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Abstract We give a survey on the optimal lower and upper bound estimate

for the fundamental gap (the difference between the first two eigenvalues of

the Laplacian). Many of the results involve comparing to a good model. In

particular, we discuss the Neumann gap estimate for manifolds with Ricci

curvature bounded from below and the recent Dirichlet fundamental gap

estimate for convex domains in Euclidean spaces and spheres using modulus

of continuity and two-point maximal principle.

1. Introduction

Given a bounded smooth domain Ω ⊂Mn of Riemannian manifold, the eigenvalue

equation of the Laplacian on Ω is

∆φ = −λφ. (1.1)

Here we focus on either the Dirichlet or Neumann boundary condition/closed man-

ifolds. Then the eigenvalues consist of an infinite sequence going off to infinity.
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Indeed,

Dirichlet (φ|∂Ω = 0) : 0 < λ1 < λ2 ≤ λ3 · · · → ∞

Neumann (φν |∂Ω = 0)/closed manifolds : 0 = µ0 < µ1 ≤ µ2 · · · → ∞.

Being important geometric quantities, there are many works in estimating the

eigenvalues, especially the first (nonzero) eigenvalue λ1, µ1. For earlier work, see

e.g, the survey article [28].

The fundamental (or mass) gap refers to the difference between the first two

eigenvalues

Γ(Ω) =

{
λ2 − λ1 > 0 Dirichlet boundary

µ1 − 0 > 0 Neumann boundary/closed manifold
(1.2)

of the Laplacian or more generally for Schrödinger operators. It is a very interesting

quantity both in mathematics and physics. One of the most important question

here is:

Problem 1. Find optimal (geometric) upper and lower bounds for the gap.

One of the basic and key tool is the Min-Max principle.

λk = inf
V

sup
φ6=0,φ∈V

∫
Ω
|∇φ|2∫
Ω
φ2

,

where V ranges all k-dim subspaces of H1
2 (Ω), here H1

2 (Ω) denotes the completion

of C∞0 (Ω) with respect to the norm∫
Ω

(|φ|2 + |∇φ|2)dvol.

To get a good upper bound one just needs a good test function; however, to get

lower bounds one needs control on all functions.

To obtain optimal bounds, good comparison models are very useful. For the

upper bound the model is a ball while for the lower bound the model is a strip and

requires convex boundary.

1.1 Neumann boundary/Closed manifolds

For the Neumann boundary condition or closed manifolds the gap is just the first

nonzero eigenvalue and is well-studied and developed.
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For closed manifolds with Ricci curvature lower bound, the first estimate is due

to Lichnerowicz [30]. Namely ifMn is a closed manifold with RicM ≥ (n−1)K (K >

0), then µ1(M) ≥ nK = µ1(SnK). This gives the first eigenvalue comparison. Sim-

ilar comparison for higher eigenvalues is not true as CPn gives a counterexample.

Obata [36] proved the rigidity result that equality holds iff Mn is isometric to SnK .

Escobar [20] established the Lichnerowicz-Obata result for manifolds with convex

boundary.

Lichnerowicz estimate does not give any information when K ≤ 0. For closed

manifolds Mn with RicM ≥ 0, Li-Yau [29] first proved that µ1(M) ≥ 1
2

(
π
D

)2
,

where D is the diameter of M . Zhong-Yang [59] obtained the optimal estimate

that µ1(M) ≥
(
π
D

)2
. Equality is achieved iff M is isometric to S1 [22].

For the proof, while the Lichnerowicz estimate can be shown very quickly by

integrating the Bochner inequality applied to the first eigenfunction, Zhong-Yang’s

estimate, building on Li-Yau’s gradient estimate for the eigenfunction, requires a

very careful choice of auxiliary function and is much more complicated.

When K ≤ 0, Li-Yau [29] also obtained an explicit lower bound for closed

manifolds and manifolds with convex boundary. The general optimal lower bound

is given by the following gap comparison.

Theorem 2. Let Ω ⊂ Mn be a bounded convex domain or closed manifold, with

diameter ≤ D, and RicM ≥ (n− 1)K. Then

µ1(Ω) ≥ µ̄1(n,K,D), (1.3)

where µ̄1(n,K,D) is the first non-zero eigenvalue of the model operator

Ln,K,D(ϕ) = ϕ′′(s)− (n− 1)ϕ′ tnK(s)

on the interval [−D2 ,
D
2 ] with the (Neumann) boundary condition ϕ′(±D2 ) = 0.

Here we denote

tnK(s) =


√
K tan(

√
Ks), K > 0

0, K = 0

−
√
−K tanh(

√
−Ks) K < 0.

(1.4)

Remark 3. Estimate (1.3) was first proved by P. Kröger [25] for closed manifolds

using gradient estimate. Mufa Chen and Fengyu Wang gave a proof using proba-

bilistic ‘coupling method’ [17]. Andrews and Clutterbuck [4], gave a proof using a



4 Dai, Seto, Wei

new method, the so called modulus of continuity for heat equation. This gives a

simple and unified proof for all cases. Then Yuntao Zhang and Kui Wang [58] gave

a proof using the modulus of continuity for the eigenvalue equation instead of heat

equation.

Remark 4. Estimate (1.3) includes Lichnerowicz and Zhong-Yang estimates as

special cases, when K = 0, µ̄1(n, 0, D) =
(
π
D

)2
, and when K > 0, µ̄1(n,K, π√

K
) =

nK. In general µ̄1(n,K,D) can not be computed explicitly. See [42, 52] for some

nice explicit estimates.

Remark 5. There has been many further generalizations of (1.3). For weighted

Laplacians, there is the work of Bakry-Qian [13] using gradient estimates and

Andrews-Ni [6] using modulus of continuity.

For the p-Laplacian, Matei extended the estimates for K > 0 [33], Valtorta for

K = 0 [48], and Naber-Valtorta did the general case [34], see also [57]. For the

weighted p-Laplacian it is studied in [49, 50].

For RCD(K,N) spaces Y. Jiang - H.C.Zhang [24] proved the gap estimate using

gradient estimate; Cavalletti-Mondino proved it using optimal transport [16].

On the other hand, instead of pointwise Ricci curvature lower bound, one can

just assume the part below some positive constant (or zero) is small in Lp(p > n
2 ),

and similar estimates hold, see [12, 21,38,41].

For closed Kähler manifolds, the Lichnerowicz estimate can be improved for

Laplacian and p-Laplacian, see [15, 46].

Remark 6. Equality in (1.3) is achieved iff when n = 1,K = 0 or K > 0, D = π√
K

.

For all n,K,D, there are convex domains (even closed manifolds) whose µ1 is

arbitrary close to µ̄1. So estimate (1.3) is sharp.

There are also important results concerning sharp upper bounds of the funda-

mental gap. Aithal-Santhanam [1], generalizing the work of Szëgo [45], Weinberger

[51], Ashbaugh-Benguria [10] for bounded domain in the space of constant sectional

curvature Mn
K , showed that, for bounded domain Ω in a rank-1 symmetric space

(with some size restriction in the compact case)

µ1(Ω) ≤ µ1(B(r1))

where B(r1) is a ball such that vol(B(r1)) = vol(Ω) and equality holds iff Ω =

B(r1).
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1.2 Dirichlet Boundary Condition

For Dirichlet boundary condition, a sharp upper bound is obtained in the resolu-

tion of the Payne-Polya-Weinberger (PPW) Conjecture for Mn
K , the n-dimensional

simply connected space of constant curvature K. Indeed, for bounded domain

Ω ⊂Mn
K (note that one does not need a convexity condition here)

Γ(Ω) ≤ Γ(Bλ1
),

where Bλ1
is a ball in Mn

K such that λ1(Bλ1
) = λ1(Ω).

The PPW conjecture was proved by Ashbaugh-Benguria [9] for the case when

K = 0, and by Ashbaugh-Benguria [11] for the case when K = 1 (Ω in the upper

hemisphere), and finally by Benguria-Linde [14] for the case of K = −1.

The question of a sharp lower bound for Dirichlet boundary condition is es-

pecially interesting and important. For bounded convex domain Ω ⊂ Rn and

Schrödinger operator −∆ + V , where V ≥ 0, convex, the question carries a special

name:

Fundamental Gap Conjecture (van den Berg, Ashbaugh-Benguria, Yau [8,

47,53] ):

Γ(Ω, V ) ≥ 3π2

D2 , D = diam Ω.

The lower bound is approached when V = 0, and domain is a thin rectangular

box.

Remark 7. The subject here has a long history, see the excellent survey by Ash-

baugh [7] for discussion of the fundamental gap and history up to 2006, and the

references in [3]. We only list some key developments here. In the seminal work

[44] Singer-Wong-Yau-Yau established the bound Γ(Ω, V ) ≥ π2

4D2 using Li-Yau’s

gradient estimate method. This is later improved by Yu-Zhong [56], Ling [31] to

Γ(Ω, V ) ≥ π2

D2 . Further improvement to the gap is done by Yau [54] which de-

pends on upper bound estimate on the log-concavity of the first eigenfunction. Yau

in [55] also investigated the case of non-convex potentials. The Fundamental Gap

Conjecture is finally resolved by Andrews-Clutterbuck [3] by introducing new ideas

into the problem, namely the modulus of continuity and concavity. A proof using

eigenvalue equation instead of heat equation is given by Ni [35]. Cheng-Oden [18]
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obtained gap estimate for domians in Rn which may not be convex but satisfying

interior R-rolling ball condition, Oden-Sung-Wang [37] further studied domains in

general manifolds with curvature bounds.

The following question is raised in B. Andrews’ excellent survey article [2] among

others.

Question 8. What about convex domains in Sn?

In a series of joint work the same gap estimate for convex domains of sphere

was established.

Theorem 9 ([19, 23, 40]). Let Ω ⊂ Sn be a strictly convex domain with diameter

D, λi(i = 1, 2) be the first two eigenvalues of the Laplacian on Ω with Dirichlet

boundary condition. Then

Γ(Ω) = λ2 − λ1 ≥ 3
π2

D2
. (1.5)

The same estimates hold also for Schrödinger operator −∆ + V , where V ≥ 0

and is convex.

Remark 10. A proof is given by Seto-Wang-Wei [40], for n ≥ 3, D ≤ π/2. Then

He-Wei [23] showed it for n ≥ 3, D < π. Finally Dai-Seto-Wei [19] solved it for all

n ≥ 2, D < π.

Remark 11. Previous work includes Lee-Wang [27] who showed that Γ(Ω) ≥ π2

D2

and Ling [31] who improved it to Γ(Ω, V ) > π2

D2 .

1.3 Further Questions

In [40, Theorem 4.1] the following general gap comparison is proven.

Theorem 12 (Seto-Wang-Wei). Let Ω be a bounded convex domain with diameter

D in a Riemannian manifold Mn with RicM ≥ (n− 1)K. Assume φ1 satisfies the

log-concavity estimates, ∀x, y ∈ Ω, with x 6= y,

〈∇ log φ1(y), γ′(d2 )〉 − 〈∇ log φ1(x), γ′(−d2 )〉 ≤ 2
(
log φ̄1

)′(d(x, y)

2

)
, (1.6)

where γ is the unit speed minimizing geodesic with γ(−d2 ) = x, γ(d2 ) = y, d =

d(x, y). Then we have the gap comparison

λ2 − λ1 ≥ λ̄2(n,D,K)− λ̄1(n,D,K), (1.7)
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where λ̄i(n,D,K) and φ̄i are the eigenvalue and eigenfunction of

Ln,K,D(φ) = φ′′ − (n− 1) tnK(s)φ′ (1.8)

on [−D2 ,
D
2 ] with Dirichlet boundary condition.

Remark 13. The log-concavity condition (1.6) implies that φ1 is more log-concave

than φ̄1, but it contains more information than just Hess log φ1 ≤ Hess log φ̄1.

The condition (1.6) is automatically satisfied in the Neumann boundary/closed

manifolds case as the first eigenfunctions are just constants. In this sense, Theo-

rem 12 is a generalization of Theorem 2.

The log-concavity condition (1.6) is only proven for convex domains in Mn
K for

K ≥ 0. A natural question is

Question 14. Is (1.6) true for convex domains in Hn?

It is known that in this case the first eigenfunction may not be log-concave [43].

Another related question is for convex domains in CPn: is the first eigenfunction

log-concave? This is conjectured to be true by Prof. Zhiqin Lu.

For traingles in R2 with diameter D, Lu-Rowlett [32] showed the Dirichelt gap

is ≥ 64π2

9D2 and equality holds iff it is an equilateral triangle.

Question 15. What about triangles in the upper hemisphere of S2?

Question 16. What is a good explicit estimate for λ̄2(n,D,K) − λ̄1(n,D,K) in

terms of K? In the author’s work [19] an estimate was given when KD2 is small.

Here are some other related questions in Dirichlet gap low bound estimates for

convex domain in Rn. In [5] the first eigenfunction of the Laplacian with Robin

boundary condition for convex domain in Rn is studied. Surprisingly, it is shown

that the Robin ground state is not log-concave for small Robin parameter on a large

class of convex domain. It is asked in [5] if similar gap comparison estimate still

holds true for Robin boundary condition. For convex domain in Rn, it is known

that the first eigenfunction of the p-Laplacian is log-concave [39], but similar gap

estimate for the p-Laplacian is still unknown.

In the next two sections we discuss the strategy of proving Theorem 1.9. Even

though the basic strategy is the same as in [3], the sphere case is much more

complicated and subtle. In particular the natural model (1.8) does not give an

optimal estimate when n = 2 and a different model is considered.
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2. Basic Approach and Modulus of Continuity

The basic outline of approach to obtaining the lower bound estimate of the funda-

mental gap for convex domain in sphere is as follows:

• Step 1: Reduction to a Neumann gap problem. This follows the original

approach of Singer-Wong-Yau-Yau [44].

• Step 2: Establishing the super log-concavity of the first eigenfunction. This is

the new ingredient introduced first by Andrews-Clutterbuck for the Euclidean

case and is the most technical part of the proof.

• Step 3: The gap estimate λ2 − λ1 ≥ 3 π
2

D2 by two-point maximum principle.

For Step 1, following Singer-Wong-Yau-Yau, let w(x) =
φ2(x)

φ1(x)
, where φi, i =

1, 2 are the normalized eigenfunctions corresponding to the first and second eigen-

value, respectively:

∆φi = −λiφi, φi|∂Ω = 0.

Moreover φ1 > 0 in the interior.

Then

∆w = −(λ2 − λ1)w − 2〈∇ log φ1,∇w〉, (1.9)

where w satisfies the Neumann boundary condition, c.f. [44].

Note that equation (1.9) can be interpreted as an eigenvalue equation for the

weighted Laplacian with respect to the measure φ2
1dvol. Thus we are reduced to

estimating the Neumann gap of a (weighted) Laplacian.

It is clear from (1.9) that treating the second term there (which involves the

gradient of the log of the first eigenfunction) is important. Indeed it turns out that

it is the critical part in obtaining the sharp lower bound for the fundamental gap.

The result is the so called super log-concavity of the first eigenfunction

The super log-concavity of the first eigenfunction is first introduced by Andrews-

Clutterbuck [3] in the Eucildean case. For convex domains Ω of a Riemannian

manifold, and any x, y ∈ Ω, let γ be a normal geodesic connecting x with y.

Indeed we will parametrize γ by the interval [−d2 ,
d
2 ] where d = d(x, y). Thus

γ(−d2 ) = x, γ(d2 ) = y. Then we have
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Theorem 17 (Dai-Seto-Wei, [19]). Given Ω ⊂Mn
K a bounded strict convex domain

with diameter D, let φ1 > 0 be a first eigenfunction of the Laplacian on Ω. Assume

K ≥ 0. Then for ∀x, y ∈ Ω, with x 6= y,

〈∇ log φ1(y), γ′(d2 )〉 − 〈∇ log φ1(x), γ′(−d2 )〉

≤ −2 πD tan
(
πd
2D

)
+ (n− 1) tnK(d2 ).

In particular,

Hess (log φ1) ≤ −
(
π2

D2
− n− 1

2
K

)
id.

Remark 18. Seto-Wang-Wei [40] previously established another super log-concavity

result for the first eigenfunction (the sphere model). As a consequence Seto-Wang-

Wei then proved the spherical version of the fundamental gap estimate when the

dimension n ≥ 3. The log-concavity given above is worse than the sphere model

when n ≥ 3 but better than sphere model when n = 2.

We will come back to the super log-concavity in the next section, but assuming

it, we now discuss the proof of the fundamental gap estimate Theorem 9. Namely,

for all n, when K ≥ 0,

λ2 − λ1 ≥ 3 π
2

D2 .

As before w(x) =
φ2(x)

φ1(x)
and also w̄(s) =

φ̄2(s)

φ̄1(s)
, where

∆φi = −λiφi, φi|∂Ω = 0

and φ̄1, φ̄2 are the corresponding eigenfunctions for the 1-dimensional model, namely{
φ̄′′i + λ̄iφ̄i = 0

φ̄i(±D/2) = 0
(1.10)

Clearly λ̄1 = π2

D2 , λ̄2 = 4π2

D2 and hence λ̄2 − λ̄1 = 3π2

D2 the desired lower bound.

(Of course the eigenfunctions are also explicitly given by the trig functions but we

found it more illuminating to work with the eigenvalue equations.)

An easy computation gives

∆w = −(λ2 − λ1)w − 2〈∇ log φ1,∇w〉,

w̄′′ = −(λ̄2 − λ̄1)w̄ − 2(log φ̄1)′w̄′

where the Neumann boundary conditions are satisfied.
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Consider the quotient of the oscillations

Q(x, y) =
w(x)− w(y)

w̄
(
d(x,y)

2

)
on Ω×Ω \∆, where ∆ = {(x, x)|x ∈ Ω} is the diagonal. One applies the maximal

principle to Q(x, y).

Assume the maximum of Q is attained at (x0, y0) and x0 6= y0. Denote d0 =
d(x0,y0)

2 , m = Q(x0, y0). Then, at the maximum point (x0, y0), we have ∇EQ = 0

for any E ∈ Tx0Ω⊕ Ty0Ω. It follows then that

∇w(y0) = ∇w(x0) = −m
2
w̄′(d0/2)en.

Here en = γ′. Furthermore,

∇2
E,EQ =

1

w̄(d0)

(
∇2
E,E(w(y0)− w(x0))−m∇2

E,Ew̄(d0)
)
≤ 0

Let e1, · · · , en−1 be an orthonormal set of parallel vector fields along γ which are

perpendicular to γ. Adding up ∇2
Ei,Ei

Q ≤ 0, i = 1, · · · , n, where Ei = ei ⊕ ei for

i = 1, · · · , n− 1 and En = en ⊕ (−en), we derive

0 ≥ ∆w(x0)−∆w(y0)

w̄
− m

w̄

n∑
i=1

∇2
Ei,Ei

w̄. (1.11)

To extract useful information from the inequality above, we now state a new

form of the Laplacian comparison result due to [4] and reformulated in this form

by [40]. The usual Laplace comparison is for one point distance function, i.e., in

d(x, y), we fix x (or y).

If we let both vary, one has

Theorem 19. Mn with RicM ≥ (n− 1)K, then (in weak sense)

n−1∑
i=1

∇2
Ei,Ei

d(x, y) ≤ −2(n− 1) tnK(
d(x, y)

2
)

where ei ⊥ ∇d are orthonormal and parallel and Ei = ei ⊕ ei.

As a consequence, one has the partial Laplace comparison for two-point radial

function. Let v(x, y) = ϕ(d(x, y)). If RicMn ≥ (n− 1)K, then

n−1∑
i=1

∇2
Ei,Ei

v(x, y) ≤ −(n− 1)ϕ′ tnK(
r(x, y)

2
) if ϕ′ ≥ 0
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n−1∑
i=1

∇2
Ei,Ei

v(x, y) ≥ −(n− 1)ϕ′ tnK(
r(x, y)

2
) if ϕ′ ≤ 0

In particular, applying it to the second term of the inequality (1.11) and using

w̄′ ≥ 0, one can deduce

n−1∑
i=1

∇2
Ei,Ei

w̄ ≤ −(n− 1) tnK w̄
′.

On the other hand, ∇2
En,En

w̄ = w̄′′. Hence

0 ≥ −(λ2 − λ1)m+
mw̄′

w̄
(n− 1) tnK −

m

w̄
w̄′′

−mw̄
′

w̄
(〈∇ log φ1(y0), en〉 − 〈∇ log φ1(x0), en〉)

= −(λ2 − λ1)m+ (λ̄2 − λ̄1)m+
mw̄′

w̄
(−2 πD tan

(
πd
2D

)
+ (n− 1) tnK(d2 ))

−mw̄
′

w̄
(〈∇ log φ1(y0), en〉 − 〈∇ log φ1(x0), en〉)

≥ −(λ2 − λ1)m+ (λ̄2 − λ̄1)m

by the super log-concavity, as m, w̄ are positive.

When the maximum of Q is attained at (x0, y0) and x0 = y0, it can be proved

similarly by a limiting process.

Note that as y → x,

Q(x, γ′(0)) =
2〈∇w(x), γ′(0)〉

w̄′(0)
.

We refer to [19,40] for more detail.

3. Back to super log-concavity

The notion of the modulus of concavity is the crucial concept introduced by [3] in

their solution of the original fundamental gap conjecture.

Definition 20. Given a semi-convex function u on a domain Ω, a function ψ :

[0,+∞)→ R is called a modulus of concavity for u if for every x 6= y in Ω

〈∇u(y), γ′(d2 )〉 − 〈∇u(x), γ′(−d2 )〉 ≤ 2ψ

(
d(x, y)

2

)
.

As in Andrews-Clutterbuck, He-Wei, [3, 23], the proof of the super concavity

consists of the following steps.
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• Step 1: Preservation of modulus of concavity. Namely one shows that there

is a way to deform a modulus function by essentially parabolic equations so

that the modulus of concavity property is preserved.

• Step 2: Existence of solution. That is, one shows that the solutions to the

parabolic equations exist.

• Step 3: Convergence to model solution as t → ∞. One shows that the

inital modulus of concavity can be improved via the previous steps so that it

approaches the desired modulus of concavity, the model solution.

The preservation of super log-concavity result in our case is stated in the fol-

lowing theorem.

Theorem 21. Let Ω ⊂Mn
K be a strictly convex domain with diameter D. Assume

K ≥ 0. Let u(x, t) = e−λ1tφ1(x), where ∆φ1 = −λ1φ1. Suppose ψ0 : [0, D2 ]→ R is

a Lipschitz continuous function such that ψ0 + n−1
2 tnK is a modulus of concavity

for log φ1. If ψ is a solution of

∂ψ(s, t)

∂t
≥ ψ′′(s, t) + 2ψ(s, t)ψ′(s, t)− tnK(s)

[
ψ′(s, t) + ψ2(s, t) + λ1

]
,(1.12)

ψ(·, 0) = ψ0(·);

ψ(0, t) = 0,

where ψ′ = ∂
∂sψ and ψ′′ = ∂2

∂s2ψ, then ψ(·, t) + n−1
2 tnK is a modulus of concavity

for log u(·, t) for each t ≥ 0.

Given Theorem 21, we now look into the existence and convergence of the

differential inequality (1.12). Note f = (log φ̄1)′ = − π
D tan

(
πs
D

)
satisfies

f ′ + f2 + ( πD )2 = 0.

On the other hand, the stationary solutions of ψ satisfy

0 = (ψ′(s) + ψ2(s) + λ1)′ − 2 tnK(s)(ψ′ + ψ2(s) + λ1).

Let y = ψ′ + ψ2 + λ1. Solving the ODE y′ − 2 tnK(s)y = 0, we obtain y =

y(0)K cs−2
K (s). Hence an initial condition y(0) = 0 would imply the trivial solution

in y, which is equivalent to ψ′+ψ2+λ1 = 0. The condition y(0) = 0 can be achieved

by adding the condition ψ′(0) = −λ1. In other words, a stationary solution ψ
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satisfying the Dirichlet boundary condition, with an additional boundary condition

ψ′(0) = −λ1, will yield the model solution. Thus the task is then to set up a version

of (1.12), solve it with the additional boundary condition ψ′(0) = −λ1, and show

that it converges to the model solution in the large time limit. Once again we refer

to [19,23] for more detail.
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[30] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches
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