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NEGATIVE RICCI CURVATURE AND ISOMETRY
GROUP

XIANZHE DAI, ZHONGMIN SHEN, AND GUOFANG WEI

1. Introduction. It is now known that negative Ricci curvature does not imply
any topological restriction on the underlying manifold (cf. ILl). It does, however,
impose geometric restriction by the classical result of Bochner [Bo], namely, the
isometry group must be finite. In this paper we consider a quantitative version of
Bochner’s theorem.

Consider the class of Riemannian n-manifolds satisfying

-A < Ric < -2 < 0, inj > io, vol < V. (1)

(Here the upper bound on the volume is equivalent to an upper bound on the
diameter.) By a result of M. Anderson i,A] this class is precompact in C1’ topol-
ogy. We prove the following theorem.

THEOREM 1.1. Let M be a sequence of n-manifolds satisfying (1) and C’
convergent to a C’ Riemannian manifold M. Then

(a) #{Iso(M)} < +c.
(b) lim,_.oo # (Iso(M)} < # {Iso(M)}.
An immediate consequence of Theorem 1.1 is the following result, which was

obtained by Katsuda [K-I, with an additional assumption that the sectional cur-
vature is bounded from below.

COROLLARY 1.2. There is a constant N N(n, 2, A, io, V) such that for any
n-dimensional Riemannian manifold M satisfying (1), the order of the isometry
troup Iso(M) is smaller than N.

Remark 1. This result can also be considered as a generalization of the
Hurwicz Theorem for hyperbolic surfaces, which gives a (very explicit) bound on
the order of the isomerty group in terms of the genus.

Remark 2. If one assumes the sectional curvature bound:

-A<K<0,

then one can drop the injectivity radius lower bound; see [Ym]. Here one can use
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Gromov’s uniform estimate on the volume of the fundamental domain of a dis-
crete isometric action (not necessarily free) of such manifolds. Note that the
underlying manifold may not be compact.

Remark 3. We refer to [AS], [HI, [Im], [M], [K], [Ym] for the previous
work.

The crucial step in proving Theorem 1.1 is the following critical gap theorem,
similar to the main lemma in [K].

Let d(., .) be the distance on M induced by the Riemannian metric and 6(p)
d(p, (p)) be the displacement function of an isometry .
THEOREM 1.3. Let M be a compact Riemannian n-manifold satisfyin (1). There

is a constant o Co(n, )., A, o, F) such that if an isometry of M satisfies (p) <
eo for all p in M, then is the identity map.

This result can be viewed as a discrete version of Bochner’s theorem. In fact,
our proof follows Bochner’s original idea. Instead of the norm (square) of th
Killing vector field, we consider the displacement function. Thus in Section 4 w
derive a Bochner type formula for the displacement function. Besides the Ricci
curvature term and a positive term (as in Bochner’s formula), we also have an
error term involving the curvature tensor and Jacobi fields. Th whole point her
then becomes the estimate of the error term. Part of this is based on Anderson’s
regularity theorem, which provides us with a uniform L bound on the curvatur
tnsor for the class of manifolds satisfying (1). However there is still some subtlety
in applying this result, and this is discussed in Sction 6. In Section 5 we stablish
a uniform estimate for Jacobi fields, based on the recent result of R. Brooks
[Br]. The actual estimate of the error term, which is shown to be uniformly small
in L norm, is presented in Section 6. From this estimate Theorem 1.3 follows by
using Sobolev inequality and H/lder inequality.

Remark. As in [K], Corollary 1.2 can also be obtained directly from Theorem
1.3 by ovring methods (see [K] for details).

Acknowledgements. We are very grateful to Uwe Abresch for informing us of
the work of Brooks and for very helpful discussions and comments. Thanks ar
also due to Mike Anderson and Herman Karcher for helpful conversations. Th
first and third authors would like to thank MSRI for its support and hospitality
during th fall of 1993.

2. Some general remarks oa isometry group. In this section we will observe that
the degree of symmetry (dfined below) is lower semicontinuous in the Gromov-
Hausdorf topology. For a compact Riemannian manifold M, its isometry group
Iso(M) is a compact Lie group. We define the degree of symmetry by

deg: ’ - N w (0}

deg(M, g) dim Iso(M, g),
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where dim Iso(M, g) is the dimension of Iso(M, g) as a manifold. Clearly degs(M, 9)
is equal to the maximal number of linearly independent Killing fields. Thus for a
Riemannian manifold (M, 9) with negative Ricci curvature, degs(M, g)= 0 by
Bochner’s theorem.

Consider the class of Riemannian n-manifolds satisfying

Ricl 2, inj > io, vol < V. (2)

We have the following result of M. Anderson.

TI-IEOREt 2.1 (M. Anderson [A]). For all (M, 9) in class (2), there exist con-
stants Ro R(n, 2, io) and C C(n, 2, io) such that for any x M there is a har-
monic coordinate system (uj}=l on B(x, Ro) satisfyin9

C-6u < 9u < Cfu
and Ilgullc,, C, where gu g(Vui, Vu) and the norm is taken with respect to the
coordinates {u} on B(x, Ro).

As pointed out in [A], one can actually get a better uniform bound on the
metric tensor via elliptic regularity. This is because with respect to the harmonic
coordinates, the Ricci tensor takes a particularly simple form:

(Ric),,, (3)

where Q is a quadratic term in the first derivatives of 9. Equation (3) is a uni-
formly elliptic system of PDE for which we have, locally, uniform Ca’’ bounds
on the coefficients 0 u, C’" bounds on the quadratic term Q, and Loo bounds
on the right-hand side. The elliptic regularity theory then gives a uniform bound
on 11911L_.p, Vp < . (Of course the uniform bound may depend on p.) This fact is
very important here, and we will be using it in an essential way.

Using this we prove the following lemma.

LEMMA 2.2. Let {Xt} be an L2-bounded sequence of Killin9 fields of (Mi, 9i)
with (Mi, 9i) satisfyin9 (2) and convergin9 to a C’" Riemannian manifold (Moo, 9oo)
in the C’" topology. Then the Killin9 fields {Xt} sub-converge to a Killin9 field
of (M, o).

Proof. We first show a uniform C’" bound for Killing fields. Let be the
1-form dual to a Killing field X of any manifold satisfying (2). Then Bochner’s
formula gives

A 2 RuJ dx i.

By Theorem 2.1 (and the above discussion) Ru has a uniform Lp bound (Vp < ).
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It follows from the elliptic regularity that we have a uniform C1’ bound for ,
hence for X. It follows then from Arzela-Ascoli’s theorem that the Killing fields
{X")} have a subsequence converging in C1’’ topology to a Cx’* vector field X
for any ’ < . That X is a Killing field follows from the fact that a vector field
X is Killing if and only if it satisfies the following first order equation

V +V 0.

PROPOSITION 2.3. The function degs(M, ) is lower semicontinuous in the Gromov-
Hausdorff topoloy. More precisely, for any sequence of manifolds (Mi, i) in the
class (2) converin to (Moo, oo) in the C’ topoloy,

lim._,oo deg,(M, #) < deg,(Moo, goo). (4)

Proof. If it is not true, we will have a subsequence (denoted by M too) with

degs(M, g) > degs(Moo, goo) + 1

for sufficiently large. That means we can find N deg(Moo, goo)+ 1 linearly
independent Killing fields X), X of (M, g) for sufficiently large. By nor-
malizing them with respect to the L2-norm induced by g we can assume {X,
X)} is orthonormal. By Lemma 2.2 the sequence (X} has a subsequence

converging to a Killing field X of (Moo, goo). By restricting to this subsequence
v(i)_we find a sub-subsequence of {A, X)) converging to a pair of Killing fields

{X1, X2 }. Continuing this process we see that by passing to a subsequence, {X,
X)} converges to {X, Xs}, each one being a Killing field of (Moo, goo).

These will also be orthonormal, since by Theorem 2.1, one can take the C’
topology, under which the L2-norm is clearly preserved. Thus we actually obtain
degs(Moo, goo) + 1 linearly independent Killing fields of (Moo, goo), a contradiction.
This completes the proof of the proposition, m

Remark. Intuitively this result says that the limit manifold will inherit all pos-
sible symmetry from the sequence.

3. Negative Ricci curvature. As we mentioned in the previous section, when
(M, g) is negatively Ricci curved, we have degs(M, g)= 0. In this case, the next
quantity to measure "the degree of symmetry" will be the order of the isometry
group Iso(M). The content of Theorem 1.1 is that this "secondary" measure of
degree of symmetry is also lower semicontinuous.
We prove Theorem 1.1 in this section using Theorem 1.3. The proof of Theo-

rem 1.3 will be presented in the remaining sections.
First we need some regularity result about isometry, due to Calabi-Hartman.

THEOREM 3.1 (Calabi-Hartman [CH]). Let (M, g) be a connected Riemannian

manifold and q Iso(M, g). Then the ck’-norm of q is bounded by the ck-l’-norm
of g for all k > 1, > O.
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Proof of Theorem 1.1. Part (a). Without loss of generality, we can assume
that M M for all as smooth manifolds, and (instead) we have a sequence of
smooth metrics g satisfying (1), C’’-converging to a Cl’-metric g for all ’ < .
By the theorem of Calabi-Hartman, Iso(M, g) is a Lie group acting C2’ on M.
Now for a C vector field X and a smooth metric h on M, an integral version of
Bochner’s formula states that (see [Y, page [41])

Rich(X, X) + l.xhl2 IVhX (divh X)2 dv 0. (5)

Let h g and apply (5) to a Killing field X of g. Since Ric < -2, we have

lXl2 + IV0,Xl 2 + (div0, X)z - &’x9 dv < O.

Passing to the limit yields

(lX12 "4-IVXl2 + (div. X)2 } dv < O.

This implies that X 0. Thus Iso(M, #) is finite.
Part (b). We follow the idea of the proof of Lemma 2,2 and Proposition 2.3.

Namely (A) we show that every sequence of isometries of has a subsequence
converging to an isometry of #; (B) if none of the isometries in the sequence is the
identity then neither is the limit.

Again, as in the proof of Lemma 2.2, (A) follows from the regularity result of
Calabi-Hartman. The regularity result of g in class (1) again follows from Theo.
rem 2.1 of M. Anderson.
Combining these two we see that the CZ’-norm of isometries for (M, #) in

class (1) is uniformly bounded by a constant depending only on 2, A, io, F. Hence
by Arzela-Ascoli’s theorem any sequence of isometries has a Cz’’ (a’ < a) conver-
gent subsequence. Since isometries are characterized by the following first-order
differential equation

b*g g,

it follows that the limit must also be an isometry for the limiting metric, proving
(A).

(B) is an immediate consequence of Theorem 1.3 if we note that the displace-
ment function is a continuous function with respect to the Gromov-Hausdorff
topology in class (1). m

4. A Bochner type formula. We now turn to the proof of Theorem 1.3. As
mentioned earlier, we follow Bochner’s original idea, but replace the norm square
of a Killing field by the displacement function 6 of an isometry. (The norm of a
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Killing field can be thought of as an infinitesimal analogue of the displacement
function.) Thus we would like to compute the Laplacian of die where die(p)=
d(p, (p)).
For a point p M with q(p) # p but 6(p) < io/2, let V(t) be the unique minimal

geodesic connecting p and (p), and T ,’(t). Take an orthonormal basis { V1
T, V2, V} for TvM. Then by definition

(Ab)(p) tr Hess Hesse,(V/, V/).
i=1

Let {(t)} be the Jacobi fields along such that (0)= V and (6#)= b,(V).
Then by the second variational formula ICE]

ness#(V/, V)= IlVrV ^ Zll 2- (R(V/, T)T, V),

where [IVr ^ TII 2= (Vr, Vr)- (Vr, T)2, which is nonnegative by the
Cauchy-Schwarz inequality. Therefore

f(v)A,,- IIVTV ^ T[I 2- (R(V, T)T, V).
i=1

Write

V(t) V(t) + W(t), (6)

where V(t) is the parallel translation along y(t) of the vector V at p. Then W(0)
0, and we obtain the following lemma.

LEMMA 4.1. Let b Iso(M) and 6(p) < io/2 for all p M. Then outside the
fixed point set of b,

A6(p) Ric(T) + IIVV, A TII 2 F(R, W),
i=1

(7)

with

F(R, W)= (R(W, T)T, W) + 2(R(W, T)T, V)

K(W, T)IIW A TII 2 + 2 (R(V, T)T, V) (W, V).
j=l

(9)

In the above formula, {W} measures the deviation of the Jacobi fields {}
from being orthonormal. We note that the error term F(R, W) involves both the
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(shifted) curvature tensor and W. For the (unshifted) curvature tensor, Anderson’s
theorem provides us with an L’ bound. On the other hand, when maxpu 6o(p) is
small, W should also be small. Thus one expects the error term F(R, W) to be
small relative to max 6. Indeed, we have the following.

L.MMA 4.2. For M in the class (1) and any 6 > O, there exists an e (6, n, 2,
A, io, V) such that if maxpu 6(p) < , then we have, in the sense of distribution

A6 > 26 6G6, (10)

where G is a function on M with a uniform L bound

IIGII C(n, , A, o, V)

for all 1 < p < +o.

The proof of this main lemma occupies the next two sections. Here we show
Theorem 1.3, assuming Lemma 4.2.

Proof of Theorem 1.3. Without loss of generality, we may assume that n > 3.
The Sobolev inequality states that

Ilfll 22/t-2 < Co(IIVflI22 + Iif1122), (11)

with Co Co(n, A, io, V) (see [Be]). Take p n/2 and 6 (1/2) min((2/CoCn/2(n,
2, A, io, V)), (8(n- 2)/n2)(1/CoCn/2(n, 2, A, io, V))). By Lemma 4.2 there exists an
eo eo(n, 2, A, io, V) such that (10) holds. Multiply it by 6-2)/2 and integrate by
parts, and we obtain

8(n- 2) fun2 IIV6/ll + 116/11 6 G6/2d vol. (12)

Applying the H61der inequality and the Sobolev inequality (11) to the right side
of (12), one has

6 f G6/2d vol < 6 IIGII./:z 116/11 2n/(n -2)

(13)

with C1 CoCn/2(n, 2, A, io, V). It follows from (12) and (13) that

Clearly by our choice of 6, we must have 6 0. This completes the proof.
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5. Uniform estimates of Jacobi fields.
folds M are in the class

In this section, we assume that the mani-

Ric > A, inj > io. (14)

In the presence of sectional curvature bound, the (uniform) bound on Jacobi
fields is an immediate consequence of the Rauch comparison theorem. What is a
little surprising here is that one also obtains a uniform bound on Jacobi fields in
terms of a lower bound on Ricci curvature and a lower bound on the injectivity
radius.

PROPOSITION 5.1. For the Jacobi fields V(t) defined in Section 4, if 6(p) < io/2
we have the followin uniform bound: (we are suppressin the subscript i)

v C(n, A, io).

In particular,

Wll C(n, A, io).

This proposition follows from some more general estimate for Jacobi fields
vanishing at a point. First we need to introduce some further notions. Let Po e M
be a fixed point, and r(p) d(po, p) the distance function from Po. The Hessian of
r is also the second fundamental form of its level surfaces, i.e., the geodesic spheres.
We denote A Hess r. Now if c(t) is a minimal geodesic starting at Po and J(t) is
a Jacobi field along c such that J(0) 0, (J’(0), T) 0. Then

J’= AJ.

Write A(t) B(t) + (1/t)I. (Note that A(t) has a singularity at t 0. In fact B(t) is
exactly the regular part; cf. [Br].) First we prove the following estimate for Jacobi
fields.

LEMMA 5.2. For Jacobi fields constructed above, we have

0 < < to (15)

for any fixed 0 < to < io.

Proof. Write J(t)= tU(t). Then for fixed to, U(t) satisfies the following
equations:

U’(t) B(t) U(t)

v(o) J’(O), U(to)
J(to)
to
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Let U(t) U(to t). We have

U’(t)--" -B(to t)U(t)

u(o)
 (to)
to

Then

U’(t)ll < IIB(t to)ll U(t)ll,

which gives

(t)ll eS, IIn.o-)lla, IIJ(to)ll
to

Thus

U(t)ll es: I1,()11 IIJ(to)ll
to

and

IIJ(t)ll < ei,

The estimate of B(s) involved in-the above lemma is based on the following
sharp lower-bound estimate of the Laplacian of the distance function, due to R.
Brocks [Br].

PROPOSITION 5.3 (R. Brocks). There exists a constant C(n, A, io) such that

0 < CtA(t
tr A o
n 1 < C(n, A, io) for 0 < < -,

where ct^(t)= x/ cosh xft/sinh -t.
We refer to [Br, Satz 5.63 for the proof. The first inequality is of course well

known. (Cf. also [AC3 for a weaker lower-bound estimate on the Laplacian of the
distance function.)
For our purpose, we rewrite it as

tr A 1 ioC (n, A, io) < n-1 < C(n, A, io) for 0 < < -.
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Now we can prove Proposition 5.1.

Proof of Proposition 5.1. For a Jacobi field J vanishing at 0 and perpen-
dicular to c(t), we have J’ (B + (1/t)I)J. From the Jacobi equation

d"+ R(J, T) T O,

we have

2
B’ + B2 d--B + R 0,

where R R(., T)T. Therefore

2
tr B’ + IIBII2 + tr B + Ric(k) 0. (16)

Multiply (16) by a factor 1/2 and integrate along c(t):

tx/2llB(t)ll2 dt --tg/2 tr B(to)--- -/2 tr B(t) dt /2 Ric(k)dt

< C(n, A, io).

Hence

< C(n, A, io). (17)

Combining (15), we have

IlJ(t)ll C(n, A, iO)o IIJ(to)ll C(n, &, io)IIJ(to)ll, ioO < < to < . (18)

In fact, this estimate holds for any Jacobi field which vanishes at the starting
point. This can be easily seen by decomposing the Jacobi field into tangential and
perpendicular components and noting that~ the.. tangential~ component is linear in
t. But V(t) can be written as the sum, V(t)= Vt (t) + V2(t), where V/(t) are Jacobi
fields along y with _V(0)= 0, VI()= q,(V), V2(0)= V, V2(di)= 0. Applying the
above estimates to F we obtain Proposition 5.1. m
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Remark. Proposition 5.3 can also be used to derive a Toponogov-type com-
parison estimate for Ricci curvature; for more detail, see [DW].

It turns out that this estimate is still not good enough for our purpose (espe-
cially for applying Anderson’s theorem). We now improve the estimate to the
following.

PROPOSITION 5.4. Using the same notation, we have

I1- vii- IIWII < C(n, A, io)(6)/2 + IIW()ll)

provided 6 < o/4.
We divide the proof into two lemmas.

LEMMA 5.5. Let V be the Jacobi field alon# such that V(O) V, V(-io/4) 0.
Then

I1- vii C(n, A, io)i)/2, for [0, ],

provided < io/4.

LEMMA 5.6. We also have

for [0, ],

provided < io/4.

Proof of Lemma 5.5. Let rl(p) d(p, 7(-io/4)) be the distance function from
7(-io/4). Let A be its Hessian, and A(t) A((t)) for [-io/4, io/4"]. Then

V’= AV.

Therefore

(t)ll (0)11 e’ 11,4tolld < C(n, A, io), for [0, ].

This will give the estimate we want, since

IV(t)- v(O)ll IIA()II IIV(OII drJo

< C(n, A, io)t /2 for all [0, 6,].

This finishes the proof of Lemma 5.5.
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Proof of Lemma 5.6. V_(t) V(t)- V(t) is still a Jacobi field. Moreover, _V(0)
O, V_(6o) b,(V) V(6). Note that

IIY(5)11 IIq,(v)- v()ll + IIVO)- v()ll.

Now

IIq,(v)- v(5)11- IIW(5)11. (19)

By Lemma 5.5,

(5)- v(5#)11 C(n, A, io)/2 (20)

Combining (19) and (20), we have

II_V(+)ll < C(n, A, io)(6/2 + IIW(50)11).

Now the estimate (18) yields

II_v(t)ll < C(n, A, io)(6/ + IIW()ll),

6. Estimate of the error term. Our error term is

G(R, W)= K(W, T)II w A T 2 dt
i-1

+ ,,= f 2(R(V, T)T, V) (W, V) at.

We have shown that W is small if 6 is small. In the light of Anderson’s theorem,
Lemma 4.2 seems immediate. Unfortunately we cannot apply Anderson’s result
directly here, as we explain now.

Anderson’s theorem gives

fumax I(Rp(X, X2)Xa, X4)lqd vol(p) < C(n, 2, A, io, V),
xi

Vq<.

Here Rp denotes the curvature tensor at the point p.
On the other hand, for fixed t, we can define

f:MM

p expp exp; b(p).

This is a well-defined C-map if 6 < io/2. We note that fo Id, fl b.
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By a change of variable, we have

G(R, W)= (,: f K(W(t6), T(t6))llW(t) ^ T(t)ll 2 dt

+ ,,J= f 2(R(V(tgi), T(trS))T(t6), V(tgi))(W(tgi), V(t6))dt).
From Proposition 5.4,

IlWll C(n, A, io)(di)/2 + IIW()ll),

The following lemma shows that w()ll is also controlled by max,M die(p).

LEMMA 6.1. For all manifolds in class (2) and any 5 > O, there exists a constant
e e(6, n, 2, io, V) such that if max 5 < e, then W()ll

Proof. It follows from the fact that is an isometry of M, and the class (2) is
C1’ compact.

Thus, if max < e (< 62),

IG(R, W)(p)I < 6(p)C(n, 2, A, io, V)6 f/ IRmax(ft(p)) dt

here we have used the shorthand

IRmax(ft(P))l max
IIXll=

Let G(p) C(n, A, io) IRm,(ft(P))l dt. We want to show that

IIGII C(n, 2, A, io, v).

We first establish the following lemma.

LEMMA 6.2. Let f(x, t) be a nonnegative function and

)NF(x) (fjff’(x,t)dt
Then

IIFIIq < IIf(’, t)llvq dt < max IIf(’, t)llq.
0<t<l
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Proof. This follows from Minkowski’s inequality for integrals, which states

dx)p dx.

Thus it remains to show that

max f IRmax(fi(p))lqd vol(p) < Cq(n, 2, A, io, V).
O<t<l

The left-hand side can be rewritten as

max f lRmax(fi(p))lq
1

o<t<l Jac(f)
d vol(f(p)).

Thus the desired estimate would follow from the change of variable formula and
Anderson’s theorem if we show the following.

THEOREM 6.3. We have if max 6 < e,

1 C(n, 2, A, io, V)6 < Jac(f) < 1 + C(n, 2, A, io, V)6.

In particular, fi(O < < 1) is a diffeomorphism when we take < 1/2C(n, 2, A).

Proof. We note that

(ft),(V) V(t6).

Thus the lemma follows from the estimate of Proposition 5.4 and Lemma 6.1. m
Combining the above discussions, we have shown that for any 6 > 0 sufficiently

small, there exists an e e(6, n, 2, A, io, V) such that if max 6 < e,

a(p) > 26(p)- 6G(p), (21)

for all p such that 6(p) > 0.
In order to finish the proof of Lemma 4.2, we now show that (21) holds every-

where in the sense of distribution, i.e.,

(V6V +2 6G6@) dv < O, (22)

for all C(M). Since the set A := {6(x) O} is the set of fixed points of b, A is
a totally geodesic submanifold of M, which of course has zero measure. Thus it
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suffices to prove the following

fu At4 dv -fu V64V, dv (23)

for all C(M). Let As denote the e-neighborhood of A in M. One has

A6 dv -- ds VbV dv.
\A A A

(24)

Since 6 is a Lipschitz function with Lipschitz constant 2, the first term on the
right of (24) goes to zero as e 0. Then one obtains (23). This completes the proof
of (22).
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