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1. Introduction

Integral curvature is a very natural notion as it occurs in diverse situations, for 
example, the Chern–Gauss–Bonnet formula, the isospectral problem, and numerous vari-
ational problems. Moreover, integral curvature bounds have recently been discovered in 
various geometric situations, such as the L2 bound of the curvature tensor for non-
collapsed manifolds with bounded Ricci curvature, and the (almost) L4 bound of the 
Ricci curvature for the Kähler–Ricci flow as well as the (real) Ricci flow (under certain 
conditions) [9,17,27,5,26,28,4]. In [23], the important Laplacian comparison and volume 
comparison are generalized to integral Ricci lower bound. Combining this with D. Yang’s 
estimate [30] on the local Sobolev constant, the Cheeger–Colding–Naber theory has now 
been successfully extended to integral Ricci curvature bound in the noncollapsed case, 
with important consequences [24,27]. In the collapsed case a local Sobolev constant es-
timate was missing. Here we provide the missing piece and extend many of the basic 
estimates for integral curvature in [24,27] to the collapsed case.

For each x ∈ Mn let ρ (x) denote the smallest eigenvalue for the Ricci tensor Ric :
TxM → TxM , and RicH− (x) = ((n− 1)H − ρ(x))+ = max {0, (n− 1)H − ρ(x)}, the 
amount of Ricci curvature lying below (n − 1)H. Let

‖RicH−‖p,R = sup
x∈M

⎛
⎜⎝

ˆ

B(x,R)

(RicH− )p dvol

⎞
⎟⎠

1
p

. (1.1)

Then ‖RicH−‖p measures the amount of Ricci curvature lying below a given bound, in 
this case, (n − 1)H, in the Lp sense. Clearly ‖RicH−‖p,R = 0 iff RicM ≥ (n − 1)H. It 
is often convenient to work with the following scale invariant curvature quantity (with 
H = 0):

k (x, p,R) = R2

⎛
⎜⎝

 

BR(x)

ρp−

⎞
⎟⎠

1
p

, k (p,R) = sup
x∈M

k (x, p,R) . (1.2)

The main result of the paper is

Theorem 1.1. For p > n/2, there exists ε = ε(p, n) > 0 such that if Mn has k(p, 1) ≤ ε, 
then for any x ∈ M, r ≤ 1 with ∂B1(x) �= ∅, the normalized Dirichlet isoperimetric 
constant has the estimate

ID∗
n(Br(x)) ≤ 102n+4r, (1.3)

where
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ID∗
n(Br(x)) = vol(Br(x)) 1

n · sup
Ω

{
vol(Ω)1− 1

n

vol(∂Ω)

}
.

Here the supremum runs over all subdomains Ω ⊂ Br(x) with smooth boundary and 
∂Ω ∩ ∂Br(x) = ∅.

See Section 2.2 for a discussion of isoperimetric constants.

Remark 1.2. The smallness of k(p, 1) is necessary. Namely the result is not true if we 
only assume that k(p, 1) is bounded; see Section 6 for detail. Also the result is not true 
when p ≤ n

2 [3].

Remark 1.3. In the presence of the non-collapsing condition volBr(x) ≥ crn, our scale 
invariant curvature quantity k(x, p, r) ≤ c−1/pr2−n

p ‖Ric−‖p,Br(x), which is always small 
when ‖Ric−‖p,B1(x) is bounded and r is small. This has been very nicely applied in [27,
28]. Namely when applying to the study of tangent cones, with local volume growth, one 
only needs to assume that ‖Ric−‖p,B1(x) is bounded. Note also that when k(p, r) is small 
for some r, it gives control on k(p, r) for all r, see Remark 2.2 for detail.

Remark 1.4. In terms of the usual isoperimetric constant, our estimate reads

sup
Ω

{
vol(Ω)1− 1

n

vol(∂Ω)

}
≤ 102n+4r

vol(Br(x)) 1
n

.

We emphasize that it is very important that the volume dependence here is vol(Br(x)) 1
n . 

It is of the right scale invariance, and corresponds to the optimal Sobolev constant. We 
note that a local isoperimetric constant estimate is given independently in a recent paper 
[25] but with weaker result and under much stronger assumptions.

From (2.9) and (2.10), the theorem above immediately gives

Corollary 1.5. Under the same assumption as in Theorem 1.1, we have the Cheeger’s 
constant

ID∞(Br(x)) ≤ 102n+4r

and the Sobolev inequality

⎛
⎜⎝

 

Br(x)

f
n

n−1

⎞
⎟⎠

n−1
n

≤ 102n+4r

 

Br(x)

|∇f |, (1.4)

for all f ∈ C∞
0 (Br(x)) where r ≤ 1.
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See Definition 2.3 for the definition of Cheeger’s constant. By Cheeger’s inequality 
[8], the first eigenvalue λ1 ≥ 1

4 ID2
∞

. Thus we also obtain an eigenvalue lower bound. We 
emphasize that in the above Sobolev inequality we use the averaged integral (volume 
normalized).

Remark 1.6. Under the pointwise Ricci curvature lower bound, estimates of the type 
above (namely local or Dirichlet) for Cheeger’s constant and isoperimetric constant are 
proved in [6,2]. For integral Ricci curvature lower bound, D. Yang [30] obtained a local 
Sobolev constant estimate under the additional assumption that the manifold is non-
collapsed, see Theorem 2.8. Paeng [21] proved a local Cheeger’s constant estimate for 
integral Ricci curvature under some strong assumption.

Remark 1.7. When M is closed, the global (Neumann) normalized isoperimetric constant 
(see Section 2.2 for definition) for integral Ricci curvature was already obtained in [13], 
see Theorem 2.9. The proof for global one does not apply to local one here since it uses a 
result from geometric measure theory which only works for closed manifolds or domains 
with convex boundary.

The local Sobolev inequality enables us to obtain many applications. First we can 
extend the maximal principle and gradient estimate in [24] to the collapsed case. Namely 
we have the following maximal principle.

Theorem 1.8. Let M be an n-dimensional Riemannian manifold, and p > n/2. There is 
an ε = ε (n, p) > 0 and C = C (n, p, q) > 1 such that if k(p, 1) ≤ ε and R ≤ 1 then any 
function u : Ω ⊂ B (x,R) → R with Δu ≥ f satisfies

sup
Ω

u ≤ sup
∂Ω

u + R2 · C · ‖f−‖∗q,Ω ,

for any q > n
2 . Here the normalized Lq norm ‖f−‖∗q,Ω is introduced at the beginning of 

the next section.

Also we have the gradient estimate.

Theorem 1.9. Let M be an n-dimensional Riemannian manifold, and p > n/2. There is 
an ε (n, p) > 0 and C (n, p) > 1 such that if k(p, 1) ≤ ε and R ≤ 1 and u is a function 
on B1(x) satisfying

Δu = f,

then

sup
BR

2
(x)

|∇u|2 ≤ C(n, p)R−2
[
(‖u‖∗2,BR(x))2 + (‖f‖∗2p,BR(x))2

]
. (1.5)
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With the (relative) local Sobolev constant estimate (1.4), one gets heat kernel upper 
bound, see e.g. [16, (2.17)]. With this and the volume doubling (2.5), Zhang–Zhu obtained 
Li–Yau’s gradient estimate [31]. Hence one has parabolic Harnack inequality and local 
Li–Yau heat kernel lower bound, see Theorem 5.5. Consequently we derive the following 
mean value inequality, extending the one in [27] to the collapsed case.

Theorem 1.10. For any integer n and p > n
2 there exist ε = ε (n, p) > 0 and 

C = C (n, p) > 1 such that the following holds. Given M a complete n-dimensional 
Riemannian manifold satisfying k(p, 1) ≤ ε, let u be a nonnegative function satisfying

∂

∂t
u ≥ Δu− f,

where f is a nonnegative space–time function, then, for q > n
2 ,

 

B 1
2 r

(x)

u(·, 0)d vol ≤ Cu(x, r2) + C(n, p, q) r2 sup
t∈[0,r2]

‖f(t)‖∗q,Br(x) (1.6)

for all x ∈ M , r ≤ 1.

With the above tools at our disposal, we can then extend the L2 Hessian estimate for 
parabolic approximation of Colding–Naber to integral curvature, see Section 5 for detail. 
In the noncollapsed case it is established in [27], see also [32].

We expect further applications of our results e.g. to the Cheeger–Colding–Naber the-
ory, which will be discussed in a future paper.

Acknowledgment The second author would like to thank Qi Zhang for his interest and 
helpful conversations. We also would like to thank Christian Rose for pointing out lapses 
in the argument of heat kernel lower bound in the earlier version.

2. Preliminary

In this section we fix notations and recall the previous work [23], [24] that will play a 
fundamental role here. We also give a review on the isoperimetric and Sobolev constants 
and their relations, and introduce the normalized version.

For functions f on M, the Lp norm and normalized Lp norm on a ball B(x, r) ⊂ M

is denoted

‖f‖p,B(x,r) =

⎛
⎜⎝

ˆ

B(x,r)

|f |p

⎞
⎟⎠

1
p

, ‖f‖∗p,B(x,r) =

⎛
⎜⎝

 

B(x,r)

|f |p

⎞
⎟⎠

1
p

.

(The notation of the volume form of g is often omitted in this paper.) ‖f‖p, ‖f‖∗p denote 
the norm, normalized norm of f on M .
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2.1. Volume comparison for integral curvature

For simplicity, we state the case when H = 0. Let Mn be a complete Riemannian 
manifold of dimension n. Given x ∈ M , let r(y) = d(y, x) be the distance function and 
ψ(y) =

(
Δr − n−1

r

)
+. The classical Laplacian comparison states that if RicM ≥ 0, then 

Δr ≤ n−1
r , i.e., if Ric− ≡ 0, then ψ ≡ 0. In [23] this is generalized to integral Ricci lower 

bound.

Theorem 2.1 (Laplacian and Volume Comparison [23,24]). Let Mn be a complete Rie-
mannian manifold of dimension n. If p > n

2 , then

‖ψ‖2p.B(x,r) ≤
(

(n− 1)(2p− 1)
2p− n

‖Ric−‖p,B(x,r)

) 1
2

. (2.1)

Equivalently

‖ψ‖∗2p.B(x,r) ≤
(

(n− 1)(2p− 1)
2p− n

‖Ric−‖∗p,B(x,r)

) 1
2

. (2.2)

Consequently we have the following volume comparison estimate: for any r2 ≥ r1 > 0,

(
vol(Br2(x))

rn2

) 1
2p

−
(

vol(Br1(x))
rn1

) 1
2p

≤ C(n, p)r1− n
2p

2
(
‖Ric−‖p,B(x,r2)

) 1
2 . (2.3)

In other words,

(
vol(Br1(x))
vol(Br2(x))

) 1
2p

≥
(
r1
r2

) n
2p

[
1 − C(n, p) (k(x, p, r2))

1
2

]
, (2.4)

where C(n, p) is a constant depending on n, p. Hence there exists ε0 = ε0(p, n) > 0 such 
that, if k(x, p, r0) ≤ ε0, then

vol(Br(x))
vol(Br0(x)) ≥ 1

2

(
r

r0

)n

, ∀r < r0. (2.5)

Remark 2.2. As pointed out in [24, Section 2.3], if k(x, p, r2) ≤ ε0 for the ε0 above, then 
(2.5) implies,

k(x, p, r1) ≤ 21/p
(
r1
r2

)2−n
p

· k(x, p, r2) ≤ 21/pk(x, p, r2), ∀r1 ≤ r2. (2.6)

Hence k(x, p, r1) → 0 as r1 → 0 and k(x, p, r1) ≤ ε0(p, n) when r1 ≤ 2
1

n−2p r2. On the 
other hand, when k(p, r1) ≤ ε0(p, n), then
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k(p, r2) ≤ 2
n+1
p

(
r2
r1

)2

k(p, r1) for all r2 ≥ r1. (2.7)

Hence when k(p, r) is small for some r, it gives control on k(p, r) for all r.

Note also that if one has a lower bound for the Ricci curvature Ric ≥ (n− 1)H then 
the quantity k (p,R) will be small for sufficiently small R. Namely general lower bound 
can be reduced to zero lower bound in the local analysis.

2.2. Dirichlet and Neumann isoperimetric and Sobolev constants

In this subsection we review the definitions of the isoperimetric and Sobolev constants 
and their relations, and introduce the normalized form. For details, see [18,7], though 
we use a different convention here.

Definition 2.3. For a complete noncompact Riemannian manifold Mn or a compact Rie-
mannian manifold Mn with ∂M �= ∅, for n ≤ α ≤ ∞, the Dirichlet (also referred as 
local) α-isoperimetric constant of M is defined by

IDα(M) = sup
Ω

vol(Ω)1− 1
α

vol(∂Ω) ,

where Ω is an open submanifold of M with compact closure and smooth boundary such 
that ∂Ω ∩ ∂M = ∅.

When α = n, IDn(M) is scale invariant. When α = ∞, this is Cheeger’s constant 
[8], which scales like vol1/n. The Dirichlet α-isoperimetric constant controls the local 
volume growth: for given a geodesic ball B(x, r) ⊂ M , volB(x, r) ≥

(
r

α IDα(M)

)α

for 
n ≤ α < ∞.

Definition 2.4. The Dirichlet α-Sobolev constant of M is defined by

SDα(M) = sup
f

‖f‖ α
α−1

‖∇f‖1
,

where f ranges over C∞
c (M).

Definition 2.5. When M is compact with or without boundary, the Neumann α-isoperi-
metric constant of M is defined by

INα(M) = sup
Γ

min{vol(D1), vol(D2)}1− 1
α

vol(Γ) ,

where Γ varies over compact (n − 1)-dim submanifold of M which divide M into two 
disjoint open submanifolds D1, D2 of M .
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From the definition, if Ω ⊂ M , ∂Ω ∩ ∂M = ∅, and vol(Ω) ≤ 1
2 vol(M), then

IDα(Ω) ≤ INα(M). (2.8)

Definition 2.6. The Neumann α-Sobolev constant of M is defined by

SNα(M) = sup
f

infa∈R ‖f − a‖ α
α−1

‖∇f‖1
,

where f ranges over C∞(M).

Theorem 2.7 ([12,8], see also [18,7]). For all n ≤ α ≤ ∞,

IDα(M) = SDα(M), INα(M) ≥ SNα(M) ≥ 1
2 INα(M).

For convenience we consider the normalized Dirichelet and Neumann α-isoperimetric 
and α-Sobolev constants:

ID∗
α(M) = IDα(M) vol(M)1/α, SD∗

α(M) = SDα(M) vol(M)1/α,

IN∗
α(M) = INα(M) vol(M)1/α, SN∗

α(M) = SNα(M) vol(M)1/α.

Observe that

ID∗
α(M) ≥ ID∞(M), IN∗

α(M) ≥ IN∞(M), (2.9)

and

SD∗
α(M) = sup

f

‖f‖∗ α
α−1

‖∇f‖∗1
, where f ranges over C∞

c (M),

SN∗
α(M) = sup

f

infa∈R ‖f − a‖∗ α
α−1

‖∇f‖∗1
, where f ranges over C∞(M).

By Theorem 2.7, we have

ID∗
α(M) = SD∗

α(M). (2.10)

These normalized quantities are very useful in studying the collapsed case, see below. 
They are used in [29] in proving a Neumann type maximal principle without volume 
lower bound.

In [30, Theorem 7.4] D. Yang obtained a Dirichlet isoperimetric constant estimate in 
the non-collapsing case when ‖Ric−‖∗p is small. Namely
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Theorem 2.8. Given p > n/2 and v > 0, there is an ε (n, p, v) > 0 such that if B1 (x) ⊂
Mn has volB1 (x) ≥ v and k (p, 1) ≤ ε, then IDn(B 1

2
(x)) ≤ C (n, p, v).

For closed Riemannian manifold Mn, Gallot [13, Theorem 3] showed that the normal-
ized Neumann α-isoperimetric constant is bounded from above when diam(M)2‖Ric−‖∗p
is small (≤ ε(n, p)) for p > n/2, and α > n. Petersen–Sprouse [22] obtained the bound 
for α = n. Namely

Theorem 2.9. Given p > n/2 and D > 0, there is an ε (n, p,D) > 0 such that if 
diamMn ≤ D and ‖Ric−‖∗p ≤ ε, then IN∗

n(M) ≤ C (n, p,D).

3. Local isoperimetric constant estimate for closed manifolds

For the local analysis, we need local (Dirichlet) Sobolev constant bound. From (2.8), 
we automatically get a local estimate when the volume of the domain is small relative 
to the whole manifold. We show that the measure can only have small concentration 
whenever ‖Ric−‖∗p is small.

Proposition 3.1. Suppose diam(M) = D. There exists ε = ε(n, p) > 0 such that if

D2‖Ric−‖∗p ≤ ε, (3.1)

then for any a ≤ a0 where a0 = a0(n) solves

1
2 − a0
1
2 + a0

=
(

3
4

) 1
n

(3.2)

we have

vol(BaD(x)) ≤ 1
2 vol(M), ∀x ∈ M. (3.3)

Proof. For any x ∈ M we choose a dual point x′ ∈ M with dist(x, x′) = D
2 . Then, for 

any radius r < D
2 ,

vol(Br(x))
vol(M) ≤ vol(Br(x))

vol(BD
2 +r(x′)) ≤ 1 −

vol(BD
2 −r(x′))

vol(BD
2 +r(x′)) . (3.4)

Therefore it suffices to show that for r = aD with a ≤ a0, the last term above is greater 
than or equal to 1

2 . By (2.4) the last term can be estimated as follows

(vol(BD
2 −r(x′))

vol(BD (x′))

) 1
2p

≥
( D

2 − r
D + r

) n
2p

[
1 − C(n, p)

(
k(x′, p, D

2 + r)
) 1

2

]
. (3.5)
2 +r 2
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If k(x′, p, D) = D2‖Ric−‖∗p ≤ ε0, by (2.6),

k(x′, p, D
2 + r) ≤ 21/pk(x′, p,D) = 21/pD2‖Ric−‖∗p.

Hence if we assume that

D2‖Ric−‖∗p ≤ ε ≤ ε0, (3.6)

then

vol(BD
2 −r(x′))

vol(BD
2 +r(x′)) ≥

( D
2 − r
D
2 + r

)n[
1 − C(n, p)21/2pε

1
2

]2p

. (3.7)

Plug in r = aD with a ≤ a0, the choice of a0 implies that

( D
2 − aD
D
2 + aD

)n

≥ 3
4 .

Now set

3
4

[
1 − C(n, p)21/2pε

1
2

]2p

≥ 1
2 .

Clearly there exists ε(n, p) such that this holds for all ε ≤ ε(n, p). �
Combining this with Theorem 2.9 and (2.8), we have

Theorem 3.2. Given p > n/2 and D > 0, there is an ε (n, p,D) > 0, r0 = r0(n) such that 
if diamMn ≤ D and ‖Ric−‖∗p ≤ ε, then ID∗

n(Br(x)) ≤ C (n, p,D) for all x ∈ M and 
r ≤ r0.

Similarly we have a local version of Proposition 3.1 which will be needed in the next 
section.

Theorem 3.3. There exists ε = ε(n, p) > 0 and r0 = r0(n) > 0 such that the following 
holds. Let (M, g) be a complete noncompact Riemannian manifold satisfying k(p, 1) ≤ ε, 
then we have

vol(Br0(x))
vol(B1(x)) ≤ 1

2 , ∀x ∈ M. (3.8)

Proof. For any x ∈ M, r < 1
3 , choose a point x′ with d = dist(x, x′) = 1−r

2 ≥ 1
3 . Then 

we have

Br(x) ⊂ B1(x)\Bd−r(x′) ⊂ Bd+r(x′) ⊂ B1(x).
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As above we calculate

vol(Br(x))
vol(B1(x)) ≤ vol(Br(x))

vol(Bd+r(x′)) ≤ 1 − vol(Bd−r(x′))
vol(Bd+r(x′)) .

To estimate the last term recall that
(

vol(Bd−r(x′))
vol(Bd+r(x′))

) 1
2p

≥
(
d− r

d + r

) n
2p

[
1 − C(n, p)

(
k(x′, p, d + r)

) 1
2

]
. (3.9)

Since d +r ≤ 1, by (2.6), if k(x′, p, 1) ≤ ε0, we have k(x′, p, d +r) ≤ 21/pk(x′, p, 1). Hence 
when ε ≤ ε0, we get

(
vol(Bd−r(x′))
vol(Bd+r(x′))

) 1
2p

≥
(
d− r

d + r

) n
2p (

1 − C(n, p)21/2pε
1
2

)
.

Now we choose a0 such that

1 − a0

1 + a0
=

(
3
4

) 1
n

,

then for any r ≤ 1
3a0, we have, since d ≥ 1

3 ,

(
d− r

d + r

)n

≥ 3
4 .

Choose ε ≤ ε0 such that

(
1 − C(n, p)21/2pε

1
2

)2p
≥ 2

3 . (3.10)

Then

vol(Br(x))
vol(B1(x)) ≤ 1 −

(
d− r

d + r

)n (
1 − C(n, p)21/2pε

1
2

)2p
≤ 1 − 3

4 · 2
3 = 1

2 .

The proof is complete by choosing r0 = 1
3a0 and any 0 < ε ≤ ε0 satisfying (3.10). �

4. Local isoperimetric constant estimate for complete manifolds

In this section we first obtain an estimate on the weak Cheeger’s constant with an 
error using Laplacian comparison for integral curvature and an idea of Gromov [14, 
Page 9–10]. This will then enable us to prove Theorem 1.1 by using a covering argument 
of Anderson [2].

Recall the following lemma of Gromov which is stated for closed manifold in [14], but 
also works for complete manifolds.
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Lemma 4.1 ([14]). Let Mn be a complete Riemannian manifold and H be any hypersur-
face dividing M into two parts M1, M2. For any Borel subsets Wi ⊂ Mi, there exists x1
in one of Wi, say W1, and a subset W in the other one, W2, such that

vol(W ) ≥ 1
2 vol(W2) (4.1)

and any x2 ∈ W has a unique minimal geodesic connecting to x1 which intersects H at 
some z such that

dist(x1, z) ≥ dist(x2, z). (4.2)

Using Laplacian comparison estimate we have

Lemma 4.2. Let H, W and x1 be as in above lemma. Then

vol(W ) ≤ 2n−1D

[
vol(H ′) + vol(BD(x1))‖Ric−‖

∗ 1
2

p,BD(x1)

]
(4.3)

where D = supx∈W dist(x1, x) and H ′ is the set of intersection points with H of geodesics 
γx1,x for all x ∈ W .

Proof. Let Γ ⊂ Sx1 be the set of unit vectors such that γv = γx1,x2 for some x2 ∈ W . 
We compute the volume in the polar coordinate at x1. Write dv = A(θ, t)dθ ∧ dt in the 
polar coordinate (θ, t) ∈ Sx1 × R

+. Recall that [23]

∂

∂t

A
tn−1 ≤ ψ

A
tn−1

where ψ = max(0, �r(θ, t) − n−1
t ) denotes the error term of Laplacian comparison. We 

thus have

A(θ, r) ≤ 2n−1A(θ, t) + 2n−1
rˆ

t

ψ(θ, s)A(θ, s)ds, ∀ r
2 ≤ t ≤ r. (4.4)

For any θ ∈ Γ, let r(θ) be the radius such that expx1
(rθ) ∈ H. Then, by assumption,

W ⊂ {expx1
(rθ)|θ ∈ Γ, r(θ) ≤ r ≤ 2r(θ)}.

Thus,

vol(W ) ≤
ˆ 2r(θ)ˆ

A(θ, t)dtdθ

Γ r(θ)



X. Dai et al. / Advances in Mathematics 325 (2018) 1–33 13
≤ 2n−1
ˆ

Γ

2r(θ)ˆ

r(θ)

(
A(θ, r(θ)) +

tˆ

r(θ)

ψ(θ, s)A(θ, s)ds
)
dθdt

≤ 2n−1D

ˆ

Γ

A(θ, r(θ))dθ + 2n−1D

ˆ

Γ

D̂

0

ψ(θ, t)A(θ, t)dθdt

On the other hand,

vol(H ′) =
ˆ

Γ

A(θ, r(θ))
cosα(θ) dθ ≥

ˆ

Γ

A(θ, r(θ))dθ

where α(θ) is the angle between H and radial geodesic expx1
(tθ). Thus,

vol(W ) ≤ 2n−1D vol(H ′) + 2n−1D

( ˆ

Γ

D̂

0

ψ2pAdθdt

) 1
2p

(ˆ

Γ

D̂

0

Adθdt

)1− 1
2p

.

Through the Laplacian estimate (2.1) we get

vol(W ) ≤ 2n−1D vol(H ′) + 2n−1D vol(BD(x1))1−
1
2p

( ˆ

BD(x1)

|Ric−|pdv
) 1

2p

(4.5)

the required estimate. �
Now we can obtain an estimate on the weak Cheeger’s constant with an error.

Corollary 4.3. Let H be any hypersurface dividing M into two parts. For any ball B =
Br(x) we have

min
(
vol(B ∩M1), vol(B ∩M2)

)

≤ 2n+1r

[
vol(H ∩B2r(x)) + vol(B2r(x))‖Ric−‖

∗ 1
2

p,B2r(x)

]
. (4.6)

Proof. Put Wi = B ∩ Mi in above lemma and notice that D ≤ 2r and H ′ ⊂ H ∩
B2r(x). �
Corollary 4.4. Given a hypersurface H dividing Mn into two parts, there exists ε =
ε(p, n) such that if k(x, p, 1) ≤ ε, then for a metric ball B = Br(x), r ≤ 1

2 , which is 
divided equally by H, we have

vol(Br(x)) ≤ 2n+3r vol(H ∩B2r(x)). (4.7)
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Proof. The previous corollary gives

vol(B) ≤ 2n+2r

[
vol(H ∩B2r(x)) + vol(B2r(x))

(  

B2r(x)

|Ric−|pdv
) 1

2p
]
.

If k(x, p, 1) ≤ 2−1/pε0, by (2.6), we have k(x, p, r) ≤ ε0 for all r ≤ 1. Hence by (2.5),

vol(B2r(x)) ≤ 2n+1 vol(B).

Again if k(x, p, 1) ≤ 2−1/p2−2(2n+3), then k(x, p, r) ≤ 2−2(2n+3) for all r ≤ 1. Hence

vol(B) ≤ 2n+2r
(
vol(H ∩B2r(x)) + 2n2−(2n+3) vol(B)r−1),

which gives

vol(B) ≤ 2n+3r vol(H ∩B2r(x)).

Therefore choosing ε = min{2−1/pε0, 2−1/p2−2(2n+3)} suffices. �
This estimate and volume doubling gives an estimate on the local isoperimetric con-

stant via Vitali Covering Lemma.

Proof of Theorem 1.1. First of all we show that the isoperimetric constant estimate (1.3)
holds for some small radius r0 = r0(n), under the assumption k(p, 1) ≤ ε1 for some small 
constant ε1 = ε1(p, n). By Theorem 3.3, we may assume that ε1 is chosen such that 
there exists r0 = r0(n) with vol(B2r0 (x))

vol(B 1
10

(x)) ≤ 1
2 , ∀x ∈ M . Now given any y ∈ M , let Ω be 

a smooth subdomain of Br0(y). We may assume that Ω is connected and its boundary 
H = ∂Ω divides M into two parts Ω and Ωc. For any x ∈ Ω, let rx be the smallest radius 
such that

vol(Brx(x) ∩ Ω) = vol(Brx(x) ∩ Ωc) = 1
2 vol(Brx(x)).

Since Ω ⊂ B2r0(x) and vol(B2r0(x)) ≤ 1
2 vol(B 1

10
(x)), we have rx ≤ 1

10 . Take ε1 as in 
Corollary 4.4, then by (4.7)

vol(Brx(x)) ≤ 2n+3rx vol(H ∩B2rx(x)). (4.8)

The domain Ω has a covering

Ω ⊂
⋃

B2rx(x).

x∈Ω
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By Vitali Covering Lemma, cf. [20, Section 1.3], we can choose a countable family of 
disjoint balls Bi = B2rxi

(xi) such that ∪iB10rxi
(xi) ⊃ Ω. Moreover, we assume ε1 is 

chosen such that k(p, r) ≤ ε0 for all r ≤ 1, then by the volume doubling property (2.5),

vol(B2rx(x))
vol(B10rx(x)) ≥ 1

2 · 5n .

Hence
∑
i

vol(Bi) ≥
1

2 · 5n
∑
i

vol(B10rxi
(xi)) ≥

1
2 · 5n vol(Ω).

Applying the volume doubling property (2.5) again gives

∑
i

vol(Brxi
(xi)) ≥

1
4 · 10n vol(Ω). (4.9)

Moreover, since the balls Bi are disjoint, combining with (4.8) gives,

vol(∂Ω) ≥
∑
i

vol(Bi ∩H) ≥ 2−n−3
∑
i

r−1
xi

vol(Brxi
(xi)). (4.10)

These two estimates lead to

vol(Ω)n−1
n

vol(∂Ω) ≤ 10n−12n+5
(∑

i vol(Brxi
(xi))

)n−1
n∑

i r
−1
xi vol(Brxi

(xi))

≤ 102n+4
∑

i vol(Brxi
(xi))

n−1
n∑

i r
−1
xi vol(Brxi

(xi))

≤ 102n+4 sup
i

vol(Brxi
(xi))

n−1
n

r−1
xi vol(Brxi

(xi))

= 102n+4 sup
i

(
rnxi

vol(Brxi
(xi))

) 1
n

.

On the other hand, since dist(y, xi) ≤ r0, we have

Br0(y) ⊂ B2r0(xi).

Now rxi
≤ 1

10 , applying the volume doubling property (2.5) again,

vol(Brxi
(xi)) ≥

10nrnxi

2 vol(B 1
10

(xi)) ≥
10nrnxi

2 vol(Br0(y)).

Substituting into above calculation we get
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vol(Ω)n−1
n

vol(∂Ω) ≤ 102n+4

vol(Br0(y))
1
n

,

the desired estimate.
We next make a scaling argument to show that the estimate (1.3) remains hold for any 

radius r ≤ 1, under the assumption k(p, 1) ≤ ε2 for a smaller constant ε2 = ε2(p, n) > 0. 
Put r1 = r

r0
≤ 1

r0
. After a scaling, it is sufficient to check that

k(p, r1) ≤ ε1.

Choose ε2 such that ε2 ≤ ε0, so (2.5) holds for all r ≤ 1. Now if r1 ≤ 1, by (2.6)

k(p, r1) ≤ 21/pk(p, 1) ≤ 21/pε2.

On the other hand, if 1 ≤ r1 ≤ 1
r0

, then by (2.7),

k(p, r1) ≤ 2
n+1
p r2

1 k(p, 1) ≤ 2
n+1
p r−2

0 ε2.

Combining the two cases we can choose ε2 = ε2(p, n) as

ε2 = min{2− 1
p ε1, 2−

n+1
p r2

0ε1, ε0}.

The theorem is now proved by setting ε = ε2. �
Combining Theorem 1.1 with (2.10), we have

Corollary 4.5. If k(p, 1) ≤ ε for the ε in Theorem 1.1, then,

‖f‖∗ n
n−1 ,B1(x) ≤ 102n+4‖∇f‖∗1,B1(x), ∀f ∈ C∞

0 (B1(x)), (4.11)

Applying (4.11) to f
2(n−1)
n−2 and using the Hölder inequality gives

‖f‖∗2n
n−2 ,B1(x) ≤

2(n− 1)
n− 2 102n+4‖∇f‖∗2,B1(x), ∀f ∈ C∞

0 (B1(x)). (4.12)

This is essential in the applications.
By a scaling argument, we have

Corollary 4.6. If k(p, 1) ≤ ε for the ε in Theorem 1.1, then, for any r ≤ 1,

‖f‖∗ n
n−1 ,Br(x) ≤ C(n)r‖∇f‖∗1,Br(x), ∀f ∈ C∞

0 (Br(x)), (4.13)

and

‖f‖∗2n
n−2 ,Br(x) ≤ C(n)r‖∇f‖∗2,Br(x), ∀f ∈ C∞

0 (Br(x)). (4.14)



X. Dai et al. / Advances in Mathematics 325 (2018) 1–33 17
Corollary 4.7. If k(p, 1) ≤ ε for the ε in Theorem 1.1, then, for any r ≤ 1, the first 
eigenvalue of Dirichlet Laplace has lower bound

λ1(Br(x)) ≥ C(n)−1r−2. (4.15)

Proof. Suppose �f = −λf for some λ > 0 and f with 
ffl
f2dv = 1 and f = 0 on ∂Br(x). 

Then

1 =
 

Br(x)

f2dv ≤
(  

Br(x)

f
2n

n−2

)n−2
n

≤ C(n)r2
 

Br(x)

|∇f |2 = C(n)r2λ.

Thus λ ≥ C(n)−1r−2 for any eigenvalue λ > 0. �
5. Applications

With this new local Sobolev constant estimate many of the results for integral cur-
vature in [24,27] can be easily extended to the collapsed case. In particular, we have 
maximum principle, gradient estimate for harmonic function and heat kernel, excess es-
timate, L2 estimate for the Hessian of the harmonic and parabolic approximation of the 
distance function.

Denote Cs(Ω) the normalized local Soboleve constant of Ω ⊂ Mn,

‖f‖∗2n
n−2 ,Ω

≤ Cs(Ω)‖∇f‖∗2,Ω, ∀f ∈ C∞
0 (Ω). (5.1)

Note that Cs(Ω) scales like diameter.
Recall the following maximal principle [24, Corollary 3.2].

Theorem 5.1. Let M be an n-dimensional Riemannian manifold, and p > n/2. For any 
function u : Ω ⊂ M → R with Δu ≥ −f , where f is non-negative on Ω, we have

sup
Ω

u ≤ sup
∂Ω

u + C(n, p) · C2
s (Ω) · ‖f‖∗p,Ω .

Combining this with (4.14) gives Theorem 1.8.
Now we derive the following gradient estimate.

Theorem 5.2. Let M be an n-dimensional Riemannian manifold, and p > n/2. If u is a 
function on BR(x) satisfying

Δu = f,

then
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sup
BR

2
(x)

|∇u|2 ≤ C(n, p)R−2 · volBR(x)
volB 3

4R
(x) ·

[
(‖u‖∗2,BR(x))2 + (‖f‖∗2p,BR(x))2

]

·
[(
R−2C2

s (BR(x))
) 2p

2p−n

(
1 + k(p,R)

2p
2p−n

)
+ R−2C2

s

(
1 + R−2C2

s k(p,R)
)]n/2

The estimate follows from the standard Nash–Moser iteration, by using the Lp integra-
bility of Ric and f2 for p > n

2 . On the other hand, as we do not assume the harmonicity 
of u (i.e. f = 0), and Ricci curvature pointwise lower bound, the proof requires several 
extra estimates and the Laplacian comparison estimate (2.2). This full general version 
is often needed in applications. Since a proof is not in the literature, we give a detailed 
proof here.

Proof. By scaling we may assume R = 1. Recall the Bochner formula,

1
2�|∇u|2 = |Hessu|2 + 〈∇u,∇f〉 + Ric(∇u,∇u) ≥ 〈∇u,∇f〉 − |Ric−||∇u|2. (5.2)

Put

v = |∇u|2 +
∥∥f2∥∥∗

p
.

Note that when f is constant, one can iterate with v = |∇u|2 and the proof simplifies.
For any function η ∈ C∞

0 (B1(x)) and constant q > 1, compute

ˆ
|∇(ηvq/2)|2 = −

ˆ
ηvqΔη − 2

ˆ
ηvq/2〈∇η,∇vq/2〉 −

ˆ
η2vq/2�vq/2

=
ˆ

(2|∇η|2 − ηΔη)vq − 2
ˆ

vq/2〈∇η,∇(ηvq/2)〉

−(1 − 2
q
)
ˆ

|∇(ηvq/2) − vg/2∇η|2 − q

2

ˆ
η2vq−1�v.

By regrouping,
ˆ

|∇(ηvq/2)|2 = q

2(q − 1)

ˆ
((1 + 2

q
)|∇η|2 − ηΔη)vq

− 1
q − 1

ˆ
vq/2〈∇η,∇(ηvq/2)〉 − q2

4(q − 1)

ˆ
η2vq−1�v

≤ 1
2

ˆ
|∇(ηvq/2)|2 + 1

2
q2 + q − 1
(q − 1)2

ˆ
|∇η|2vq

− q

2(q − 1)

ˆ
ηvqΔη − q2

4(q − 1)

ˆ
η2vq−1�v.

Hence,
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ˆ
|∇(ηvq/2)|2 ≤ q2 + q − 1

(q − 1)2

ˆ
|∇η|2vq − q

q − 1

ˆ
ηvqΔη− q2

2(q − 1)

ˆ
η2vq−1�v. (5.3)

Now plugging (5.2) into (5.3), we have

ˆ
|∇(ηvq/2)|2 ≤ q2 + q − 1

(q − 1)2

ˆ
|∇η|2vq − q

q − 1

ˆ
ηvqΔη

+ q2

q − 1

ˆ
η2vq|Ric−| −

q2

q − 1

ˆ
η2vq−1〈∇u,∇f〉.

For the last term, we have

ˆ
η2vq−1〈∇u,∇f〉

= −
ˆ

η2vq−1f2 − 2
ˆ

ηfvq−1〈∇u,∇η〉 − (q − 1)
ˆ

η2fvq−2〈∇u,∇v〉

≥ −
ˆ

6η2vq−1f2 −
ˆ

|∇η|2vq − 2(q − 1)
q2 · 1

8

ˆ
η2|∇vq/2|2

≥ −2(q − 1)
q2 · 1

4

ˆ
|∇(ηvq/2)|2 −

ˆ
6η2vq−1f2 − (1 + q − 1

2q2 )
ˆ

|∇η|2vq.

To control Δη, we choose a more specific cur-off function. For 0 < r < 1, let ϕ ∈ C∞
0 (R)

be a cut-off function such that 0 ≤ ϕ ≤ 1, ϕ(t) ≡ 1 for t ∈ [0, r], ϕ(t) ≡ 0 for t ≥ 1, and 
ϕ′ ≤ 0. Then define

η(y) = ϕ(d(x, y)), (5.4)

where d(x, y) is the distance function from x. Thus |∇η| = |ϕ′|, and

Δη = ϕ′′ + ϕ′Δd = ϕ′′ + ϕ′(Δd− n− 1
d

+ n− 1
d

)

≥ ϕ′′ + ϕ′(ψ + n− 1
d

) ≥ −|ϕ′′| − |ϕ′|
r

− |ϕ′|ψ,

where ψ = (Δd − n−1
d )+.

Therefore we have, for q ≥ n
n−2 ,

ˆ
|∇(ηvq/2)|2

≤ C(n)q
ˆ [(

|ϕ′′| + |ϕ′|
r

+ |ϕ′|ψ
)
ηvq + |ϕ′|2vq + η2f2vq−1 + η2|Ric−|vq

]
.

Notice that this formula remains valid for q = 1. In fact
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|∇(ηv1/2)|2 =
∣∣∣∣v1/2∇η + η

|∇u|
v1/2 ∇|∇u|

∣∣∣∣
2

≤ 2v|∇η|2 + 2η2|Hessu|2,

and
ˆ

η2|Hessu|2 = −
ˆ

∇iu(2η∇jη∇i∇ju + η2∇i�u + η2Rij∇ju)

≤ 1
2

ˆ
η2|Hessu|2 + 3

ˆ
|∇η|2v +

ˆ
η2f2 +

ˆ
η2|Ric−|v.

Denote μ = n
n−2 . Applying the Sobolev inequality (5.1), we obtain for q ≥ n

n−2 and 
q = 1,

(  

B1(x)

(η2vq)μ
)1/μ

≤ C2
s (B1(x))C(n)q

 

B1(x)

[(
|ϕ′′| + |ϕ′|

r
+ |ϕ′|ψ

)
ηvq + |ϕ′|2vq

+ f2η2vq−1 + |Ric−|η2vq
]
. (5.5)

The integration involving Ricci curvature can be estimated as follows. For p > n
2 ,

 

B1(x)

|Ric−|η2vq ≤ ‖Ric−‖∗p ·
(  

B1(x)

(η2vq)
p

p−1
) p−1

p

≤ ‖Ric−‖∗p
(  

B1(x)

η2vq
) p−1

p a

·
(  

B1(x)

(η2vq)μ
)(1−a) p−1

p

≤ ‖Ric−‖∗p

⎡
⎢⎣ε

(  

B1(x)

(η2vq)μ
) 1

μ

+ ε−
(1−a)μ

a ·
(  

B1(x)

η2vq
)⎤
⎥⎦ ,

where a = a(n, p) = 2p−n
2(p−1) > 0 is determined via

a + (1 − a)μ = p

p− 1 .

Here we used Young’s inequality

xy ≤ εxγ + ε−
γ∗
γ yγ

∗
, ∀x, y ≥ 0, γ > 1, (γ∗)−1 + γ−1 = 1,

where
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γ = p

(1 − a)(p− 1)μ, γ∗ = p

(p− 1)a.

By setting ε =
(
4C(n)qC2

s )‖Ric−‖∗p
)−1, we conclude

C(n)qC2
s

 

B1(x)

η2|Ric−|vq (5.6)

≤ 1
4

(  

B1(x)

(η2vq)μ
) 1

μ

+ C(n, p)
(
qC2

s‖Ric−‖∗p
) 2p

2p−n ·
(  

B1(x)

η2vq
)
.

For the term 
ffl
B1(x) η

2f2vq−1, since v ≥
∥∥f2

∥∥∗
p
, we have

 

B1(x)

η2f2vq−1 ≤ 1
‖f2‖∗p

 

B1(x)

η2f2vq ≤
(  

B1(x)

(η2vq)
p

p−1
) p−1

p .

Now the same argument as above with ε =
(
4C(n)C2

s )q
)−1 gives

C(n)C2
s q

 

B1(x)

η2f2vq−1 (5.7)

≤ 1
4

(  

B1(x)

(η2vq)μ
) 1

μ

+ C(n, p)
(
C2

s q
) 2p

2p−n ·
(  

B1(x)

η2vq
)
.

For the term with ψ, using the Hölder inequality and the Laplacian comparison estimate 
(2.2),

 

B1(x)

ψη|ϕ′|vq ≤ ‖ψ‖∗2p · ‖ηϕ′vq‖∗ 2p
2p−1

≤ C(n, p)
(
‖Ric−‖∗p

)1/2 · ‖ηϕ′vq‖∗ 2p
2p−1

.

Note that for b = p(n−2)
n(2p−1) < 1,

‖ηϕ′vq‖∗ 2p
2p−1

=

⎡
⎢⎣

 

B1(x)

(
η2vq

)bμ (
|ϕ′|2vq

) p
2p−1

⎤
⎥⎦

2p−1
2p

≤

⎡
⎢⎢⎣
⎛
⎜⎝

 

B1(x)

(
η2vq

)μ
⎞
⎟⎠

b ⎛
⎜⎝

 

B1(x)

(
|ϕ′|2vq

) np
np+2p−n

⎞
⎟⎠

np+2p−n
n(2p−1)

⎤
⎥⎥⎦

2p−1
2p
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≤

⎡
⎢⎢⎣
⎛
⎜⎝

 

B1(x)

(
η2vq

)μ
⎞
⎟⎠

b ⎛
⎜⎝

 

B1(x)

|ϕ′|2vq

⎞
⎟⎠

p
2p−1

⎤
⎥⎥⎦

2p−1
2p

≤ ε

⎛
⎜⎝

 

B1(x)

(
η2vq

)μ
⎞
⎟⎠

1/μ

+ 1
4ε

 

B1(x)

|ϕ′|2vq.

Here we used the fact that np
np+2p−n < 1 since p > n/2.

Choose ε = (4C(n)C2
s qC(n, p) 

(
‖Ric−‖∗p

)1/2)−1, we have

C(n)C2
s q

 

B1(x)

ψη|ϕ′|vq (5.8)

≤ 1
4

(  

B1(x)

(η2vq)μ
) 1

μ

+ (qC(n)C2
s )2C2(n, p)‖Ric−‖∗p

 

B1(x)

|ϕ′|2vq.

Plugging the three estimates (5.6), (5.7), (5.8) into the inequality (5.5) gives

(  

B1(x)

(η2vq)μ
)1/μ

≤ 4C2
sC(n)q

⎡
⎢⎣

 

B1(x)

(
|ϕ′′| + |ϕ′|

r

)
ηvq +

(
1 + qC2

sC
2(n, p)‖Ric−‖∗p

)  
|ϕ′|2vq

⎤
⎥⎦

+ C(n, p)
(
C2

s q
) 2p

2p−n

(
1 + (‖Ric−‖∗p)

2p
2p−n

)(  

B1(x)

η2vq
)
.

Define qk = μk, k ≥ 0, and rk = (3
4 −

∑k
i=0 2−i−3). Choose cut-off functions ηk =

ϕk ◦ d ∈ C∞
0 (Brk(x)) such that

ηk ≡ 1, on Brk+1(x); |ϕ′
k| ≤ 2k+5, |ϕ′′

k | ≤ 22k+10.

Then substituting ηk into the estimate and running the iteration for any k ≥ 0 we get

‖v‖∗∞,B 1
2
(x) ≤ C(n, p)An/2‖v‖∗1,B 3

4
(x),

where

A = C2
s (1 + C2

s‖Ric−‖∗p) + C
4p

2p−n
s

(
1 + (‖Ric−‖∗p)

2p
2p−n

)
.
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Finally observe that, by integrating by parts, for η ∈ C∞
0 (B1(x)) with η ≡ 1 in B 3

4
(x), 

and |∇η| ≤ 5, we have
 

B 3
4
(x)

|v| ≤ volB1(x)
volB 3

4
(x)

 

B1(x)

η2(|∇u|2 +
∥∥f2∥∥∗

p
)

≤ volB1(x)
volB 3

4
(x)

⎡
⎢⎣∥∥f2∥∥∗

p
+

 

B1(x)

η2(u2 + f2) + 8
 

B1(x)

|∇η|2u2

⎤
⎥⎦

≤ 201 · volB1(x)
volB 3

4
(x) · (‖u‖∗2)2 + 2(‖f‖∗2p)2.

This gives the gradient estimate. �
Combining (2.5) and (4.14) with Theorem 5.2 gives Theorem 1.9.
Later on we will need Harnack inequality for harmonic function. Hence we also give 

a gradient estimate for lnu as in Cheng–Yau’s gradient estimate [10]. In the proof we 
need Li–Schoen’s trick of bounding high power by lower power [19].

Theorem 5.3. Assume as in above theorem. Let u be a positive harmonic function in 
BR(x), then

sup
BR

2
(x)

|∇ ln u|2 ≤ C
(
n, p,R−2C2

s , k(p,R)
)
R−2 volBR(x)

volB 4
5R

(x) .

Proof. By scaling we may assume R = 1. Let h = ln u, v = |∇h|2. Then Δh = −v. From 
the Bochner formula,

1
2�|∇h|2 = |Hessh|2 + 〈∇h,∇Δh〉 + Ric(∇h,∇h)

≥ v2

n
− 〈∇h,∇v〉 − |Ric−|v.

For any η ∈ C∞
0 (B1(x)), l ≥ 0, multiply above by vlη2 and integrate on B1(x) gives,

1
2

ˆ
vlη2�v ≥

ˆ
η2vl+2

n
−
ˆ

vlη2〈∇h,∇v〉 −
ˆ

vl+1η2|Ric−|. (5.9)

We compute
ˆ

vlη2〈∇h,∇v〉 = −
ˆ

vl+1η2Δh− l

ˆ
vlη2〈∇h,∇v〉 − 2

ˆ
vl+1η〈∇h,∇η〉.

Hence
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ˆ
vlη2〈∇h,∇v〉 = 1

l + 1

ˆ
vl+2η2 − 2

l + 1

ˆ
vl+1η〈∇h,∇η〉

≤ 2
l + 1

ˆ
vl+2η2 + 1

l + 1

ˆ
vl+1|∇η|2. (5.10)

By (5.3),

(l + 1)2

2l

ˆ
vlη2�v

≤ −
ˆ ∣∣∣∇(

ηv
l+1
2

)∣∣∣2 + (l + 1)2 + l

l2

ˆ
vl+1|∇η|2 − l + 1

l

ˆ
ηvl+1Δη (5.11)

Plugging (5.11) and (5.10) into (5.9), we have

−
ˆ ∣∣∣∇(

ηv
l+1
2

)∣∣∣2 ≥ (l + 1)2

l

(
1
n
− 2

l + 1

) ˆ
vl+2η2 + l + 1

l

ˆ
ηvl+1Δη

−2l2 + 4l + 1
l2

ˆ
vl+1|∇η|2 − (l + 1)2

l

ˆ
vl+1η2|Ric−|.

When l ≥ 2n − 1, choose η as in (5.4), we have
ˆ ∣∣∣∇(

ηv
l+1
2

)∣∣∣2 ≤ C(n)l
ˆ [(

|ϕ′′| + |ϕ′|
r

+ |ϕ′|ψ
)
ηvl+1 + vl+1|ϕ′|2 + vl+1η2|Ric−|

]

Use Sobolev inequality (5.1) and estimate as in (5.6), (5.8) and iterate from l = 2n −1
as in Theorem 5.2, we have

‖v‖∗∞,B 1
2
(x) ≤ C(n, p)An/2‖v‖∗2n−1,B 3

4
(x), (5.12)

where

A = C2
s (1 + C2

s ‖Ric−‖∗p) + C
4p

2p−n
s

(
1 + (‖Ric−‖∗p)

2p
2p−n

)
.

Since we have volume doubling, by the proof of Theorem 2.1 in [19], we can lower the 
power 2n − 1 in (5.12) by adjusting the size of the balls. Namely we have

‖v‖∗∞,B 1
4
(x) ≤ C

(
n, p, C2

s , ‖Ric−‖∗p
)
‖v‖∗1,B 4

5
(x).

For the L1 bound, since v = −Δh,
ˆ

B1(x)

η2v = −
ˆ

B1(x)

η2Δh = 2
ˆ

B1(x)

η〈∇η,∇h〉 ≤ 1
2

ˆ

B1(x)

η2v + 2
ˆ

B1(x)

|∇η|2,

where η ∈ C∞
0 (B1(x)) is a cut-off function with η = 1 on B 4 (x) and |∇η| ≤ 6.
5



X. Dai et al. / Advances in Mathematics 325 (2018) 1–33 25
Hence

‖v‖∗1,B 4
5
(x) ≤ 144 volB1(x)

volB 4
5
(x) . �

With Theorem 1.9 one can prove as in [24, Theorem 6.4] the following.

Lemma 5.4. For any integer n and p > n
2 there exist ε and C such that the following 

holds. Let M be a complete n-dimensional Riemannian manifold satisfying k(p, 1) ≤ ε. 
For any metric ball Br(x) with ∂Br(x) �= ∅, r ≤ 1, there exists φ ∈ C∞

0 (Br(x)) satisfying

0 ≤ φ ≤ 1, |∇φ|2 + |�φ| ≤ Cr−2.

With the (relative) local Sobolev constant estimate (1.4), one gets heat kernel upper 
bound, see e.g. [16, (2.17)]. With this and the volume doubling (2.5), Zhang–Zhu obtained 
Li–Yau’s gradient estimate [31]. Hence one has parabolic Harnack inequality. With this 
we have the local heat kernel lower bounds as in [11, Lemma 2.3]. Namely, we have

Theorem 5.5. Let M be an n-dimensional Riemannian manifold, and p > n/2. There is 
an ε (n, p) > 0 and C (n, p) > 1 such that if k(p, 1) ≤ ε, then for any real number s, 0 <
r < 1, x ∈ M and nonnegative solution u of the heat equation in Q = (s −r2, s) ×Br(x),

sup
Q−

u ≤ C inf
Q+

u,

where Q− = (s − 3
4r

2, s − 1
2r

2) ×B 1
2 r

(x), Q+ = (s − 1
4r

2, s) ×B 1
2 r

(x).
The heat kernel H(x, y, t) satisfies the two-sided Gaussian bound

c1
volB√

t(x)e
− d2(x,y)

c2t ≤ H(x, y, t) ≤ C1

volB√
t(x)e

− d2(x,y)
C2t

for all t ∈ (0, 1) and x, y ∈ M .

For our purpose, we need two-sided bound on the Dirichlet heat kernels of the balls. Let 
HB(x, y, t) be the Dirichlet heat kernel of the ball Bρ(x) with t ∈ (0, 1) and ρ ≥

√
t. Note 

that HB(x, y, t) ≤ H(x, y, t). With the local volume doubling and Poincare inequality, 
by [16, (3.4)], there exist constants (depending only on the constants from the volume 
doubling and Poincare inequality) a, τ (small), A (large) and c such that

HB(x, y, t) ≤ c

volB√
t(x)

for y ∈ Ba
√
t(x), t ∈ (0, τ), ρ ≥ A

√
t. By making ε smaller (and a rescaling argument as 

at the end of the proof of Theorem 1.1) we obtain
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Theorem 5.6 (Dirichlet Heat kernel upper and lower bounds). For any integer n and p >
n
2 there exist ε and C such that the following holds. Let M be a complete n-dimensional 
Riemannian manifold satisfying k(p, 1) ≤ ε. Let HBr(x)(x, y, t) be the Dirichlet heat 
kernel of the ball Br(x). Then

HBr(x)(x, y, t) ≤ C

volB√
t(x)e

− d2(x,y)
5t , ∀x, y ∈ M with 0 < t ≤ 1 (5.13)

and

HBr(x)(x, y, t) ≥ C−1

volB√
t(x) , 0 < t ≤ 1

2r
2, y ∈ B10

√
t(x). (5.14)

This Dirichlet heat kernel upper and lower bounds give the quantitative mean value 
inequality.

Proposition 5.7. Under the assumption above, let u be a nonnegative function satisfying

∂

∂t
u ≥ Δu− f,

where f is a nonnegative space–time function. Then, for q > n
2 ,

 

B 1
2 r

(x)

u(·, 0)d vol ≤ Cu(x, r2) + C(n, p, q) r2 sup
t∈[0,r2]

‖f(t)‖∗q,Br(x) (5.15)

for all x ∈ M , r ≤ 1.

Remark 5.8. For our application it’s crucial that the norm of f is a normalized local 
norm instead of the global norm in [27]. It recovers Lemma 2.1 in [11], where it is proven 
when f is constant. The key here is to use Dirichlet heat kernel of balls.

Proof. Compute

d

dt

ˆ

Br(x)

u(y, t)HBr(x)(x, y, r2 − t)d vol(y) (5.16)

=
ˆ

Br(x)

[
HBr(x)(x, y, r2 − t)

(
∂

∂t
− Δ

)
u(y, t)

]
d vol(y)

≥ −
ˆ

Br(x)

[
HBr(x)(x, y, r2 − t)f(y, t)

]
d vol(y)

By the upper bound of HBr(x)(x, y, r2 − t), we have, for q > 1,
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ˆ

Br(x)

[
HBr(x)(x, y, r2 − t)f(y, t)

]
d vol(y)

≤ ‖f(t)‖q,Br(x) ‖HBr(x)(x, y, r2 − t)‖ q
q−1 ,Br(x)

≤ C

volB√
r2−t(x)‖f(t)‖q,Br(x)

⎛
⎜⎝

ˆ

Br(x)

e
− q

q−1
d2(x,y)
5(r2−t) d vol(y)

⎞
⎟⎠

1− 1
q

≤ C
(
volB√

r2−t(x)
)− 1

q ‖f(t)‖q,Br(x)

= C

(
volBr(x)

volB√
r2−t(x)

) 1
q

‖f(t)‖∗q,Br(x)

≤ Cr
n
q (r2 − t)−

n
2q ‖f(t)‖∗q,Br(x).

In the last step we used the volume doubling property (2.5).
Now integrate (5.16) from 0 to r2 gives

u(x, r2) ≥
ˆ

Br(x)

u(y, 0)HBr(x)(x, y, r2)d vol(y) − Cr
n
q

r2ˆ

0

(r2 − t)−
n
2q ‖f(t)‖∗q,Br(x)dt

≥ C−1
 

B 1
2 r

(x)

u(y, 0)d vol(y) − C(n, p, q)r2 sup
t∈[0,r2]

‖f(t)‖∗q,Br(x).

Here we used the lower bound for HBr(x)(x, y, r2) on B 1
2 r

(x) and q > n
2 . �

Corollary 5.9. Assume as above. Let u be a nonnegative function satisfying

Δu ≤ f.

Then, for q > n
2 ,

 

B 1
2 r

(x)

u d vol ≤ C
(
u(x) + r2‖f+‖∗q,Br(x)

)
(5.17)

for all x ∈ M , r ≤ 1.

This is the L1 Harnack inequality. For the Euclidean case, see e.g. [15, Theorem 4.15]. 
We would like to thank Ruobin Zhang for this reference.

With the above tools, we can extend Colding–Naber’s L2 Hessian estimate for the 
parabolic approximation of the distance function to the integral curvature setting without 
essential difficulties. In the noncollapsed case it is done in [27], see also [32].
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In what follows, we always assume p > n
2 and M is a complete n-dimensional Rie-

mannian manifold satisfying k(p, 1) ≤ ε(n, p) for the ε so the results above all hold.
Fix two points y−, y+ in Mn, the excess is

e(x) = d(y−, x) + d(y+, x) − d(y−, y+).

Define

b+(x) = d(y+, x) − d(y−, y+), b−(x) = d(y−, x).

Hence e(x) = b+(x) + b−(x). Note that

Δb±(x) ≤ n− 1
d(x, y±) + ψ±,

where ψ± =
(
Δd(y±, x) − n−1

d(x,y±)

)
+

is the error term of the Laplacian comparison.
Denote d0 = d(y−, y+). Without loss of generality, assume d0 ≤ 1. Denote by 

Ar1,r2 = Ar1d0,r2d0({y−, y+}) the annulus for the set {y−, y+}, with 0 < r1 < r2. Then 
Corollary 5.9 and the Laplacian comparison estimate (2.2) gives

Theorem 5.10. Fix some small positive constant δ > 0. There exist ε̄ = ε̄(n, p, δ) and 
C = C(n, p, δ) such that for all 0 < ε < ε̄, x ∈ A δ

4 ,16
,

 

Bεd0 (x)

e(y)dy ≤ C
[
e(x) + (εd0)2(‖ψ−‖∗2p,d0

+ ‖ψ+‖∗2p,d0
)
]
≤ C

[
e(x) + ε2d0

]
.

In particular, if e(x) ≤ ε2d0, then

e(y) ≤ Cε1+
1

n+1 d0, ∀y ∈ B 1
2 εd0(x).

Remark 5.11. We obtain the optimal integral bound for the excess as in the pointwise 
Ricci lower bound case [11, Theorem 2.6], compare [27, Corollary 2.19], [32, Lemma 4.9]. 
For the pointwise estimate, note that Abresch–Gromoll’s original estimate gives ε1+

1
n−1

[1].

As in [11], one can extend Lemma 5.4 to annulus so we have the cut-off function φ
such that

φ = 1 in A δ
4 ,8

; φ = 0 outside A δ
16 ,16

and

|∇φ|2 + |Δφ| ≤ C(n, p, δ).
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Define the parabolic approximation functions b±,t and et by

b±,t(x) =
ˆ

H(x, y, t)φ(y)b±(y)dvol(y)

and

et(x) =
ˆ

H(x, y, t)φ(y)e(y)dvol(y).

Then

et = b+,t + b−,t.

Following [27], we have following estimates for the approximates, which play important 
role in the Cheeger–Colding–Naber local theory for Gromov–Hausdorff limits.

Theorem 5.12. There exists C = C(n, p, δ) such that for all 0 < ε ≤ ε̄(n, p, δ), any 
x ∈ A δ

2 ,4
with e(x) ≤ ε2d0 and any ε-geodesic σ connecting y−, y+, there exists r ∈ [ 12 , 2]

with
1. 

∣∣b±,rε2d2
0
− b±

∣∣ ≤ Cd0(ε2 + ε2−
n
2p ).

2. 
ffl
Bεd0 (x)

∣∣|∇b±,rε2d2
0
|2 − 1

∣∣ ≤ C(ε + ε1−
n
2p ).

3. 
ffl (1−δ)d0
δd0

ffl
Bεd0 (σ(s))

∣∣|∇b±,rε2d2
0
|2 − 1

∣∣ ≤ C(ε2 + ε2−
n
p ).

4. 
ffl (1−δ)d0
δd0

ffl
Bεd0 (σ(s))

∣∣Hessb±,rε2d2
0

∣∣2 ≤ C(1+ε
−n

p )
d2
0

.

We will only show the first lemma here to indicate the difference.

Lemma 5.13. There exists a constant C = C(n, p, δ) such that

Δb±,t,Δet ≤ C

(
1
d0

+ t−
n
4p

)

for t < 1.

Proof. Since, for x ∈ A δ
16 ,16

,

Δ(φb+) = b+Δφ + 2〈∇φ,∇b+〉 + φΔb+ ≤ Cd−1
0 + ψ+,

we have

Δb+,t(x) =
ˆ

A δ
16 ,16

ΔxH(x, y, t)φ(y)b+(y)dvol(y)

=
ˆ

A δ ,16

ΔyH(x, y, t)φ(y)b+(y)dvol(y)
16
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=
ˆ

A δ
16 ,16

H(x, y, t)Δy(φ(y)b+(y))dvol(y)

≤ C

d0
+

ˆ

A δ
16 ,16

H(x, y, t)ψ+dvol(y).

Using the upper bound for H(x, y, t) and argue as in Proposition 5.7, we have

ˆ

A δ
16 ,16

H(x, y, t)ψ+dvol(y) ≤ ‖ψ+‖2p‖H(x, y, t)‖ 2p
2p−1

≤ C(n, p)‖ψ+‖∗2pt−
n
4p .

These give the estimate; the other terms are exactly the same. �
6. Necessity of smallness of integral Ricci

By exploring Yang’s counter-example [30], we point out that the smallness of integral 
Ricci curvature, (1.2), is a critical condition in order to get the Lp version of Cheeger–
Colding theory.

For any k > 1, let M = (−1, 1) × Tn−1 be a portion of a complete manifold with a 
family of warped product metric

gε = dr2 + (ε2 + r2)kgF (6.1)

where T is a compact torus with flat metric gF and ε > 0 is the parameter. A direct 
calculation gives the sectional curvature

K( ∂

∂xi
,

∂

∂xj
) = −k2r2(ε2 + r2)−2,

K( ∂

∂xi
,
∂

∂r
) = −k(ε2 + r2)−1 − k(k − 2)r2(ε2 + r2)−2,

and the Ricci curvature

Ric( ∂

∂xi
,

∂

∂xi
) = −

[
(n− 2)k2r2 + k(k − 2)r2 + k(ε2 + r2)

]
(ε2 + r2)−2,

Ric( ∂

∂r
,
∂

∂r
) = −(n− 1)

[
k(k − 2)r2 + k(ε2 + r2)

]
(ε2 + r2)−2,

Ric( ∂

∂xi
,
∂

∂r
) = 0,

where (x1, · · · , xn−1) is the local normal coordinate of Tn−1.
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Fix one p ∈ (n2 , 
k(n−1)+1

2 ). In the following calculation, ≈ means equivalence up to a 
multiplication by a constant depending only on n and p. The first observation is

|Rmgε | ≈ |Ricgε | ≈ k2r2(ε2 + r2)−2 + k(ε2 + r2)−1. (6.2)

Put

B∗
r = {(t, x) ∈ M | − r < t < r}. (6.3)

Then, for any function f ,

ˆ

B∗
r

fdvgε =
rˆ

−r

ˆ

T

f(x, t)(ε2 + t2)
(n−1)k

2 dvgF dt.

Applying to the curvature function we have, whenever ε << r,

ˆ

B∗
r

|Rmgε |p ≈ k2p
rˆ

0

ˆ

T

(ε2 + t2)
(n−1)k

2 −pdvgF dt

≈ k2p

k(n− 1) + 1 − 2p vol(T )rk(n−1)+1−2p

≈ k2p−1 vol(T )rk(n−1)+1−2p, (6.4)

whenever k >> 1 is sufficiently large. Then notice that

vol(B∗
r ) ≈ 1

k(n− 1) + 1 vol(T )rk(n−1)+1 ≈ k−1 vol(T )rk(n−1)+1.

Thus we have, whenever ε << r,

r2
(  

B∗
r

|Rmgε |p
) 1

2p

≈ k2. (6.5)

In particular, the formula remains hold on the limit space,

r2
(  

Br(o)

|Rmg0 |p
) 1

2p

≈ k2, ∀r > 0. (6.6)

The family of manifolds (M, gε) has polynomial volume growth. Hence a generalized 
local Sobolev constant and Poincaré constant are still bounded.1 However, since the limit 

1 It should be understood as the [k(n − 1) + 1]-Sobolev inequality, but not the n-Sobolev inequality we 
have proved. Actually, the calculation shows the n-Sobolev constant is not bounded in Yang’s example.
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collapse at the origin, the volume comparison of geodesic spheres fails. Furthermore, to 
guarantee the splitting property on the tangent cones of the limit space we eventually 
need that

r2
(  

Br(o)

|Ricg0 |p
) 1

2p

→ 0

as r → 0, which never hold. Therefore, the boundedness of Lp norm of curvature tensor 
is not sufficient to extend Cheeger–Colding theory.
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