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Abstract. Using Hamilton’s Ricci flow we shall prove several pinching results for integral
curvature. In particular, we show that ifp > n/2 and theLp norm of the curvature tensor is
small and the diameter is bounded, then the manifold is an infra-nilmanifold. We also obtain
a result on deforming metrics to positive sectional curvature.

1. Introduction

The goal of this note is to prove several pinching results for manifolds with integral
curvature bounds. Integral pinching has been studied extensively in [3], [2], [12],
[13], [15], [8]. One distinct feature in our work is that assumptions on curvature
are entirely in terms of integral bounds and no assumption on volume, injectivity
radius or Sobolev constant is made.

Let us fix some notation before we state the results. For a Riemannian manifold
(M, g), we will denote by sec: M → R the minimum of the sectional curvature
at each point, byR : 32T M → 32T M the curvature operator, by Ric the Ricci
curvature, and by Scal the scalar curvature.

For functions and tensors we shall consistently use thenormalizedLp norm
defined by

‖u‖p =
(

1

volM

∫
M

|u|p
)1/p

‖R ± I‖p =
(

1

volM

∫
M

|R ± I |p
)1/p

Our notation for the integral bounds for the Ricci tensor is as follows. For each
x ∈ M let r (x) denote the smallest eigenvalue for the Ricci tensor Ric: TxM →
TxM, and for any fixed numberκ let

ρκ (x) = |min {0, r (x) − (n − 1)κ}|
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be the part of the Ricci tensor which lies below(n − 1) κ. Then set

k̄ (p, κ, r) = sup
x∈M

(
1

volB (x, r)
·
∫

B(x,r)

ρp
κ

) 1
p

,

k̄ (p, κ) =
(

1

volM
·
∫

M

ρp
κ

) 1
p = ‖ρκ‖p.

These curvature quantities evidently measure how much Ricci curvature lies below
(n−1)κ in the normalized integral sense. Moreover,k̄ (p, κ, r) = 0 iff Ric ≥ (n−
1)κ. Note that if we assume thatM has a diameter bound of the form diamM ≤ D,
then it suffices to bound̄k (p, κ) rather than̄k (p, κ, r) .

Theorem 1.1.Givenp > n/2 andK, D > 0, there exists anε = ε(n, p, D, K)

such that if a closed Riemannian manifold(Mn, g) satisfiesdiamM ≤ D, k̄(p, 0) ≤
K and

‖R ∓ I‖n/2 ≤ ε,

thenM admits a metric of constant sectional curvature±1.

Note that ifk̄ (p, κ) is bounded for someκ and in addition‖Ric∓(n − 1) g‖n/2
is small, then for anyq ∈ (n/2, p) it follows that k̄(q, ±1) is small. Thus in the
above theorem we implicitly have a smallness condition onk̄ (p, ±1) . Also, note
that both conditions on the integral curvature are satisfied if we imposeLp-curvature
pinching (p > n/2). Thus we have:

Corollary 1.1. Givenp > n/2 andD > 0, there exists anε = ε(n, p, D) such
that if a closed Riemannian manifold(Mn, g) satisfiesdiamM ≤ D and

‖R ∓ I‖p ≤ ε,

thenM admits a metric of constant sectional curvature±1.

It should also be remarked that in case we assume thatk̄ (p, 1, r) ≤ ε for some
fixed r it follows from [11] that the manifold has diameter≤ π + O (ε) , thus the
above results can be modified in a trivial way in the positive case.

Now for the pinching around zero curvature,

Theorem 1.2.Givenp > n/2 andK, D > 0, there exists anε = ε(n, p, D, K)

such that if a closed Riemannian manifold(Mn, g) satisfiesdiamM ≤ D, k̄(p, 0) ≤
K and

‖R‖n/2 ≤ ε,

thenM is diffeomorphic to an infra-nilmanifold.

Again, both conditions on integral curvature are satisfied if theLp-curvature is
already small (p > n/2), giving a very clean generalization of Gromov’s almost
flat manifold theorem [4] to integral curvature.
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Corollary 1.2. Givenp > n/2 andD > 0, there exists anε = ε(n, p, D) such
that if a closed Riemannian manifold(Mn, g) satisfiesdiamM ≤ D and

‖R‖p ≤ ε,

thenM is diffeomorphic to an infra-nilmanifold.

The above pinching theorems were proved with similar techniques in [8], but
there it was assumed that one has a pointwise curvature bound andL2 pinching
around±1 or 0. In [13] D. Yang has a very similar result about F-structures of
manifolds with pinched integral curvature bounds.

Theorem 1.3.Givenp > n/2, there exists anε = ε(n, p) such that if a closed
Riemannian manifold(Mn, g) satisfies either∫

M

|R|n/2 ≤ ε,

(volM)(2p/n)−1
∫

M

|Ric|p ≤ ε

or the stronger condition

(volM)(2p/n)−1
∫

M

|R|p ≤ ε,

thenM admits an F-structure of positive rank.

It is curious that this result does not immediately yield an infranilmanifold
theorem even if one assumes a diameter bound. The reason for this lies in the
different type of integral curvature conditions that are used.

Note that the implicit smallness condition onk̄(p, ·) in Theorems 1 and 2 is
neccessary, as there are manifolds with smalln

2-norm of curvature tensor but with
arbitrary large Betti numbers, cf. [2, Appendix]. It should also be noted that one
can replace the bound on̄k(p, ·) by a bound on the Sobolev constant as we only
use the smallness ofk̄(p, ·) to obtain a bound on the Sobolev constant that appears
in the inequality

‖f − 1

volM

∫
f ‖ 2n

n−2
≤ CS‖∇f ‖2.

As with previous integral pinching results the basic idea here is to use Hamilton’s
Ricci flow [7] to deform the metric. We are able to obtain better results because
of the Sobolev constant bounds established by Petersen-Sprouse [11] for integral
curvature. Also we observe, as in [14], that the Moser iteration for the Ricci flow
(quadratic nonlinearity) still goes through in the borderline case, provided that we
have certain smallness condition, which is satisfied in the pinching situation.

For metric deformation we also note the following result about deforming met-
rics to positive curvature metrics.

Theorem 1.4.Givenq > 1, C > 1, there exists anε = ε(n, p, C) such that if a
Riemannian manifold(Mn, g) satisfies

| sec| ≤ C, ‖(sec−1)−‖q ≤ ε,

thenM has a metric with positive sectional curvature.
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2. Deformation of metrics

Given an initial metricg0 onM, the Ricci flow

∂gt

∂t
= −2Ric(g) ,

g (0) = g0

provides a very nice deformation of the initial metric. In this deformation the cur-
vature operatorR evolves by the following parabolic equation [7] and [9]:

∂Rt

∂t
= −1Rt + Q (Rt ) ,

where1 = ∇∗∇ denotes the connection Laplacian andQ (Rt ) is quadratic in the
curvature tensor. By way of comparison recall that Lichnerowicz has shown that
the curvature tensor for an Einstein metric satisfies

0 = −1R + Q̃ (R) .

Thus the above evolution equation for the curvature is a parabolic analogue of
the corrosponding elliptic equation for Einstein metrics. The parabolic equation
obviously has the advantage that it works for all metrics. The two equations lead
to very similar results (see e.g., [10] for a discussion on how the elliptic equation
can be used).

Define the Sobolev constantCS = CS(g) of the metricg onM to be the smallest
constant such that

‖f − 1

volM

∫
f ‖ 2n

n−2
≤ CS‖∇f ‖2.

Using Hölder’s inequality this leads to

‖f ‖ 2n
n−2

≤ CS‖∇f ‖2 + ‖f ‖2.

An essential ingredient in estimating the curvature evolution is Moser’s weak
maximum principle, which is a parabolic analogue of the more standard elliptic
maximum principle. In the theorem we assume thatgt evolves according to the
Ricci flow. The normalized volume form then satisfies an equation of the form

∂

∂t

dvolgt

volM
= h

dvolgt

volM

for h = Scal− 1
volM

∫
M

Scal. In particular, we have the universal estimates

‖h‖p ≤ 2‖Scal‖p ≤ 2 (n − 1) ‖Ric‖p

and a similar estimate in terms of the traceless Ricci.
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Theorem 2.1.Let f, b be smooth nonnegative functions onM × [0, T ] and c a
nonnegative constant satisfying the following equation onM × [0, T ]

∂f

∂t
≤ 1f + bf + cf, (2.1)

where1 is the Laplace-Beltrami operator of the metricgt . LetCS = max
0≤t≤T

CS(gt ).

Assume that either

1) for somep > n/2,

max
0≤t≤T

(‖b‖p + ‖h‖p) ≤ β ,

or
2) b = f and

max
0≤t≤T

(‖f ‖n/2 + ‖h‖n/2
) ≤ 1

(n + 2)C2
S

,

max
0≤t≤T

‖h‖r ≤ β, r > n/2.

Then givenq > 1, there exsits a constantC = C(n, p, q, β, c, CS, T ) such that
for all x ∈ M andt ∈ (0, T ]

‖ft‖q ≤ eCt‖f0‖q,

|f (x, t)| ≤ Ct−n/2q‖f0‖q

whereft (x) = f (x, t).

Proof. In the presence of assumption 1) a fairly standard parabolic iteration argu-
ment can be used (see [12] and also [1]). Note, however, that since we have only
integral bounds for∂

∂t
gt we must be a little more careful. As we shall see below the

roles ofh andb are similar so no new problems actually occur. For case 2) we show
below that it can be reduced to a slightly singular version of 1) but withb = f (see
also [14, Appendix A]).

First we need to check what the time derivative of‖f p‖1 is

∂

∂t
‖f p‖1 = ∂

∂t

1

volM

∫
M

f pdvolgt

=
∫

M

∂f p

∂t

dvolgt

volM
+
∫

M

f p ∂

∂t

dvolgt

volM

= ‖∂f p

∂t
‖1 + ‖f ph‖1

Using this estimate we can now multiply the partial differential inequality (2.1)
by f p−1 and integrate to get (forp > 1)

1

p

∂

∂t
‖f p‖1 ≤ 1

volM

∫
M

(f p−11f + (b − h) f p + cf p)

≤ −4(p − 1)

p2 ‖∇f p/2‖2
2 + ‖ (b − h) f p‖1 + c‖f p‖1 (2.2)
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We can use Hölder’s inequality to get

‖ (b − h) f p‖1 ≤ (‖b‖n/2 + ‖h‖n/2
) ‖f p‖n/(n−2),

The Sobolev inequality can be used on the first term on the right-hand of ( 2.2) as
follows

−4(p − 1)

p2 ‖∇f p/2‖2
2 ≤ −4(p − 1)

p2

1

C2
S

(
‖f p/2‖2n/(n−2) − ‖f ‖2

)2

= −4(p − 1)

p2

1

C2
S

‖f p‖n/(n−2) − 4(p − 1)

p2

1

C2
S

‖f p/2‖2
2

+2
4(p − 1)

p2

1

C2
S

‖f p/2‖2n/(n−2)‖f p/2‖2

≤ −3(p − 1)

p2

1

C2
S

‖f p‖n/(n−2) + 60(p − 1)

p2

1

C2
S

‖f p‖1.

Inserting this in (2.2) we get

1

p

∂

∂t
‖f p‖1 ≤

(
−3(p − 1)

p2

1

C2
S

+ ‖b‖n/2 + ‖h‖n/2

)
‖f p‖n/(n−2)

+
(

60

pC2
S

+ c

)
‖f p‖1.

Therefore, whenp ≥ 2 and

‖b‖n/2 + ‖h‖n/2 ≤ 1

2pC2
S

we obtain

∂

∂t
‖f p‖1 + 1

S2‖f p‖n/(n−2) ≤
(

60

C2
S

+ cp

)
‖f p‖1 = C1 (p) ‖f p‖1 (2.3)

This implies in particular that

∂

∂t
‖f p‖1 ≤ C1 (p) ‖f p‖1 (2.4)

and thus

‖f p
t ‖1 ≤ ‖f p

t0
‖1e

C1(p)(t−t0) = C2 (p, T ) ‖f p
t0

‖1 (2.5)

Integrating (2.3) withp = n/2 we obtain

‖f n/2
t ‖1 − ‖f n/2

0 ‖1 +
∫ t

0

1

C2
S

‖f n/2‖n/(n−2) ≤
∫ t

0
C1 (n/2) ‖f n/2‖1

Using the estimate (2.5) forp = n/2 andt0 = 0 this leads to

‖f n/2
τ ‖n/(n−2) ≤ t−1C3 (n/2, T ) ‖f n/2

0 ‖1
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for someτ ∈ (0, t) . We can then combine this with the estimate (2.5) forp =
n2/ (2 (n − 2)) andt0 = τ to get the estimate

‖f n2/(2(n−2))
t ‖1 ≤ C2

(
n2/ (2 (n − 2)) , T

) (
t−1C3 (n/2, T ) ‖f n/2

0 ‖1

)n/(n−2)

.

Hence

‖ft‖n2/(2(n−2)) ≤ t−2/nC4‖f0‖n/2

Sincef = b and‖h‖r , r > n/2 is bounded, we are now reduced to a singular
version of 1) (withp = n2/ (2 (n − 2)) = 1 + n/2 + 2/ (n − 2) ). But this can be
dealt with in a similar way—the point is that the cut off procedure introduces the
singular factor int anyway. More precisely, an assumption onb of the type

‖b‖p ≤ βt−α

for p > n
2 and some nonnegative constantα will produce

|f (x, t)| ≤
(
Ct

− αp
p−n/2 + C(n, p)t−1

) n+2
2q

(∫ t

0
‖f ‖q

q

) 1
q

for q > 1. Takingp = 1 + n/2 + 2/ (n − 2), andα = 2/n, we obtain

|f (x, t)| ≤ Ct
− n

2q max‖f ‖q .

But from (2.4) we have

‖ft‖q ≤ eCt‖f0‖q.

Alternatively one can also use 1) but start the flow at timet0 > 0 rather than 0
and obtain the desired estimate.ut

3. Proof of theorems

Using Moser’s weak maximum principle from Theorem 4 we are now in a position
to prove the results mentioned in the introduction.

Applying Moser iteration to the curvature evolution equation we will prove the
following

Theorem 3.1.Givenp > n/2, K, D > 0andκ ∈ R there existε (n, p, κ, D) > 0,
T (n, p, κ, D, K) > 0, andC (n, p, κ, D) such that for any manifold satisfying

diamM ≤ D, ‖R‖p ≤ K, k̄ (p, κ) ≤ ε

the Ricci flow has a unique smooth solutiongt for t ∈ [0, T ] satifying

‖Rt‖p ≤ 2K, ‖Rt‖∞ ≤ C (n, p, κ, D) t−n/2pK
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Proof. We apply the continuity method as in [12] and [1]. For the initial metric one
has from [11] a bound for the Sobolev constant in terms ofn, p, κ, D provided that
k̄ (p, κ) is sufficiently small. Thus we inially have bounds of the type

‖R‖p ≤ K, CS ≤ H(n, p, κ, D).

Since the Ricci flow exists for a short time, we can assume that for some maximal
interval[0, T ), T > 0,

‖Rt‖p ≤ 2K

CS(gt ) ≤ 2H(n, p, κ, D).

We need to check howT depends on the assumptions. By Moser’s weak maximum
principle

|Rt |∞ ≤ C(n, p, κ, D)t
− n

2p K,

‖Rt‖p ≤ KeC(n,p,κ,D)t .

Furthermore,

1

CS(gt )
≥ inf

u∈C∞(M)

∫
M

(|∇u|2gt
+ u2)dvolgt(∫

M
|u|2n/(n−2)dvolgt

)(n−2)/n

= inf
u∈C∞(M)

Et (u),

andEt(u) satisfies (see [12])

d

dt
Et (u) ≥ −c(n)‖Ricgt ‖∞Et(u).

It follows then that

Et (u) ≥ H (n, p, κ, D) exp

(
−C (n, p, κ, D)

∫ t

0
|Rt | ds

)

≥ H (n, p, κ, D) exp
(
−C (n, p, κ, D) t1−n/2p

)
.

Therefore,

CS (gt ) ≤ H (n, p, κ, D) exp
(
C (n, p, κ, D) t1−n/2p

)
.

Consequently, there existsT (n, p, κ, D, K) > 0 such that ift < min(T , T (n,

p, κ, D, K)), then the metricgt will have a uniformly bounded curvature as one
approachesT . In particular, ifT < T (n, p, κ, D, K), then a theorem of Hamilton
[7] shows that the solution to the Ricci flow equation extends smoothly beyondT

(while preserving the required bounds), contradicting with the maximality ofT .
ut
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We note that by using 2) in the Moser’s weak maximum principle the above
argument goes through with only notational change if we initially have

‖R‖n/2 ≤ 1

2nC (n) H(n, p, κ, D)2 .

Note that the necessary bounds onh come from the curvature bounds. Thus when
we are on the interval where we assume‖R‖n/2 ≤ 1

nC(n)H(n,p,κ,D)2 we also have

‖h‖n/2 ≤ 1
nH(n,p,κ,D)2 . From this we derive theLp estimates forR and henceh

as in the proof of Theorem 4. We are then in a positition to use Theorem 5.
Our estimate then shows that if theε in Theorem 2 is chosen sufficiently small,

the metricg(T ) is a smooth Riemannian metric with small pointwise curvature
bound. Therefore we can apply Gromov’s almost flat manifold theorem [4]. This
finishes the proof of Theorem 2.

The proof of Theorem 1 follows a similar scheme. Assume that a compact
Reimannian manifoldM satisfies the assumption of Theorem 1, withε small. Let
g(t) be the unique solution to the Ricci flow. Now according to [8], the reduced
curvature tensor

R̃ = R ± I

satisfies the parabolic inequality

(
∂

∂t
− 1)|R̃|2 + |∇R̃|2 ≤ 4

n
|R̃|2 + c(n)|R̃|3.

Making use of Kato’s inequality one derives

∂

∂t
|R̃| ≤ 1|R̃| + 4

n
|R̃| + c(n)|R̃|2.

Once again we can apply the continuity method together with Moser’s weak
maximum principle. Therefore, ifε is chosen sufficiently small, the metricg(T ) is
a smooth Riemannian metric with small uniform curvature pinching. We can then
sply appeal to the pinching results of Grove-Karcher-Ruh (see [6]) and Gromov
(see [5]) to finish the proof.

We finally establish Theorem 3. Once again we run the Ricci flow. Let sect =
sec(t, x) denote the pointwise minimum of the sectional curvature forgt . This
function satisfies

∂

∂t
sec≥ 1 sec−c (n) |R|2 ,

which implies

∂

∂t
(sec−1)− ≤ 1(sec−1)− + c (n) C2.

Let f = ((sec−1)− − c (n) C2t)+. Then

∂

∂t
f ≤ 1f.
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Therefore applying Moser’s iteration (in a much simpler situation) we arrive at

‖(sect −1)−‖∞ ≤ C1t
−n/2p‖(sec0 −1)−‖p + c (n) C2t.

We now chooset so thatc (n) C2t < 1/3 and then determineε so that

C1t
−n/2p‖(sec0 −1)−‖p < 1/3.

Thengt will have positive sectional curvature.
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