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Abstract. In [SWW16,HW17] it is shown that the difference of the first two eigenvalues of the
Laplacian with Dirichlet boundary condition on convex domain with diameter D of sphere Sn is

≥ 3 π
2

D2 when n ≥ 3. We prove the same result when n = 2. In fact our proof works for all
dimension. We also give an asymptotic expansion of the first and second Dirichlet eigenvalues of
the model in [SWW16].

1. Introduction

Let M be an n-dimensional Riemannian manifold and Ω ⊂ M a bounded convex domain with
diameter D. The spectrum of the Laplacian on Ω with respect to the Dirichlet or the Neumann
boundary condition is nonnegative and discrete. Furthermore, the first Dirichlet eigenvalue, λ1, is
positive and simple so that we can define the fundamental gap as

Γ(Ω) := λ2 − λ1 > 0.

There is a rich history towards estimating a lower bound for the fundamental gap depending on
geometric data. In particular, for convex domains in Rn, the fundamental gap conjecture states
that the fundamental gap is ≥ 3π2

D2 , where D is the diameter of the convex domain. This was proven
by B. Andrews and J. Clutterbuck in their celebrated work [AC11]. When M = Sn, [SWW16]
proved the same lower bound for dimensions n ≥ 3 and diameter D < π

2
. The diameter restriction

was removed by C. He and the third author in [HW17] by using parabolic methods and a delicate
construction of supersolutions to a one-dimensional nonlinear parabolic model. In fact, in the work
of [SWW16], the estimate holds for Mn

K , the simply connected spaces with constant curvature K,
with K ≥ 0. In this paper, by using a different model, we show that the fundamental gap estimate
for convex domain in Sn also holds for n = 2. In fact the proof works for all n and K ≥ 0.

Theorem 1.1. Let Ω ⊂ Mn
K(K ≥ 0) be a strictly convex domain with diameter D, λi (i = 1, 2)

be the first two eigenvalues of the Laplacian on Ω with Dirichlet boundary condition. Then

(1.1) λ2 − λ1 ≥ 3
π2

D2
.

The key to proving this is to show the following log-concavity of the first eigenfunction.

Theorem 1.2. Given Ω ⊂ Mn
K a bounded strictly convex domain with diameter D and K ≥ 0,

let φ1 > 0 be a first eigenfunction of the Laplacian on Ω. Then ∀x, y ∈ Ω, with x 6= y, and
γ(t), t ∈ [−d

2
, d

2
] the unique unit-speed length minimizing geodesic connecting x to y,

(1.2) 〈∇ log φ1(y), γ′(d
2
)〉 − 〈∇ log φ1(x), γ′(−d

2
)〉 ≤ −2 π

D
tan
(
πd
2D

)
+ (n− 1) tnK(d

2
)
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holds (see (2.2) for the definition of tnK), which gives

Hess (log φ1) ≤ −
(
π2

D2
− n− 1

2
K

)
id.

When K = 0, this recovers the log-concavity proved in [AC11]. When n = 3, this log-concavity
is the same log-concavity as in [SWW16, Theorem 1.5], referred as sphere model. In general there
is no direct comparison. But when KD2 is small, this log-concavity is worse than the sphere model
for n > 3 but better than the sphere model for n = 2, see Remark 5.4 for details.

We also give an asymptotic expansion of the first and second Dirichlet eigenvalues of the sphere
model in [SWW16]. Recall λ̄1(n,D,K), λ̄2(n,D,K) are the first and second Dirichlet eigenvalues
of

(1.3) ϕ′′(s)− (n−1)K
4

(
n−3

cs2K(s)
− (n− 1)

)
ϕ = −λϕ

on [−D
2
, D

2
] (see (2.1) for definition of csK). When n = 1, 3 or K = 0, one can find the eigenvalues

and eigenfunctions explicitly and the gap λ̄2(n,D,K)− λ̄1(n,D,K) = 3 π2

D2 . In general one can not

find the eigenvalues explicitly. When K > 0, as (cs−2
K (s))′′ ≥ 0, λ̄2(n,D,K)− λ̄1(n,D,K) > 3 π2

D2

when n > 3, but < 3 π2

D2 when n = 2 [AB89].

Proposition 1.3. For K ∈ R,

λ̄1 =
π2

D2
−(n− 1)

2
K+

(n− 1)(n− 3)

48π2
(π2−6)D2K2+

(n− 1)(n− 3)

480π4
D4K3(π4−20π2+120)+O(K4).

and

λ̄2 =
4π2

D2
−(n− 1)

2
K+

(n− 1)(n− 3)

48π2

(
π2 − 3

2

)
D2K2+

(n− 1)(n− 3)

480π4
D4K3

(
π4 − 5π2 +

15

2

)
+O(K4).

Hence

λ̄2(n,D,K)−λ̄1(n,D,K) = 3
π2

D2
+

3(n− 1)(n− 3)

32

D2K2

π2
+

(n− 1)(n− 3)

480π4
D4K3

(
15π2 − 225

2

)
+O(K4)

and for n ≥ 3, K small,

(1.4) λ̄2(n,D,K)− λ̄1(n,D,K) ≥ 3
π2

D2
+

3(n− 1)(n− 3)

32

D2K2

π2
.

Remark 1.4. The estimate (1.4) gives an explicit lower bound which is bigger than 3 π2

D2 when
KD2 is small and n ≥ 3. On the other hand the estimate seems to be not true when KD2 is big.
In fact beginning with the K5 order, the coefficient changes sign for some n > 3, instead of at
n = 3, see Section 5.1.

Outline of the paper. In §2 we establish the notations, definitions and preliminary lemmas
which we will use. In §3, we prove the key result on the log-concavity of the first eigenfunction by
comparing with the one-dimensional model. In §4, we apply the log-concavity result to compare
the gap of the first and second eigenvalues between convex domains of spheres and the one-
dimensional model. In §5, we compute the asymptotics of the first and second eigenvalues of the
one-dimensional model used in [SWW16]. The analysis of the one-dimensional model in §5 is
interesting on its own and can be read independently.

Acknowledgement. We would like to thank Chenxu He for very careful reading of the first
version and very helpful comments and conversations.
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2. Preliminaries

We use the following notation

(2.1) snK(s) =


1√
K

sin(
√
Ks), K > 0

s, K = 0
1√
−K sinh(

√
−Ks) K < 0,

and csK(s) =


cos(
√
Ks), K > 0

1, K = 0

cosh(
√
−Ks), K < 0,

and

(2.2) tnK(s) =


√
K tan(

√
Ks), K > 0

0, K = 0

−
√
−K tanh(

√
−Ks) K < 0.

Definition 2.1. Given a semi-convex function u on a domain Ω, a function ψ : [0,+∞) → R is
called a modified modulus of concavity for u if for every x 6= y in Ω,

〈∇u(y), γ′(d
2
)〉 − 〈∇u(x), γ′(−d

2
)〉 ≤ 2ψ(d

2
) + (n− 1) tnK(d

2
),

where γ is the unit-speed length minimizing geodesic with γ(−d
2
) = x and γ(d

2
) = y, d = d(x, y).

The main tool we will use is the following preservation of the modified modulus of concavity
under the one-dimensional flow.

Theorem 2.2 (Theorem 3.6 [SWW16]). Let Ω ⊂Mn
K be a uniformly convex domain with diameter

D, where K ≥ 0. Let φ1 be a positive first eigenfunction of the Laplacian on Ω with Dirichlet
boundary condition associated to the eigenvalue λ1, and u : Ω × R+ → R be given by u(x, t) =
e−λ1tφ1(x). Suppose ψ0 : [0, D/2]→ R satisfies

〈∇ log u(y, 0), γ′(d
2
)〉 − 〈∇ log u(x, 0), γ′(−d

2
)〉 ≤ 2ψ0|s= d

2
+ (n− 1) tnK(d

2
).

Let ψ ∈ C0([0, D/2])× R+) ∩ C∞([0, D/2]× (0,∞)) be a solution of

(2.3)


∂ψ
∂t
≥ ψ′′(s, t) + 2ψψ′(s, t)− 2 tnK(s)(ψ′(s, t) + ψ2(s, t) + λ1) on [0, D/2]× R+

ψ(·, 0) = ψ0(·)
ψ(0, t) = 0

ψ(s, t) ≤ 0.

Then

〈∇ log u(y, t), γ′(d
2
)〉 − 〈∇ log u(x, t), γ′(−d

2
)〉 ≤ 2ψ(s, t)|s= d

2
+ (n− 1) tnK(d

2
)

for all t ≥ 0 and D ≤ π√
K

if K > 0.

Remark 2.3. Note that the stationary solutions of ψ satisfy

0 = (ψ′(s) + ψ2(s) + λ1)′ − 2 tnK(s)(ψ′ + ψ2(s) + λ1).

Solving the ODE y′−2 tnK(s)y = 0, we have y = y(0) cs−2
K (s). Hence an initial condition y(0) = 0

would imply the trivial solution in y, which is equivalent to ψ′ + ψ2 + λ1 = 0. The condition
y(0) = 0 can be obtained by adding the condition ψ′(0) = −λ1.

Additionally, we will use the following two lemmas which control the Hessian log of positive func-
tions vanishing at the boundary. Note that the function is not necessarily the first eigenfunction.
We first look at the Hessian log itself near the boundary and in the interior.



4 XIANZHE DAI, SHOO SETO, AND GUOFANG WEI

Lemma 2.4 (Lemma 3.4 [SWW16], Lemma 4.2 [AC11]). Let Ω be a uniformly convex bounded
domain in a Riemannian manifold Mn, and u : Ω×R+ → R a C2 function such that u is positive
on Ω, u(·, t) = 0 and ∇u 6= 0 on ∂Ω. Given T <∞, there exists r1 > 0 such that ∇2 log u|(x,t) < 0
whenever d(x, ∂Ω) < r1 and t ∈ [0, T ], and N ∈ R such that ∇2 log u|(x,t)(v, v) ≤ N‖v‖2 for all
x ∈ Ω and t ∈ [0, T ].

The next lemma controls the modulus of log concavity near the boundary. Let Ω̂ := Ω × Ω −
{(x, x) | x ∈ Ω}.

Lemma 2.5 (Lemma 3.5 [SWW16], Lemma 4.3 [AC11]). Let Ω and u be as in Lemma 2.4 and
let ψ be continuous on [0, D/2]×R+ and Lipschitz in the first argument, with ψ(0, t) = 0 for each
t with D = diam Ω. Then for any T < ∞ and β > 0, there exists an open set Uβ,T ⊂ M ×M
containing ∂Ω̂ such that

〈∇ log u(y, t), γ′(d
2
)〉 − 〈∇ log u(x, t), γ′(−d

2
)〉 − 2ψ

(
d(x, y)

2
, t

)
< β,

for all t ∈ [0, T ] and (x, y) ∈ Uβ,T ∩ Ω̂.

In order to use Theorem 2.2, we need to show that our model satisfies the differential inequality.

Lemma 2.6. Let λ1 be the first eigenvalue of the Laplacian on a convex domain Ω ⊂ Sn with
diam Ω = D. Then

(2.4)
π2

D2
≤ λ1.

Remark 2.7. This can be shown by comparing the Neumann eigenvalues, indexed by 0 = µ0 <
µ1 ≤ . . ., and Dirichlet eigenvalues on the sphere, namely for domains Ω ⊂ Sn whose boundary
has nonnegative mean curvature

µk(Ω) ≤ λk(Ω), ∀k ≥ 1.

This result can be found in [AL97] or [HW01]. Since π2

D2 ≤ µ1(Ω), where D = diam(Ω), one has
(2.4). We present an alternative short argument.

Proof. By domain monotonicity for Dirichlet eigenvalues, it suffices to show the lower bound for
balls since they are maximally convex sets. By separation of variables, the first eigenfunction is
given by

−y′′ − (n− 1) cot(x)y′ = λ1y, on (0, D
2

).

with y′(0) = 0, y(D
2

) = 0 and normalized so that y(0) = 1. From the Rayleigh quotient on
Euclidean space, we have

π2

D2
≤
´ D

2

0
(y′)2

´ D
2

0
y2

= −
´ D

2

0
yy′′´ D

2

0
y2

=
(n− 1)

´ D
2

0
cot(x)yy′ + λ1

´ D
2

0
y2

´ D
2

0
y2

≤ λ1,

since cot(x) ≥ 0, y ≥ 0 and y′ ≤ 0. (c.f. [AB01]). �
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3. Proof of Theorem 1.2

To prove the log-concavity estimate, we first need to construct a suitable initial function ψ0 and
then improve it by flowing so that it limits to the model solution. The construction is motivated
and parallel to the one in [AC11,HW17].

Note that for φ0 = cos(πs
D

), ψ0 = (log φ0)′ is a stationary solution of (2.3) that comes with the
trivial solution for the ODE in Remark 2.3 which will satisfy the differential inequality. Thus we
are interested in solutions of the ODE

(3.1) ψ′(s) + ψ2(s) +
π2

D2
= − c

cs2
K(s)

,

where c is some constant (Note the difference in sign convention in [HW17]). We choose the value
π2

D2 here so that the solution will converge to the Euclidean model. Note also that one of the
boundary conditions for ψ0 is singular. Therefore, we approximate it by a monotone sequence
whose boundary values are regular. To this end, fix an integer k > 0 and consider the solutions
ψLc and ψRc,k with

(3.2)

{
(ψLc )′ + (ψLc )2 + π2

D2 + c
cs2K(s)

= 0, on (0, D/2)

ψLc (0) = 0,

and

(3.3)

{
(ψRc,k)

′ + (ψRc,k)
2 + π2

D2 + c
cs2K(s)

= 0, on (0, D/2)

ψRc,k(
D
2

) = −k.

In the following, we will first note that the solutions can be constructed by turning the Riccati
equation into a second order linear equation and then solving it via the Prüfer transformation.
Then we point out that, for specific c = ck and k sufficiently large, the solutions comes from a
Robin eigenvalue problem (with additional normalization).

Indeed, consider the second order linear equation

(3.4) φ′′(s) +
π2

D2
φ(s) = − c

cs2
K(s)

φ(s), on [0, D/2]

The solutions to (3.4) and the solutions to (3.1) are related by ψ = (log φ)′. Therefore we need
positive solutions for (3.4).

The Prüfer transformation construction of the solution to (3.4) is to consider a “polar coordi-
nate” of the solutions {

φ′(z) = r(z) sin(q(z))

φ(z) = r(z) cos(q(z)),

for some function r(z) and q(z). The functions q(z) = arctan
(
φ′(z)
φ(z)

)
and r2(z) = (φ′(z))2 + φ2(z)

satisfies a system of first order ODEs

(3.5)

{
dq
dz

= −
(

c
cs2K(z)

+ π2

D2

)
cos2(q)− sin2(q)

q(0, q0, c) = q0,

and

(3.6)
{
dr
dz

=
(

1− c
cs2K(z)

− π2

D2

)
r(z) cos(q(z)) sin(q(z))
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The system is partially decoupled and we solve (3.5) first and then (3.6). Then

φLc (z) = exp

(ˆ z

0

tan q(s, 0, c)ds

)
is the positive solution which corresponds to the solution to (3.2). Similarly

φRc,k(z) = exp

(ˆ D
2

z

tan q(
D

2
− s, k, c)ds

)
gives rise to the solution of (3.3).

We now observe that, for sufficiently large k and specific c = ck, both solutions coincide and
come from an eigenvalue problem. First of all, by ODE comparison, we see that q(z, q0, c) is
strictly decreasing in c for all z. Furthermore, when q0 = 0 and c = 0, this corresponds to the
model situation φ0 = cos

(
π
D
z
)
. In terms of q, we have q(D

2
, 0, 0) = −π

2
.

Therefore, for sufficiently large k, there exists a unique ck < 0 such that

q(D
2
, 0, ck) = −π

2
+ arctan( 1

k
).

Then

φ0,1/k(z) =
1

k
exp

(
−
ˆ D

2

z

tan q(s, 0, ck)ds

)
with

φ′0,1/k(
D
2

) =
1

k
tan
(

arctan(k−1)− π

2

)
= −1

k
cot(arctan(k−1)) = −1.

is the solution to the Robin eigenvalue problem (with additional normalization)

(3.7)



(φ0,1/k)
′′(s) + π2

D2φ0,1/k(s) = − ck
cs2K(s)

φ0,1/k(s) on [0, D/2]

φ0,1/k(
D
2

) = 1/k

φ′0,1/k(
D
2

) = −1

φ′0,1/k(0) = 0

φ0,1/k > 0 on [0, D/2].

With this unique choice of ck, we have ψLck = ψRk,ck = (log φ0,1/k)
′.

Remark 3.1. When k →∞ and c→ 0, the solution is given explicitly by φ0,0 = φ0 = cos(πs
D

).

Remark 3.2. The constant ck in the Robin eigenvalue problem (3.7) depends on the value k and
is unique; in fact it is the smallest eigenvalue. Therefore the equality ψLck = ψRk,ck = (log φ0,1/k)

′

holds for the specific choice of ck when k is fixed. In the following section, we show how the
different choices for c in (3.2) and (3.3) affect the solutions.

3.1. Construction of supersolution. Unlike the case of Andrews-Clutterbuck [AC11], we do

not have freedom in choosing different values for the eigenvalue π2

D2 in (3.1) to use in our comparison.
However, we have freedom in the choice of c. Using different value for c, we will obtain upper
and lower bounds of our supersolution. By the ODE comparison, ψLc is strictly decreasing in c
on 0 < z ≤ D

2
and ψRk,c is strictly increasing in c. Now for k, there is some fixed ck that solves

(3.1) via (3.7). So for c < ck we have ψLc > (log φ0,1/k)
′ on 0 < z ≤ D

2
and for c > ck we have

ψRk,c > (log φ0,1/k)
′ on 0 ≤ z < D

2
.
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To obtain upper bounds, for λ2
+ ≥ −c− π2

D2 , by ODE comparison, we have

ψLc (z) ≤ λ+ tanh(λ+z),

and for λ2
− ≥ c

cs2K(D
2

)
+ π2

D2 , we have

ψRk,c(z) ≤
λ− tan(λ−(D

2
− z))− k

1 + k
λ−

tan(λ−(D
2
− z))

, z >
D

2
−

π
2

+ arctan( k
λ−

)

λ−
.

With the upper and lower bound, we can show existence of the supersolution

ψ+
k,s := min{ψLck−s, ψ

R
k,ck+s}

for any s ≥ 0. This is a supersolution since both are bounded below by the solution (log φ0,1/k)
′

for all s ≥ 0.

3.2. Lower bound of supersolution. Next we show lower bounds of ψ+
k,s for large s so that the

supersolution is a modulus of concavity initially. For

s > {ck + π2

D2 ,−ck − π2

D2},
let

λ̃+ =

√
s− ck − π2

D2

λ̃− =

√
s+ ck + π2

D2 .

Since ψLck−s solves

ψ′ + ψ2 = − π2

D2 −
ck − s
cs2
K(z)

≥ λ̃2
+

so that by ODE comparison, we have

ψLck−s(z) ≥ λ̃+ tanh(λ̃+z), 0 ≤ z ≤ z0.

Similarly, ψRck+s solves

ψ′ + ψ2 = − π2

D2 −
ck + s

cs2
K(z)

≤ −λ̃2
−,

so that

ψRck+s(z) ≥
λ̃− tan(λ̃−(D

2
− z))− k

1 + k
λ̃−

tan(λ̃−(D
2
− z))

, z− ≤ z ≤ D

2
,

where z0 >
D
2
− λ̃−1

− (π
2

+ arctan( k
λ̃−

)).

3.3. Supersolution is an initial modulus. Next we show that for each k, there is a sufficiently
large s such that ψ+

k,s is a modified modulus of concavity for log u0.
Using Lemma 2.4, there exists N ∈ R such that for all x, y ∈ Ω,

〈∇ log u(y, t), γ′(d
2
)〉 − 〈∇ log u(x, t), γ′(−d

2
)〉 ≤ ∇2 log u(γ′, γ′)d(x, y)

≤ Nd(x, y)

≤ 2λ tanh

(
λd(x, y)

2

)
,

where we choose λ such that ND ≤ 2λ tanh(λD/2).
Next using Lemma 2.5 with ψ(z) = 6kz

D
and β = k, there exists an open set U ⊂ M × M

containing ∂Ω̂ (Ω̂ := Ω × Ω − {(x, x) | x ∈ Ω}). In particular, we can cut out a neighborhood
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of the diagonal so that there exists a δ > 0 such that U contains all points x, y ∈ Ω such that
d(x, y) ≥ D − δ. Decreasing so that δ < D

3
if necessary, we have for d(x, y) ≥ D − δ that

〈∇ log u(y, t), γ′(d
2
)〉 − 〈∇ log u(x, t), γ′(−d

2
)〉 ≤ −6kd(x, y)

D
+ k

≤ 2
λ tan

(
λ
(
D−d(x,y)

2

))
− k

1 + k
λ

tan
(
λ
(
D−d(x,y)

2

)) ,
for λ > 0 such that D−d(x,y)

2
<

π
2

+arctan(
k
λ

)

λ
. This can be done by choosing λ sufficiently large so

that π
2

+ arctan( k
λ
) < δλ. Hence for each k, there exists a smallest s(k) ≥ 0 such that

〈∇ log u1(y), γ′(−d
2
)〉 − 〈∇ log u1(x), γ′(d

2
)〉 ≤ ψ+

k,s(k)

(
d(x, y)

2

)
.

Then let
ψk,0(z) = min{ψ+

j,s(j)(z) | 1 ≤ j ≤ k}
for 0 ≤ z ≤ D

2
. Since (n − 1) tnK(s) ≥ 0 for [0, D/2), we can add this term to obtain the initial

modified modulus of concavity.

3.4. Flow into model eigenfunction. Now we show that given our initial solution we construct-
ed, the following parabolic equation will flow into ψ = (log φ1)′. Then by Theorem 2.2, such a
solution will satisfy our required log-concavity condition. Consider

∂ψk
∂t

= ψ′′k + 2ψkψ
′
k − 2 tnK(s)(ψ′k + ψ2

k + π2

D2 ) on [0, D
2

]× R+

ψk(z, 0) = ψk,0(z)

ψk(0, t) = 0

ψk(
D
2
, t) = −k.

By Lemma 2.6, the solution ψk satisfies the differential inequality (2.3). Let u := ψk− (log φ0,1/k)
′

and f := (log φ0,1/k)
′ Computing, we have

2uu′ = 2(ψk − f)(ψ′k − f ′) = 2ψkψ
′
k − 2ψkf

′ − 2fψ′k + 2ff ′

and

u2 = ψ2
k − 2ψkf + f 2

and

f ′′ + 2ff ′ − 2 tnK(s)(f ′ + f 2 + π2

D2 ) = 0.

By direct computation, we have

∂u

∂t
= ψ′′k + 2ψkψ

′
k − 2 tnK(s)(ψ′k + ψ2

k + π2

D2 )

= u′′ + 2uu′ − 2 tnK(s)u2 + 2u(f ′ − 2 tnK(s)f) + 2(f − tnK(s))u′.

Hence an equivalent equation in u is given by
∂u
∂t

= u′′ + 2uu′ − 2 tnK(s)u2 + (2(log φ0,1/k)
′′ − 4 tnK(s)(log φ0,1/k)

′)u+ (2(log φ0,1/k)
′ − 2 tnK(s))u′

u(z, 0) = ψk,0(z)− (log φ0,1/k)
′(z)

u(0, t) = u(D
2
, t) = 0.

The corresponding parabolic operator (as in [HW17]) is given by

Pu = −ut + u′′ + a(z, u, u′)
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where the lower order term a(z, u, u′) is given by

2uu′ + a1u
′ + a2u− 2 tnK(s)u2,

with

a1 = (2(log φ0,1/k)
′ − 2 tnK(s))

a2 = (2(log φ0,1/k)
′′ − 4 tnK(s)(log φ0,1/k)

′).

Then we have the following maximum principle

Lemma 3.3 (Lemma 4.1 [HW17]). Suppose that u, v ∈ C2,1(RT )∩C(R̄T ) such that Pu ≥ Pv in
RT and u ≤ v on P(RT ). Assume that either uz or vz has an upper bound on RT , then u ≤ v on
R̄T .

Here RT = (0, D/2) × (0, T ], P(RT ) is the parabolic boundary, and C2,1 means C2 in the
spacial variable and C1 in the t variable. From here the same argument (in §4, §5 of [HW17])
follows. Namely one applies the maximum principle to show that ψk(z, t) is sandwiched between
(log φ0,1/k)

′(z) and ψk,0(z). To obtain the comparison for ψk,0, we require that the functions ψLc
and ψRk,c are stationary solutions. Then applying the strong maximum principle, we get for each
k > 0 the convergence of the solution ψk(z, t)→ (log φ0,1/k)

′ as t→∞. Letting k →∞ gives the
result.

4. Gap Estimate

Parallel to [SWW16, Theorem 4.1], we have the following gap estimate.

Theorem 4.1. Let Ω be a bounded convex domain with diameter D in a Riemannian manifold
Mn with RicM ≥ (n− 1)K, φ1 a positive first eigenfunction of the Laplacian on Ω with Dirichlet
boundary condition. Assume φ1 satisfies the log-concavity estimates

(4.1) 〈∇ log φ1(y), γ′(d
2
)〉 − 〈∇ log φ1(x), γ′(−d

2
)〉 ≤ −2 π

D
tan
(
πd
2D

)
+ (n− 1) tnK(d

2
),

where γ is the unit-speed length minimizing geodesic with γ(−d
2
) = x, γ(d

2
) = y, and d = d(x, y).

Then we have the gap estimate

(4.2) λ2 − λ1 ≥ 3
π2

D2
.

The proof is similar to the proof of [SWW16, Theorem 4.1], but we compare to the Euclidean
model instead of the curvature K-sphere model.

Proof. Let w(x) = u2(x)
u1(x)

and w̄(s) = φ̄2(s)

φ̄1(s)
where ui are the first and second eigenfunctions of the

Laplacian on Ω with Dirichlet boundary and φ̄i are the first and second eigenfunctions of the
Euclidean model {

φ̄′′ + λ̄φ̄ = 0 on [−D/2, D/2]

φ̄(±D/2) = 0.

In fact, φ̄1(s) = cos
(
π
D
s
)
, φ̄2(s) = sin

(
2π
D
s
)
, λ̄1 = π2

D2 , λ̄2 = 4π2

D2 , w̄(s) = 2 sin( π
D
s), and(

log φ̄1

)′
(s) = − π

D
tan
(
πs
D

)
.
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By direct computation,

∇w =
∇u2

u1

− w∇ log u1,

∆w = −(λ2 − λ1)w − 2〈∇ log u1,∇w〉,

w̄′ =
φ̄′2
φ̄1

− φ̄2φ̄
′
1

φ̄2
1

= 2 π
D

cos( π
D
s),

w̄′′ = −(λ̄2 − λ̄1)w̄ − 2(log φ̄1)′w̄′ = −2 π2

D2 sin( π
D
s).

(4.3)

We can extend w to a smooth function on Ω with Neumann condition ∂w
∂ν

= 0 on ∂Ω [SWYY85],
same for w̄. Let

Q(x, y) =
w(x)− w(y)

w̄
(
d(x,y)

2

)
on Ω× Ω \∆, where ∆ = {(x, x)|x ∈ Ω} is the diagonal. Since

lim
y→x

Q(x, y) = 2
〈∇w(x), X〉

w̄′(0)
,

where X = γ′(0) and γ is the unique unit speed length minimizing geodesic connecting x to y, we
can extend the function Q to the unit sphere bundle UΩ = {(x,X) | x ∈ Ω̄, ‖X‖ = 1} as

Q(x,X) =
2〈∇w(x), X〉

w̄′(0)
.

The maximum of Q then is achieved.
Case 1: the maximum of Q is achieved at (x0, y0) with x0 6= y0. Denote d0 = d(x0, y0) > 0,

m = Q(x0, y0) > 0 the maximum value. At (x0, y0), we have ∇Q = 0, ∇2Q ≤ 0. The Neumann
condition ∂w

∂ν
= 0 and strict convexity of Ω forces that both x0 and y0 must be in Ω.

Let γ be the unit-speed length minimizing geodesic such that γ(−d0
2

) = x0 and γ(d0
2

) = y0.
Let en := γ′ and extend to an orthonormal basis {ei} by parallel translation along γ. Denote
Ei = ei ⊕ ei for i = 1, . . . , n; En = en ⊕ (−en).

For E ∈ TxM ⊕ TyM ,

(4.4) ∇EQ =
∇Ew(x)−∇Ew(y)

w̄
− (w(x)− w(y))

w̄2
(∇Ew̄),

and

(4.5) ∇2
E,EQ =

∇2
E,Ew(x)−∇2

E,Ew(y)

w̄
− 2

w̄
(∇EQ)(∇Ew̄)− Q

w̄
∇2
E,Ew̄.

Hence at (x0, y0),

0 =
∇Ew(x0)−∇Ew(y0)

w̄
− m

w̄
(∇Ew̄),

0 ≥
∇2
E,Ew(x0)−∇2

E,Ew(y0)

w̄
− m

w̄
∇2
E,Ew̄.

We apply these to various directions. From ∇0⊕eiQ = ∇ei⊕0Q = 0 so that

∇eiw(y0) = ∇eiw(x0) = 0

for i = 1, . . . , n− 1 and

∇enw(y0) = ∇enw(x0) = −m
2
w̄′(d0

2
).
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so that the full gradient is given by

∇w(y0) = ∇w(x0) = −m
2
w̄′(d0

2
)en.

Summing over the second order inequalities, we get

0 ≥ ∆w(x0)−∆w(y0)

w̄
− m

w̄

n∑
i=1

∇2
Ei,Ei

w̄(d0
2

).

Since w̄′ ≥ 0, by the “Two Point Laplacian Comparison” (see e.g. [SWW16, (4.5)]) we have∑n−1
i=1 ∇2

Ei,Ei
w̄(d0

2
) ≤ −(n− 1) tnK(d0

2
) w̄′(d0

2
). Plugging this in, and using (4.3), we get

0 ≥ −(λ2 − λ1)m+ 2
〈∇ log u1(y0),∇w(y0)〉 − 〈∇ log u1(x0),∇w(x0)〉

w̄
+ (n− 1)

m

w̄
tnK w̄

′ − m

w̄
w̄′′

= −(λ2 − λ1)m+ (λ̄2 − λ̄1)m

+ 2m(log φ̄1)′
w̄′

w̄
−mw̄′ 〈∇ log u1(y0), en〉 − 〈∇ log u1(x0), en〉

w̄
+ (n− 1)

m

w̄
tnK w̄

′

≥ −(λ2 − λ1)m+ (λ̄2 − λ̄1)m,

which is (4.2).
Case 2: the maximum of Q is attained at some (x0, X0) ∈ UΩ. By Cauchy-Schwarz inequality,

the corresponding maximal direction is X0 = ∇w
‖∇w‖ so that the maximum value is m = D

π
‖∇w‖.

Furthermore, ‖∇w(x0)‖ ≥ ‖∇w(x)‖ for any x ∈ Ω̄. Suppose x0 ∈ ∂Ω, then by (strict) convexity,

∇n‖∇w‖2|x0 = − II(∇w,∇w)|x0 < 0

hence the maximum must occur in the interior. Now let en := ∇w
‖∇w‖ and complete to an orthonormal

frame {ei} at x0. We further parallel translate to a neighborhood of x0. In such a frame we have

∇nw = 〈∇w, en〉 = ‖∇w‖
and

∇iw = 〈∇w, ei〉 = 0, i = 1, . . . , n− 1

At the maximal point x0, we have the first derivative vanishing

0 = ∇‖∇w‖2 = 2〈∇∇w,∇w〉 = 2‖∇w‖∇n∇w,
and the second derivative non-positive

0 ≥ ∇k∇k‖∇w‖2

= 2
(
〈∇k∇k∇w,∇w〉+ ‖∇k∇w‖2

)
≥ 2〈∇k∇k∇w,∇w〉
= 2‖∇w‖〈∇k∇k∇w,En〉.

In short

(4.6) 0 ≥ 〈∇k∇k∇w, en〉, k = 1, . . . n− 1.

Now let

x(s) := expx0(sen)

y(s) := expx0(−sen)

g(s) := Q(x(s), y(s)).

By construction, since the variations are approaching x0 in the en direction, we have

m = Q(x0, en(x0)) = g(0) ≥ g(s), for all s ∈ (−ε, ε).
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and so lims→0 g
′(s) = 0 and lims→0 g

′′(s) ≤ 0. By (4.4), (4.5)

g′(s) =
〈∇w, x′(s)〉 − 〈∇w, y′(s)〉

w̄(s)
− g(s)

w̄(s)
w̄′,

g′′(s) =
〈∇s∇w(x(s)), x′(s)〉+ 〈∇w(x(s)), x′′(s)〉 − 〈∇s∇w(y), y′(s)〉 − 〈∇w, y′′(s)〉

w̄

− 〈∇w, x
′(s)〉 − ∇w, y′(s)〉

w̄

w̄′

w̄
− g′(s)w̄

′

w̄
− g(s)

(
w̄′′

w̄
−
(
w̄′

w̄

)2
)
.

Using w̄′′ = − π2

D2 w̄ and

x′′(s) =
d

ds
x′(s)

= ∇x′(s)x
′(s) = 0,

and similarly for y′′(s), when s→ 0 we have

0 ≥ 2
〈∇n∇n∇w, en〉

w̄′(0)
+m

π2

D2

Combining this with (4.6), we have

0 ≥ 2
〈∆(∇w), en〉

w̄′(0)
+m

π2

D2
.

By Bochner formula,

0 ≥ 2
〈∇(∆w), en〉+ Ric(∇w, en)

w̄′(0)
+m

π2

D2
.

Inserting in (4.3), we have

0 ≥ 2
〈∇(−(λ2 − λ1)w − 2〈∇ log u1,∇w〉), en〉+ Ric(∇w, en)

w̄′(0)
+m

π2

D2

= (−2(λ2 − λ1)− 4〈∇n∇ log u1, en〉+ 2 Ric(en, en))
‖∇w‖
w̄′(0)

+m
π2

D2

From the log-concavity

〈∇ log u1(y), γ′(d
2
)〉 − 〈∇ log u1(x), γ′(−d

2
)〉

d(x, y)
≤ −2

π

D

tan
(
πd(x,y)

2D

)
d(x, y)

+ (n− 1)
tnK(d(x,y)

2
)

d(x, y)
,

and letting d(x, y) → 0 we have −∇2 log u1 ≥ π2

D2 − (n−1)K
2

. Using the fact that w̄′(0) = π
D

and

m = D
π
‖∇w‖,

(λ2 − λ1) ≥ 3
π2

D2

�

5. Eigenvalue Asymptotics of the Sphere Model

First we recall the derivation of the one-dimensional model used in [SWW16]. Let Mn
K be the

n-dimensional simply connected manifold with constant sectional curvature K. Given a totally
geodesic hypersurface Σ ⊂ Mn

K , let s be the (signed) distance to Σ. The metric of Mn
K (near Σ)

can be written as g = ds2 + cs2
K(s)gΣ. This is different from the usual polar coordinate model, and

s can be negative here.
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The Laplace operator is

∆ = ∂2

∂s2
+ (n− 1)

cs′K(s)

csK(s)
∂
∂s

+ 1
cs2K(s)

∆Σ.

The “one-dimensional” model of the eigenvalue equation ∆φ = −λφ (when φ only depends on s)
is

(5.1) φ′′ − (n− 1) tnK(s)φ′ + λφ = 0.

With the change of variable φ(s) = cs
−n−1

2
K (s)ϕ(s), we obtain the Schrödinger normal form of (5.1),

(5.2) ϕ′′(s)− (n−1)K
4

(
n−3

cs2K(s)
− (n− 1)

)
ϕ = −λϕ.

Hence the Dirichlet eigenvalues of (5.1) are exactly the same as the Dirichlet eigenvalues of (5.2).
Denote λ̄1(n,D,K), λ̄2(n,D,K) their first and second Dirichlet eigenvalues on [−D

2
, D

2
]. When n =

1, 3 or K = 0, one can find the eigenvalues and eigenfunctions explicitly and the gap λ̄2(n,D,K)−
λ̄1(n,D,K) = 3 π2

D2 . In general one can not find the eigenvalues explicitly. When K > 0, as

(cs−2
K (s))′′ ≥ 0, λ̄2(n,D,K)− λ̄1(n,D,K) > 3 π2

D2 when n > 3, but < 3 π2

D2 when n = 2 [AB89].
First we note some easy bounds on these model eigenvalues.

Proposition 5.1. For K > 0, we have

λ̄1 ≤
π2

D2
− (n− 1)2K

4
+

(n− 1)(n− 3)K

D

ˆ D/2

0

sec2(
√
Kx) cos2( π

D
x),

while if K > 0 and n ≥ 3, one has

λ̄1 ≥
π2

D2
− (n− 1)K

2
.

Similarly for λ̄2, we have

λ̄2 ≤
4π2

D2
− (n− 1)2K

4
+

(n− 1)(n− 3)K

D

ˆ D/2

0

sec2(
√
Kx) sin2(2π

D
x),

whereas if n ≥ 3,

λ̄2 ≥
4π2

D2
− (n− 1)K

2
.

For n = 2, the upper bounds can be made more explicit, see (5.4), (5.5).

Proof. For K > 0, as

λ̄1 = inf
f∈C0([−D/2,D/2])

´ D/2
−D/2(f ′)2

´ D/2
−D/2 f

2
+

(n− 1)(n− 3)K

4

´ D/2
−D/2 sec2(

√
Kx)f 2

´ D/2
−D/2 f

2
− (n− 1)2K

4
,

and sec2(
√
Kx) ≥ 1, we have, for n ≥ 3,

(5.3) λ̄1 ≥
π2

D2
− (n− 1)K

2
.

For an upper bound, let f = cos( π
D
x), we have

λ̄1 ≤
π2

D2
− (n− 1)2K

4
+

(n− 1)(n− 3)K

D

ˆ D/2

0

sec2(
√
Kx) cos2( π

D
x).
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When n = 2, we can get the following explicit upper bound by using sec2(t) ≥ 1 + t2 + 2t4

3
,

λ̄1 ≤
π2

D2
− K

2
− (π2 − 6)D2K2

48π2
− (120− 20π2 + π4)D4K3

480π4
− 17(π6 − 42π4 + 840π2 − 5040)D6K4

80640π6
.

(5.4)

Similarly for λ̄2, we have

λ̄2 ≥
4π2

D2
− (n− 1)K

2
.

For an upper bound we can use f = sin(2π
D
x) as a test function since the first eigenfunction of the

model is even, and we get

λ̄2 ≤
4π2

D2
− (n− 1)2K

4
+

(n− 1)(n− 3)K

D

ˆ D/2

0

sec2(
√
Kx) sin2(2π

D
x).

When n = 2,

λ̄2 ≤
4π2

D2
− K

2
−

(π2 − 3
2
)D2K2

48π2
−

(15
2
− 5π2 + π4)D4K3

480π4
− 17(4π6 − 42π4 + 210π2 − 315)D6K4

322560
.

(5.5)

�

Obtaining explicit lower bounds for λ̄1 and λ̄2 up to second order of K is surprisingly hard.
Here we compute the asymptotic expansion of the eigenvalues λ̄1(n,D,K), λ̄2(n,D,K) in terms
of powers of the curvature K, proving Proposition 1.3 which we state here again for convenience.

Proposition 5.2. For K ∈ R, let κ = KD2. Then

D2λ̄1 = π2 − (n− 1)

2
κ+

(n− 1)(n− 3)

48π2
(π2 − 6)κ2 +

(n− 1)(n− 3)

480π4
(π4 − 20π2 + 120)κ3 +O(κ4).

and

D2λ̄2 = 4π2−(n− 1)

2
κ+

(n− 1)(n− 3)

48π2

(
π2 − 3

2

)
κ2+

(n− 1)(n− 3)

480π4

(
π4 − 5π2 +

15

2

)
κ3+O(κ4).

Hence

D2(λ̄2 − λ̄1) = 3π2 +
3(n− 1)(n− 3)

32π2
κ2 +

(n− 1)(n− 3)

480π4

(
15π2 − 225

2

)
κ3 +O(κ4).

Proof. We shift the eigenvalue by (n−1)2

4
K and perturb about K = 0. First set D = π. Then the

K = 0 solution is given by cos(x). Set

y = cos(x) +Ky1,1 +K2y1,2 +K3y1,3,

λ̃1 = 1 +Kλ1,K +K2λ1,K2 +K3λ1,K3 ,

where λ̃1 is the shifted first eigenvalue. Expanding sec2(
√
Kx) = 1 + Kx2 + 2

3
K2x4 + · · · and

plugging in our expansion solutions, the first order equation in K is given by

y′′1,1 + y1,1 =

(
(n− 1)(n− 3)

4
− λ1,K

)
cos(x).

Using the fact that the first eigenfunction is even about x = 0, the particular solution is of the
form Ax sin(x). Plugging this in and using the Dirichlet boundary condition leads to

λ1,K =
(n− 1)(n− 3)

4
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Using the expansion again and plugging in for λ1,K , the K2 order equation is

y′′1,2 + y1,2 −
(

(n− 1)(n− 3)

4
x2 − λ1,K2

)
cos(x) = 0.

Using the fact that the solution is even, the particular solution is of the form yp = Ax2 cos(x) +
(Bx3 + Cx) sin(x). Plugging this in and using the Dirichlet condition again gives us

λ1,K2 =
(n− 1)(n− 3)

24

(
π2

2
− 3

)
.

The K3 equation is

y′′1,3 + y1,3 =
(n− 1)(n− 3)

6
x4 cos(x)− λ1,K3 cos(x).

Similar computations give

λ1,K3 =
(
π4 − 20π2 + 120

) (n− 1)(n− 3)

480
.

Combining these and shifting by (n−1)2K
4

, we get

λ̄1 = 1− (n− 1)

2
K +

(n− 1)(n− 3)

48
(π2 − 6)K2 +

(
π4 − 20π2 + 120

) (n− 1)(n− 3)

480
K3 +O(K4).

By rescaling, we obtain

λ̄1 =
π2

D2
−(n− 1)

2
K+

(n− 1)(n− 3)

48
(π2−6)

D2

π2
K2+

(n− 1)(n− 3)

480

D4

π4
K3(π4−20π2+120)+O(K4).

To compute the asymptotics of the second eigenvalue, we repeat the steps above and instead we
use the second eigenfunction solution for the K = 0 case so that

y = sin(2x) +Ky2,1 +K2y2,2 +K3y2,3,

λ̃2 = 4 +Kλ2,K +K2λ2,K2 +K3λ2,K3 ,

where again, λ̃2 is the shifted eigenvalue. �

5.1. Higher Order terms.

5.1.1. Fourth order term. Beginning with the fourth order term, the sign of the coefficient changes
for some n > 3 instead of at n = 3. We compute for D = π. Expanding out the equation and
collecting the K4 terms, we have

y′′1,4 + y1,4 + λ1,K4 cos(x) =

(
(n− 1)(n− 3)

4
x2 − λ1,K2

)
y1,2 +

17(n− 1)(n− 3)

180
x6 cos(x).

Multiplying by cos(x), integrating from −π
2

to π
2

and using the second order equation, we get

λ1,K4 =
2

π

(
17(n− 1)(n− 3)

180

ˆ π/2

−π/2
x6 cos2(x)dx−

ˆ π/2

−π/2
(y′1,2)2dx+

ˆ π/2

−π/2
y2

1,2dx

)
.

From the computation of the second order term, we have the second order of the first eigenfunction

y1,2 =
(n− 1)(n− 3)

24

(
x3 sin(x) +

3

2
x2 cos(x)− π2

4
x sin(x)

)
.

Using this, we get

λ1,K4 =
(n− 1)2(n− 3)2

242

(
π4 − 75π2 + 630

20

)
+

(n− 1)(n− 3)

24

(
17(π6 − 42π4 + 840π2 − 5040)

3360

)
.
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Note that

π4 − 75π2 + 630

20
≈ −0.64

17(π6 − 42π4 + 840π2 − 5040)

3360
≈ 0.61.

Similar computations yield

λ2,K4 =
(n− 1)2(n− 3)2

242

(
8π4 − 150π2 + 315

640

)
+

(n− 1)(n− 3)

24

(
17(4π6 − 42π4 + 210π2 − 315)

13440

)
.

Note that

8π4 − 150π2 + 315

640
≈ −0.603

17(4π6 − 42π4 + 210π2 − 315)

13440
≈ 1.912

and the gap is

λ2,K4 − λ1,K4 =
(n− 1)2(n− 3)2

242

(
3(750π2 − 8π4 − 6615)

640

)
+

(n− 1)(n− 3)

24

(
51(2π4 − 50π2 + 315)

640

)
.

Note that (
51(2π4 − 50π2 + 315)

640

)
≈ 1.301

and

3(750π2 − 8π4 − 6615)

640
≈ 0.037.

5.1.2. Fifth order term. To compute the fifth order term, we need the third order eigenfunctions.

y1,3 =
(n− 1)(n− 3)

24

(
(x4 − 3x2) cos(x) +

(
2

5
x5 − 2x3 −

(
π4

40
− π2

2

)
x

)
sin(x)

)
and

y2,3 = −(n− 1)(n− 3)

120

((
x5 − 5

4
x3 +

(
5π2

16
− π4

16

)
x

)
cos(2x)−

(
5

4
x4 − 15

16
x2

)
sin(2x)

)
.

Then ˆ π/2

−π/2
y1,2y1,3 =

(n− 1)2(n− 3)2

242

1

160

(
−15570π + 2220π3 − 67π5 +

13π7

168
+

4π9

315

)
≈ (n− 1)2(n− 3)2

242
0.1766

and ˆ π/2

−π/2
(y′1,2)(y′1,3) =

(n− 1)2(n− 3)2

242

1

160

(
1710π − 300π3 + 17π5 − 83π7

168
+

4π9

315

)
≈ (n− 1)2(n− 3)2

242
0.993

and

62

315

ˆ π/2

−π/2
x8 cos2(x) =

62

315

π(362880− 60480π2 + 3024π4 − 72π6 + π8)

4608
≈ 0.10734.
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Combining these together, we have

λ1,5 =
2

π

(
2

ˆ
y1,2y1,3 − 2

ˆ
(y′1,2)(y′1,3) +

(n− 1)(n− 3)

4

62

315

ˆ
x8 cos2(x)

)
=

(n− 1)2(n− 3)2

242

(−30240 + 4410π2 − 147π4 + π6)

70
+

(n− 1)(n− 3)

2π

62

315

ˆ
x8 cos2(x)

≈ (n− 1)2(n− 3)2

242
(−1.039) +

(n− 1)(n− 3)

2π
(0.10734).

For the second eigenvalue,

ˆ π/2

−π/2
y2,2y2,3 =

(n− 1)2(n− 3)2

2× 482

1

80

(
−7785π

128
+

555π3

16
− 67π5

16
+

13π7

672
+

4π9

315

)
≈ (n− 1)2(n− 3)2

482
0.249

and
ˆ π/2

−π/2
(y′2,2)(y′2,3) =

(n− 1)2(n− 3)2

482

1

160

(
855π

32
− 75π3

4
+

17π5

4
− 83π7

168
+

16π9

315

)
(n− 1)2(n− 3)2

482
≈ 5.157

and

(n− 1)(n− 3)

4

62

315

ˆ π/2

−π/2
x8 sin2(2x) =

(n− 1)(n− 3)

4

31π(2835− 1890π2 + 378π4 − 36π6 + 2π8)

1451520

≈ (n− 1)(n− 3)

4
0.36024.

Combining these together,

λ2,5 =
2

π

(
2

ˆ
y2,2y2,3 − 2

ˆ
(y′2,2)(y′2,3) +

(n− 1)(n− 3)

4

62

315

ˆ π/2

−π/2
x8 sin2(2x)

)

=
(n− 1)2(n− 3)2

482

(
−2241

1024
+

171π2

128
− 27π4

128
+

23π6

1792
− π8

1050

)
+

(n− 1)(n− 3)

2π

62

315

ˆ π/2

−π/2
x8 sin2(2x)

≈ (n− 1)2(n− 3)2

242
(−1.561) +

(n− 1)(n− 3)

2π
(0.35024)

so that

λ2,5 − λ1,5 ≈
(n− 1)2(n− 3)2

242
(−0.522) +

(n− 1)(n− 3)

2π
(0.2429).

Remark 5.3. Here we see that the sign of the coefficient of the gap changes for some large n.

5.2. Formula for general order. In general,

∑
n=0

Kny′′1,n −
(n− 1)(n− 3)

4
K

(∑
n=0

anK
nx2n

)(∑
n=0

Kny1,n

)
= −

(∑
n=0

Knλn

)(∑
n=0

Kny1,n

)
,
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where ai are the coefficients in the series expansion of sec2(x) and y1,j are the j-th order functions
of the first eigenfunction. Grouping the Km term, the equation becomes

y′′1,m + y1,m + λ1,m cos(x) =
(n− 1)(n− 3)

4

∑
i+j=m−1

aix
2iy1,j −

∑
i+j=m
i,j<m

λiy1,j.

Multiplying by cos(x) and integrating to isolate λm, noting that multiplying by the zero-th order
eigenfunction and integrating will zero out the m-th order eigenfunctions. We have

λ1,m

ˆ π/2

−π/2
cos2(x) =

(n− 1)(n− 3)

4

∑
i+j=m−1

ai

ˆ π/2

−π/2
x2iy1,j cos(x)−

∑
i+j=m
i,j<m

λ1,i

ˆ π/2

−π/2
y1,j cos(x)

Collecting the j-th terms, we get

λ1,m =
2

π

m−1∑
j=1

ˆ π/2

−π/2

(
(n− 1)(n− 3)

4
am−j−1x

2(m−j−1) − λ1,m−j

)
cos(x)y1,j.

Finally, we end with some remark about the modulus of convexity model used here compared
to that used in the sphere model.

Remark 5.4. There is no direct comparison between the modulus of the two models.
Let

f(s) = − π
D

tan( π
D
s) +

(n− 1)

2
tnK(s).

and

ψ(x) = (log φ(x))′,

where φ satisfies

φ′′(x)− (n− 1) tnK(x)φ′(x) + λ̄1φ(x) = 0.

Then

ψ′(x) = −ψ2 + (n− 1) tnK(x)ψ(x)− λ̄1,

and

f ′ = −f 2 + (n− 1) tnK(s)f − π2

D2
+

(n− 1)K

2
− (n− 1)(n− 3)

4
tn2
K(s).

When n = 3, we have ψ = f . In general, from (5.3) and (5.4), λ̄1 >
π2

D2 − (n−1)K
2

when n > 3, and

λ̄1 <
π2

D2 − K
2

when n = 2, however the sign of the remaining term is in the opposite direction.
Hence there is no direct comparison between f and ψ. The asymptotic expansion is given by the
following computation

φ(x) = csK(x)−
n−1
2 cos( π

D
x)

(
1 + AnK

2

(
π

D
x3 tan( π

D
x) +

3

2
x2 − Dπ

4
x tan( π

D
x)

)
+O(K3)

)
,

where An = (n−1)(n−3)
24

. Using log(1 + x) = x− x2

2
+ x3

3
+O(x4),

log(φ) = log(cos( π
D
x))− (n− 1)

2
log csK(x) +K2 (n− 1)(n− 3)

24

(
π

D
x3 tan( π

D
x) +

3

2
x2 − Dπ

4
x tan( π

D
x)

)
+O(K4)
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Hence the modulus for the sphere model is asymptotically

ψ(x) = (log φ(x))′

= − π
D

tan( π
D
x) +

(n− 1)

2
tnK(x)

+
(n− 1)(n− 3)

24
K2
(
π2

D2x
3 sec2( π

D
x) + 3π

D
x2 tan( π

D
x) + 3x− π2

4
x sec2( π

D
x)− Dπ

4
tan( π

D
x)
)

+O(K3)

At x = 0, the function part of the K2 term is 0 and decreasing. Hence for small values of x,
the term is negative and depending on the sign of An, gives a better modulus estimate than the
Euclidean model. However the term goes to infinity as it approaches D/2. Compare this to the
expansion of the Euclidean model

f(x) = − π
D

tan( π
D
x) +

(n− 1)

2
tnK(x).
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