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We prove that  Riemannian metrics with an absolute Ricci curvature bound and a 
conjugate radius bound can be smoothed to having a sectional curvature bound. 
Using this we derive a number of results about  structures of manifolds with Ricci 
curvature bounds. 

1. I n t r o d u c t i o n  

A central theme in global Riemannian geometry is to understand the global 
geometric and topological structures of manifolds with appropria te  curvature 
bounds. In this regard, manifolds with sectional curvature bounds have been 
bet ter  understood than those with Ricci curvature bounds.  It is natural  to try 
to apply the results and methods in the former case to the latter.  Hence we 
ask the following question: can one deform or "smooth" a metric with a Ricci 
curvature bound to a metric with a sectional curvature bound? In this paper we 
would like to address this question. 

Previous work on smoothing mainly  deals with metrics having already some 
sort of sectional curvature bounds. For example,  one can smooth a metric with 
a sectional curvature bound to a metric with bounds  on all the covariant deriva- 
tives of its Riemannian curvature tensor. Geometr ic  applications of this smooth- 
ing result can be found in [8] and [7]. I ts generalizations to weaker bounds on 
sectional curvatures can be found in e.g. [21, 22]. So far, two main methods of 
smoothing have been applied. The works [5], [4], [19] and [21, 22], among others, 
use the Ricci flow, while [9], [1] and [18] use an embedding method.  The Ricci 
flow, as a heat flow type equation, tends to average out  geometric quantities, 
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and hence is a natural tool for smoothing. The embedding method employs an 
elementary averaging process in a linear space in which a given Riemannian 
manifold is embedded nicely. 

The following is a precise formulation of the problem of smoothing Rieman- 
nian metrics with Ricci curvature bounds. 
Ques t ion :  Given a positive integer n and any e > 0, does there exist a constant 
C(n, e) such that for any closed Riemannian manifold (M n, g) with IRic(g)l _< 1 
we can find another Riemannian metric ~ on M satisfying 
1) [ g - g l < e a n d  
2) IK(~)I _< C(n, ~)? 

By examples in [2] among others, the answer to the question in this generality 
is actually negative. Consequently, additional geometric conditions are needed 
for smoothing metrics with Ricci curvature hounds. In this note we consider 
bounds on conjugate radius. 

Def ini t ion.  We define for n > 2 and r0 > 0 

A~(n, r 0 )=  { ( M , g ) [ ( M ,  g) i s  a compact Riemannian manifold, } 
d imM = n, [Ric] < 1 and conj > r0 

where "conj" denotes the conjugate radius of M. 

Recall that the conjugate radius of a manifold M can be defined to be the 
maximal radius r such that for every q E M, the exponential map expq has 
maximal rank in the open ball of radius r centered at the origin of the tangent 
space TqM. In order to understand the geometric content of bounds on conjugate 
radius, it is good to compare with bounds on injectivity radius. As is well-known, 
the corresponding space .s r0) concerning injectivity radius (replacing conj 
by injectivity radius in the above definition; or equivalently, adding an additional 
lower bound on volume in the above definition [10]) is C 1'~ precompact [3]. 
Hence the situation is quite simple. On the other hand, under a conjugate radius 
bound, manifolds can collapse, and the space A~(n,, r0) contains an abundance of 
geometric and topological structures. Note also that if KM <_ K then conj _> ~g"  
This is the usual way of controlling conjugate radius. But we emphasize that 
conjugate radius is an important independent geometric invariant. 

It seems that Ricci flow is more convenient than the embedding method in 
our situation, so we choose it. We have 

T h e o r e m  1.1. There exist T(n, ro) > 0 and C(n, ro) > 0 such that for any 
manifold (M, go) E M ( n , ,  r0), the aicci flow 

0___gg = -2Ric(g),  g(0) = go (1.1) & 

has a unique smooth solution g(t) for 0 < t < T(n, r0) satisfying 

Ig(t)-gol <_ 4t, (1.2) 
IRm(g(t))lo~ < C(n, ro)t -1/~, (1.3) 
IRic(g(t))l~ _< 2. (1.4) 
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R e m a r k  1. Here the conjugate radius condition is only used in the following 
way: it implies that for every x E M the lifted metric on B~(r0) C TaM has 
uniform L 2,p harmonic coordinates, see Sections 3 and 4. 
R e m a r k  2. Although we can not expect that  the Ricci curvature of g(t) is 
uniformly close to that of go, using (1.3) one can show that  the Ricci upper and 
lower bounds are arbitrarily close to that  of original ones as t goes to 0. Namely, 
if we assume C1 < Ric(g0) < C2, then we obtain a metric g(t) satisfying C1 - 
Ct 1/~ < Ric(g(t)) < C2 + Ct 1/2, where C is a uniform constant. In particular, 
negatively (or positively) curved metrics are still negatively (or positively) curved 
after smoothing. 

Using Theorem 1.1, we are able to extend a number of results concerning 
manifolds with sectional curvature bounds to manifolds with Ricci curvature 
bounds. First, we have the following generalization of Gromov's  almost flat man- 
ifold theorem [12]. 

T h e o r e m  1.2. There exists an e = e(n, r0) > 0 such that  if a manifold M n has 
a metric with [RiCM[ < 1, conj > r0 and diam < e, then M is diffeomorphic to 
an infranilmanifold. 

Next we have a generalization of Fukaya's fibration theorem [11]. 

T h e o r e m  1.3. There exists an e = e(n, r0, p) > 0 such that if M'* and N m 
(m < n) are compact manifolds with M n e .h4(n, r0), [RicN] _ 1, injN > p, and 
if the Hausdorff distance dtt(M, N) < e(n, r0, p), then there exists a fibration 
f : M ---* N such that 
1) The fiber of f is an almost flat manifold. 
2) f is an almost Riemannian submersion. 

Let MinVol(M) be the infimum of the volumes of all the complete Rieman- 
nian metrics on M with sectional curvature IKI < 1. We can extend the gap 
result for minimal volume in dimension four in [16]. 

T h e o r e m  1.4. There exists a real number v(r0) > 0 such that if a 4-manifold M 
has a metric with IRicMI < 1, conj >_ r0 and Vol < v(r0), then MinVol(M) = 0. 

As an immediate corollary of Theorem 1.1 and Gromov's  uniform betti num- 
ber estimate [13], we have that the betti numbers of manifolds in .M(n, r0) are 
uniformly bounded. Indeed, such a uniform bound still holds if the absolute Ricci 
curvature bound is replaced by a lower bound [20]. Note however that M(n, r0) 
contains infinitely many homotopy types. With Theorem 1.3 at disposal, we 
can also say something about the higher homotopy groups, generalizing Rong's 
results [17]. 

T h e o r e m  1.5. For each D > 0 and each q > 2, the q-th rational homotopy 
group 7rq(M)| Q has at most N(n, D,q) isomorphism classes for manifolds in 
A/l(n, r0) with diamM _< D. 

Concerning the fundamental group we have 

T h e o r e m  1.6. For manifolds in .hd(n, r0) with diamM < D, r l ( M )  has a nor- 
mal nilpotent subgroup G such that  
1) The minimal number of generators for G is less than or equal to n, 
2) rl(M)/G has at most N(n, r0, D) isomorphic classes up to a possible normal 
Z2-extension. 
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Now we would like to say a few words about  the s t rategy of proving Theo- 
rem 1.1. The Ricci flow exists at least for a very short  t ime, and the main point 
is to show tha t  it actually exists on a t ime interval of uniform size on which the 
desired est imates hold. A simple, but  crucial idea is to lift the solution metrics 
to suitable domains of the tangent  space via the init ial  exponential  maps. The 
size of these domains can be made uniform by the virtue of the conjugate ra- 
dius bound. Applying the results in [3] we obta in  an initial L p bounds on the 
sectional curvatures and an initial  bound on the Sobolev constant for the lifted 
metrics. The lifted metrics still satisfy the Ricci flow equation, but they are only 
defined locally and no a priori control near the boundary  is given for them. We 
apply Moser's weak maximum principle to es t imate  the sectional curvatures of 
the lifted metrics in a way similar to [21]. As in [21], we need to control t h e / f i  
bound of the sectional curvatures of the lifted metrics along the flow. The sub- 
t le ty here is how to handle the difficulty caused by lack of control near boundary. 
For tunate ly  we found a covering argument  to resolve this problem. 

It  is possible to obtain part  of the smoothing result of Theorem 1.1 by the 
embedding method,  see [15] for more details.  There smoothing in a more general 
set t ing is established. 

2. M o s e r ' s  w e a k  m a x i m u m  p r i n c i p l e  

Let N be a compact  n-dimensional manifold with non-empty boundary, n >__ 3. 
For a given metric g on N the Sobolev constant  Cs of g (or better ,  of the 

Riemannian  manifold (N,g))  is defined to be the supremum of ( f  [f]--~-~ )~-~ 
over all C 1 functions f on N with f IV f] 2 = 1, which vanish along ON. So for 
such f we have 

I ] f l ] - ~  -< CsllVfl]2 . (2.1) 

T h e o r e m  2.1. Let f ,  b be smooth nonnegative functions on N x [0,T] which 
satisfy the following: 

0f  
o-Y < A / +  b/on N • [0, T], (2.2) 

where A is the Laplace-Beltrami operator  of the metr ic  g(t), b is assumed to 
satisfy: 

sup b q/2 <_ fl , 
0_($<T 

for some q > n. Put  l = max ~ co (here the norm is measured in g(t)) 
0_(t<T 

and Cs = max Cs(g(t)) .  Then, given any p0 > 1, there exists a constant C = 
0<*<T 

C(n,  q, P0, fl, Cs, l, T, R) such that  for any x in the interior of N and r E (0, T], 

If(x,t)l _< Ct -  ,o fpo , (2.3) 
R 

where R = �89 ON) and Bn = BR(x)  denotes the geodesic ball of radius 
R and center z defined in terms of the metr ic  g(0). 
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Proof. We follow closely [23], [21]. Let T/ be a non-negative Lipschitz function 
vanishing along ON. The partial differential inequality (2.2) implies for p >_ 2 

1 0 /  / J 1 /  " 2 0  pot f f  rl2 dvt < r]2 f f -  l A f dvt + b ff  rl2 dvt + p - f r] -~dvt , 

where dvt is the volume form of g(t). Integration by parts yields 

4 ( p -  1) 

.4(p - 2_.___~) f V(~IIP/2)ff/2 Vr 1 dvt 4 p2 
2 

< -~jlv(,ffp/2)12+pJlVol2f ", 

where the gradient V refers to g(t). By HSlder inequality 

a.=2 
_< ' 

( i<, )'~ i f  l-n-- "~ < ~ ( c - ~  -~ po~av,)~-~ c , po2)~-~av, 

< ~(,-"~,~fF,72dv,)l-"lq(,(1-~)(~-~-.~)C~flV(~fp/2)12dv,) "/q 

q S j IV(ofvl2)l~dvt. 
Therefore 

po, f fP'~ <- (-~ + q f IV(,fP')l 2 

q--p2 [d iVrli2f p -I- (fl(1 -- 7)e--e~ a t- 7 l )  i fPrl ~ �9 

(The volume form is omitted.) 
Setting 

< - -  

npflC s 
we obtain the following basic estimate: 

0 TF2 f IV(rift/2'12 < 2 i IVr]I2fP + Cl(n,p, fl, Cs ,q , l ) f  fir] ~. (2.4) b-? d 0 +  

Now given 0 < r < r' < T, let 

0 O < t < r ,  
r ( t -r ) / (r ' -r )  r < t  <r ' ,  

1 r ' < t < T .  

Multiplying (2.4) by r we obtain 
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o_ 
O, f :',') + r J < 2r f lV'::" + + r f :", �9 

Integrating this with respect to t we get 

~ fPT12 + Z: J 'V(~fP/~)'~ 

fTT/ ( 1) frT  / <2 ]Vr/la.f p+ Cx+~ fPr/:, r'<t<T. 

Applying this estimate and the Sobolev inequality we deduce 

j f rT /  p(l+~) 2.t. hi fvT ( f  )2In ( f  )'*-" , f )7 <_ , f prl2 f.-~-"2~l.z'~-"2 " 

[T T ]"' 
For a given x in the interior of N) p > Po and 0 < v < T) we put 

IL H(p, T, R) = f P ,  

where BR is the geodesic ball of center z and radius R measured in g(0). Choos- 
ing a suitable cut-off function )7 ( and noticing IVr/[t < IVT/10e�89 we derive from 
(2 .5 )  

2etT ] 1-}-~ 
H I p I I + 2 ) , T , , R ) < C ~ [ C I +  1 + H(p,T,R,)I+~ 

- ~, ----7 ( R ; - - ~ F J  ' 
(2.6) 

where 0 < R < R ~ < distg(o)(x,ON). To proceed we set /~ = 1 + ~, Pk = 
p0/~ k, rk = (1 - zl+, )t and Rk = ~(1 + ~---~ ) with R = �89 ON). Then 

it follows from (2.6) that 

H(p~+I, rk+l, Rk+l) 1/p~+' < 

p2 1 
C~s/p~+~ C I  + - -  " - + - -  

Hence 

H(p,~+l, r ,~+l , / t~+l)  lips'+' < 

c:C_o , r ,,, 1 4e 'T 
,k+ l  C 1 + - - "  + - -  s [ Z - 1  7 R = 

4etT /~ ] 1/pk 

R2 " ( V ~ -  1) 2 P~/PkH(Pk'rk'Rk)I/P~ " 

] E L  - '  
�9 1)  2 p T;H(po, vo, Ro) ,o 

Letting m ~ co we conclude 
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3. B o u n d i n g  c u r v a t u r e  t e n s o r  

Let (M, go) ~ .kd(n, re) for some n, r0. Consider the Ricci flow on M with initial 
metric g0. It is well-known that the Riemann curvature tensor Rm satisfies the 
following evolution equation along the Ricci flow [14]: 

ORm 
Ot 

- ARm + Q(Rm), (3.1) 

where Q(.Rm) is a tensor that is quadratic in Rm. From this it follows that 

OIR~I < AIR~I + c(n)lR~l 2. (3.2) 

In order to apply Moser's weak maximum principle we need bounds on 

max0<,_<T IIRmll,,0, 
maxo< t<_T Cs , 
maxo<<.t<_T [Ric[. 

We are going to employ suitable evolution equations associated with the Ricci 
flow such as (3.1) and (3.2) to derive these bounds from the initial bounds (i.e. 
bounds at t = 0). The basic logic of the argument goes as follows. By smoothness 
of the Ricci flow, the initial bounds can at least be extended to a very short time 
interval. We then derive a uniform estimate for the length of the maximal interval 
of extension. 

To get initial bounds we actually have to pull the metric up to the tangent 
spaces. For any fixed z E M, we lift the metric g0 by the exponential map to 
~=(0) on/Yro(z) C T~:M. Then 

[Ric~T o]_< 1, mJB,o/~" "- >_ to/2. 

By [3], the metric ~=(0) also comes with the following uniform bounds: 

HRmllpo,~,o/~(=) < K(n, ro,po), for all 1 _<p0 < oo, 

Cs([#o/~(=)) <_ x(n,,o). 

This furnishes us with the required initial bounds. 
Let 9x(~) be the lifted Ricci flow on Bro/2(z). Choose po > n/2 -{- 1, e.g. 

Po = n -{- 2. Then we have 
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P r o p o s i t i o n  3.1. Let [0, Tmax) be a maximal time interval on which the Ricci 
flow g(t) has a smooth solution such that each lifted aicci flow ~ ( t )  on Bro/2(x) 
satisfies the following estimates: 

IIRm(~=(t))llpo,~.o/,(=) < 2K(n, ro,po), (3.3) 

IRic(~=(t)) I < 2, (3.4) 

Cs(~=( t ) )  <_ 2x(n, ro). (3.5) 

Then Tmax >_ T(n, ro,Po) for some T(n, ro,Po) > O. 

The proof of this proposition requires four lemmas. Set K = K(n, to, Po). 

L e m m a  3.2. For 0 _< t < Trn~• there holds 

_ ~_e_q2. 
Ilnm(~=(t))lloo <_ C(n, po, x, K)t 2,0.  ( 3 . 6 )  

This follows immediately from Moser's weak maximum principle Theo- 
rem 2.1. 

L e m m a  3.3. For 0 < t < Tmax there holds 

~ IIRm(~=(t))llpo,[~.o,,(=) <_ 
K 

1 - C(n, po, X, K)t" 
(3.7) 

L e m m a  3.4. For 0 < t < Tmax there holds 

~IoO-- n--2 

Imc(g(t))l < e C( ' 'p~ ='~ (3.8) 

L e m m a  3.5. For 0 < t < Tm~x there holds 

~pQ--n--2 

~ C s ( O . ( O )  <_ xe c(''p~ 2,~ (3.9) 

The proof of Lemmas 3.3-3.5 is presented in the next section. Granting the 
lemmas the proof of Proposition 3.1 can be seen as follows. First of all we quote 
the following theorem of Hamilton [14]: 

T h e o r e m  3.6. Let g(t), 0 < t < T be a (smooth) solution to the Ricci flow (1.1) 
on a compact manifold M. If the sectional curvatures of g(t) remain bounded 
as t ---, T, then the solution extends smoothly beyond T. 

By (3.7)-(3.9) there exists T(n, r0, P0) > 0 such that  ift < min(T(n, r0, P0), Tmax) 
then strict inequalities hold in (3.3), (3.4), (3.5). Consequently, if Tm~x < 
T(n, ro,Po), by (3.6) and Hamilton's theorem, the solution to the Ricci flow 
can be extended beyond Tmax with (3.3), (3.4), (3.5) still holding, contradicting 
the maximality of Trnax. 

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Proposition 3.1 
and (3.6) if we let P0 = n + 2. [] 
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4. Proof of the three basic lemmas 

Proof of Lemma 3.3. By (3.1) and the bounds implied by the definition of Tma~, 
we can apply (2.4) with p --- P0 to deduce 

0 <2j /A -~ f~.o.r IRml%~ - Bro.(') IV'71~IRmI~ +CI ("'P~ K' ~) f~o,~<.) IR~I''7~ 
(41) 

We choose q so that the following is true. 

a /~ ]RmlP < (2 + CI) /[~ IRmlP. (4.2) 
Ot .o/,(= ) - ,o/~(~ ) 

Now cover the ball ]}r0/2(z) by balls /~ro/4(#i) with yi 6 /~r0/2(z). By the fol- 
lowing proposition of Gromov the number of covering is uniformly bounded. 

Proposition 4.1 (Gromov). (see [6, Proposition 3.11]) Let the Ricci curva- 
ture of M" satisfy RicM. >.(n- I)H. Then given r,e > 0 and p 6 M s, there 
exists a covering, Bp(r) C U~Bp~(c), (pi in Bp(r)) with N <_ Nz(n, Hr2,r/e). 
Moreover, the multiplicity of this covering is at most N2(n, Hr2). 

Therefore B~o/2(z) C U~/~r0/4(#i) with N < N(n,r0). 
Let Yi = exp~ yi. We now construct a map 

exp,,  1 oexp~ : b~o/4(~)/) C T~M --*/~o/4(Y{) C T~M. (4.3) 

For any z~ 6 /}~o/4(zJ~) connect it with the center ~ by the unique minimal 
geodesic. This projects down to a geodesic on M which can then be lifted to a 
geodesic in J~o/4(Y{). The end point of this geodesic gives the image of Y. Thus 
defined, e x p ,  1 o exp~ is one to one and an isometry. It follows then 

/~o/,(9,) 'Rm" = /~,o/,(u.) 'Rm''" 

This combines with (4.2) implies 

0 fm IRml p < (2 + CI)N max [ IRml p. 
-~ ~o14(z ) - -  yeM J~o/4(y ) 

Integrating this, we obtain 

J IRm(O~)l p _< j=0 IRm(O~)l" + (2 +Cl)Ntmax~eMj [ IRm(Oy)l'. 

Therefore 

(1 -- (2 + C1)NZ) max [ IRm(~,)l  P < [ IRm(.~)l p < K, 
y e M J  - -  Jt=o - -  

a n d  this implies (3.7). [] 
Proof of Lemma 3.~. Note that  for Ricci curvature we do the estimate directly, 
without passing to the tangent space. 
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Recall that  the Ricci curvature tensor satisfies the following evolution equa- 
tion [14]. 

~ Ric = ARic + 2Rm(Ric) - 2Ric- Ric. 

Let ~(t) = max~eM IRic(g(Q)[, then 

~ < e(n)tnm(g(0)l~(~). 

Using (3.6), together with ~(0) _< 1 and integrating with respect to t gives 

t - -  n 2 2 p Q - ~ - 2  

~(~) < ~/~ cc.,po,Z~,x)~ ~ . :  d~ = e ' . ~ :~ - ' c ( " ' ~~  ~.o 

This implies (3.8). [] 
Proof of s 3.5. For u e C~176 and vanishing on the boundary, 
define 

/ ' l lul l~.~,o, , )  ~ 
E,[u] = \ IlVull~ 

Then a straightforward computat ion shows tha t  

O Et[u] <_ c(n)[[aic(~:(t))l[ooEt[u]. 

2pQ--n--2 

Cs(O.(t)) < xe c("'p~ ~,o 

Integrating this gives 

which is (3.9). [:] 

5. A p p l i c a t i o n s  

By Theorem 1.1, the deformed metric g(t) has uniform sectional curvature bound 
(away from t = 0) and g(t) is close to g(0). To apply the results with sectional 
curvature bounds to g(t), we need to show that  other geometric quantities like 
diameter and volume are also under control. We first prove the following lemma. 

L e m m a  5.1.  
T(n, r0), 

Let g(t) be the Ricci flow in Theorem 1.1. Then for 0 _< t < 

e-2tdiam(O) < diam(t) _< e~'diam(O), (5.1) 
~-'"'vol(O) < vol(O < e'"'vol(O), (5.2) 

where e.g. diam(t) means diam(g(t)).  
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Proof. For the estimate on the diameter we consider the evolution of the length 
functional. Thus fix a curve c and let Ir denote its length in the metric g(t). 
Then 

Oto(t) 
- 21r _< - - - 7  _< 21o(t), (5.3) 

from which we obtain e-2Uo(0) _< lo(t) < e2t/o(0). This gives 

e-2tdp,g(O) < dp,q(t) <_ e2tdp,g(0), (5.4) 

where dp,q(t) denote the distance between p and q in the metric g(t) for p, q in 
M, in particularly (5.1). 

For the volume let w(t) denote the volume form (or density if M is not 
orientable) of g(t). Consider A(t) = w(t)/w(O). One computes 

8A(t) ag(t) 
at - T r g ( , ) T ) A ( t ) .  

Then 
OA(t) 

-4hA( t )  _< - - 7  < 4nA(t). 

Hence e -4nt _< A(t) < e 4~t and the volume estimate follows. [] 
Proof of Theorem 1.2. Let g(t) be the unique solution to (1.1) with the given 
metric as the initial data. By (1.3), for 0 < t < T(n, to), 

IK(OI _< C(n, to)t-'/2 (5.5) 
If co(n) is the small constant in the original Gromov's  almost flat manifold the- 

( ,o(,,)t~/~ ,~ 1/2 
orem [12], we choose to = T(n, r0), e = diam(0) < ~c(  . . . .  ),,,o / . Then from 

(5.1) and (5.5) [K(to)D2(to)] < co(n). Applying Gromov's  almost flat manifold 
theorem to g(to) gives Theorem 1.2. [] 
Proof of Theorem 1.3. Consider the Ricci flows gM(t), gN(t) on M and Y re- 
spectively, starting with the given metrics. Then 

IgM(t)l <_ C(n, ro)t -1/2, IgN(t) l  _< C(m, it)t -~/~, 

for 0 < t <_ T(n, to) and 0 < t <_ T(m, it) respectively. Let T = min(T(n, ro), T(m, it)), 
and C = max(C(n, r0), C(m, it)). Rescale the metrics 

hM(t) = Ct-1/~gM(t), hN(t) = Ct-1/2gN(t) 

so that  with respect to hM(t), hN(t), where 0 < t < T, 

IKMI <( 1, IKNI ~ 1. (5.6) 

Since injN > it for the initial metric on N, we have Cs(gg(O)) < x(m, it) 
and therefore by (3.5) 

Cs(hN(t)) = Cs(gN(t)) < ~Cs(g~r < 2x(m, it), 

f o r 0 < t < T .  By[10] 
injhN( 0 >_ itl(m, it) 
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for a l l 0 < t < T .  
Now f o r 0 < t  < T ,  

dH (M(h( t ) ) ,  N(h( t ) ) )  = Ct -1 /~dH(M(g( t ) ) ,  N(g( t ) ) )  

< Ct  -1/2 [dn(M(g( t ) ) ,  M(g(0) ) )  + dH(M(g(O)),  N(g(0) ) )  + dH(N(g(O)),  N(g(t)))] 

< Ct  -rIg [8t + dg(M(g(O)) ,N(g(O)) )] .  

Let )~(n) be the small  constant  in the refined f ibrat ion theorem (cf. [7, Theo-  

rem 2.6]). We choose to < min{T,  - ( t~'("'u)x('*)'~ 
2 

- 1so ] ),  e = d H ( M ( g ( O ) ) , g ( g ( O ) ) )  < 

l (" '(n'")~(n)t~/~)" Then  dn(M(h(to))'N(h(t~ < "\(n). Apply ing  The~  2.6 ) 

[7] finishes the proof. [] 
W i t h  (5.2) the proof  of  Theorem 1.4 is qui te  s imilar .  It  follows f rom Theo- 

rem 1.1, and Corol lary  0.4 in [16]. 
T h e o r e m  1.5 and 1.6 can be proved by using T h e o r e m  1.3 as in [17]. 
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