us denote by H2 the right hand side of (4.6). Then it

is trivial that H2 is locally Lipschitz on Ỹ × Ỹ × (0,∞) because HȲ and HỸ are

locally Lipschitz. Thus in particular for all f ∈ L2(Ỹ , m̃), x ∈ X and t > 0,

(A.21) h2t f(x) :=

∫
Ỹ

H2(x, y, t)f(y)dm̃(y)

is well-defined. Recall (4.5);

(A.22) |Q(z, y, t)| ≤ exp

(
−C
t

)
.

In particular for any f ∈ C(Ỹ ) we have

(A.23) lim
s→0+

∫
Ỹ

f(z)Q(z, y, s)dm̃(z) = 0

and

(A.24) lim
t→0+

h2t f(x) =

∫
Ỹ

K(x, y, t)f(y)dm̃(y) = f(x),
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where the final equality in (A.24) comes from the definition of K.
Then recalling a formula;

(A.25)
d

dt

∫ t

0

φ(t, s)ds =

∫ t

0

d

dt
φ(t, s)ds+ φ(t, s),

we have

d

dt
H2(x, y, t) =

d

dt
K(x, y, t)−

∫ t

0

∫
Ỹ

HỸ (x, z, s)
d

dt
Q(z, y, t− s)dm̃(z)ds

− lim
u→0+

∫
Ỹ

HỸ (x, z, t− u)Q(z, y, u)dm̃(z)

=
d

dt
K(x, y, t) +

∫ t

0

∫
Ỹ

HỸ (x, z, s)
d

ds
Q(z, y, t− s)dm̃(z)ds

=
d

dt
K(x, y, t) + lim

u→0

∫
Ỹ

HỸ (x, z, t− u)Q(z, y, u)dm̃(z)− Q(x, y, t)

−
∫
Ỹ

∫ t

0

d

ds
HỸ (x, z, s) · Q(z, y, t− s)dsdm̃(z)

=
d

dt
K(x, y, t)− Q(x, y, t)−

∫
Ỹ

∫ t

0

d

ds
HỸ (x, z, s) · Q(z, y, t− s)dsdm̃(z)

= ∆xK(x, y, t)−
∫
Ỹ

∫ t

0

∆xHỸ (x, z, s) · Q(z, y, t− s)dsdm̃(z)

= ∆xH2(x, y, t).(A.26)

In particular combining (A.26) with (A.24) shows that for any f ∈ C(Ỹ ), we have
d
dth

2
t f = ∆h2t f and h2t f → f as t → 0+ in L2(Ỹ , m̃) because of the dominated

convergence theorem with |h2t f | ≤ sup |f | by definition. In particular h2t f coincides

with the heat flow h̃tf on Ỹ .
In order to conclude that H2 = HỸ , it is enough to check h2t f = h̃tf for any

f ∈ L2(Ỹ , m̃) because of the continuity of H2. Fix f ∈ L2(Ỹ , m̃) and take a

sequence fi ∈ C(Ỹ ) with fi → f in L2(Ỹ , m̃). It is known that h̃tfi → h̃tf in

L2(Ỹ , m̃) in general. In particular after passing to a subsequence, h̃tfi(x) → h̃tf(x)

as i→ ∞ for m̃-a.e. x ∈ Ỹ . Finally since∣∣h2t fi(x)− h2t f(x)
∣∣ ≤ ∫

Ỹ

H2(x, y, t) |fi(y)− f(y)| dm̃(y)

≤
(∫

Ȳ

H2(x, y, t)
2dm̃(y)

)1/2

· ‖fi − f‖L2 → 0,(A.27)

we have h2t f(x) = h̃tf(x) for m̃-a.e. x ∈ Ỹ because of h2t fi(x) = h̃tfi(x). Thus we
have Lemma 4.5.
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spaces and applications to spaces with Ricci bounds from below. Invent. Math., 195:289–391,

2014.
[3] Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré. Metric measure spaces with Riemannian
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[28] Qin Deng. Hölder continuity of tangent cones in RCD(K,N) spaces and applications to non-
branching. arXiv:2009.07956, 2020

[29] Guido De Philippis and Nicola Gigli. Non-collapsed spaces with Ricci curvature bounded
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