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Abstract. We present a geometric and elementary proof of the local Neumann
isoperimetric inequality on convex domains of a Riemannian manifold with Ricci
curvature bounded below.

1. Introduction

Isoperimetric and Sobolev inequalities are equivalent inequalities (see e.g. Theo-
rem 1.3 below) which play important role in geometric analysis on manifolds. Indeed,
doing analysis on manifolds usually depends on the estimate of the Sobolev constant
which could then be obtained via the isoperimetric constant. There are extensive
work on isoperimetric constant estimates. An important method pioneered by Gro-
mov relies on the geometric measure theory and its regularity theory, which works
for closed manifolds or convex domains with smooth boundary, see e.g. the survey
article [9] and the recent paper [14]. One may also obtain an estimate through Li-
Yau gradient estimate for heat kernel [12] and the equivalence of heat kernel bounds,
Sobolev inequality, isoperimetric inequality, see [15, Page 448], which again requires
smooth and convex boundary. Another method using needle decomposition from
convex geometry has also been very successful and, very recently, been combined
with optimal transport and extended to non-smooth case, see [3] and the references
therein. For star-shaped domains in a manifold with Ricci curvature bounded from
below, Buser [2] gave an elementary proof for a Neumann isoperimetric constant (the
Cheeger constant) estimate using comparison geometry, but the estimate depends
on the in and out radius of the domain, which does not give a uniform estimate for
convex domain as the in-radius might be small. We would like to point out that for
convex domains with non-smooth boundaries, the estimate for isoperimetric con-
stant is only obtained in the very recent paper [3] mentioned above. In this short
note we give a very geometric and elementary proof of a Neumann isoperimetric
inequality, albeit with non-optimal constant, for convex domains whose boundaries
need not be smooth.

First we recall some definitions.
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Definition 1.1. When M is compact (with or without boundary), the Neumann
α-isoperimetric constant of M is defined by

INα(M) = sup
H

min{vol(M1), vol(M2)}1− 1
α

vol(H)
,

where H varies over compact (n − 1)-dim submanifold of M which divides M into
two disjoint open submanifolds M1,M2 (with or without boundary).

Definition 1.2. The Neumann α-Sobolev constant of M is defined by

SNα(M) = sup
f∈C∞(M)

infa∈R ‖f − a‖ α
α−1

‖∇f‖1

.

The isoperimetric constant and Sobolev constant are equivalent.

Theorem 1.3 ([4], see also [11]). For all n ≤ α ≤ ∞,

INα(M) ≥ SNα(M) ≥ 1

2
INα(M).

For convenience we consider the normalized Neumann α-isoperimetric and α-
Sobolev constant:

IN∗α(M) = INα(M) vol(M)1/α, SN∗α(M) = SNα(M) vol(M)1/α.

Using comparison geometry and Vitali covering we give an estimate on the nor-
malized Neumann isoperimetric constant for convex domain in terms of the Ricci
curvature lower bound and the diameter of the domain.

Theorem 1.4. Let (M, g) be a complete Riemannian manifold of dimension n, with
Ric ≥ −(n− 1)K for some K ≥ 0. Let Ω be a bounded convex domain. Then

(1.1) IN∗n(Ω) ≤ 40ne11(n−1)
√
Kd · d

where d is the diameter of the domain Ω. In particular, if M is closed with diameter
d, then

(1.2) IN∗n(M) ≤ 40ne11(n−1)
√
Kd · d.

Corollary 1.5. Let (M, g) be a complete Riemannian manifold of dimension n, with
nonnegative Ricci curvature. Let Ω be a bounded convex domain. Then

(1.3) IN∗n(Ω) ≤ 40n · d
where d is the diameter of the domain Ω. In particular, if M is closed with diameter
d, then

(1.4) IN∗n(M) ≤ 40n · d.

Remark 1.6. The case when Ω equals the whole manifold is well-known. The refer-
ence we mentioned earlier for convex domain in the literature deals with domains
with (smooth) convex boundary which is a stronger condition.
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Remark 1.7. For balls we can obtain both Dirichlet and Neumann isoperimetric con-
stant estimates even under the much weaker integral Ricci lower bound assumption
[7, 18]. On the other hand it is not clear if that will remain true for convex domains.

Remark 1.8. Using the mean curvature estimate from [16] one gets similar estimate
when the Bakry-Emery Ricci curvature is bounded from below and oscillation of the
potential function is bounded.

2. Proof of Theorem 1.4

The proof goes by a covering argument of Anderson [1], combined with an ob-
servation of Gromov [10]. See [1] or [7] for a similar argument of estimating the
local Dirichlet isoperimetric constant. First of all we recall a lemma whose proof is
a slight modification of Gromov’s observation [10, 5.(C)].

Lemma 2.1. LetMn be a complete Riemannian manifold. Let Ω be a convex domain
of M and H be any hypersurface dividing Ω into two parts Ω1,Ω2. For any Borel
subsets Wi ⊂ Ωi, there exists x1 in one of Wi, say W1, and a subset W in another
one, W2, such that

(2.1) vol(W ) ≥ 1

2
vol(W2)

and any x2 ∈ W has a unique minimal geodesic connecting to x1 which intersects H
at some z such that

(2.2) dist(x1, z) ≥ dist(x2, z).

The convexity assumption of Ω is essential. It implies that any minimal geodesic
with endpoints in different parts must intersects H. The Bishop-Gromov relative
volume comparison theorem gives

Lemma 2.2. Let H, W and x1 be as in the lemma above. Then

(2.3) vol(W ) ≤ 2n−1De(n−1)
√
KD vol(H ′)

where D = supx∈W dist(x1, x) and H ′ is the set of intersection points with H of
geodesics γx1,x for all x ∈ W .

Proof. Let Γ ⊂ Sx1 be the set of unit vectors such that γv = γx1,x2 for some x2 ∈ W .
We compute the volume in the polar coordinate at x1. Write dv = A(θ, t)dθ ∧ dt
in the polar coordinate (θ, t) ∈ Sx1 × R+. For any θ ∈ Γ, let r(θ) be the radius
such that expx1(rθ) ∈ H. Then W ⊂ {expx1(rθ)|θ ∈ Γ, r(θ) ≤ r ≤ 2r(θ)}. So, by
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relative volume comparison,

vol(W ) ≤
ˆ

Γ

ˆ 2r(θ)

r(θ)

A(θ, t)dtdθ

≤ sinhn−1(2
√
KD)

sinhn−1(
√
KD)

ˆ
Γ

r(θ)A(θ, r(θ))dθ

≤ D
sinhn−1(2

√
KD)

sinhn−1(
√
KD)

vol(H ′).

The required estimate follows from sinh(2t)
sinh t

= 2 cosh t ≤ et whenever t ≥ 0. �

Corollary 2.3. Let H be any hypersurface dividing a convex domain Ω into two
parts Ω1, Ω2. For any ball B = Br(x) we have

min
(

vol(B ∩ Ω1), vol(B ∩ Ω2)
)
≤ 2n+1re(n−1)

√
Kd vol(H ∩B2r(x))(2.4)

where d = diam(Ω). In particular, if B ∩ Ω is divided equally by H, we have

vol(Br(x) ∩ Ω) ≤ 2n+2re(n−1)
√
Kd vol(H ∩B2r(x))(2.5)

Proof. Put Wi = B ∩ Ωi in the above lemma and notice that D ≤ 2r and H ′ ⊂
H ∩B2r(x). �

Now we are ready to prove our main theorem.

Proof of Theorem 1.4. We may assume that vol(Ω1) ≤ vol(Ω2). For any x ∈ Ω1, let
rx be the smallest radius such that

vol(Brx(x) ∩ Ω1) = vol(Brx(x) ∩ Ω2) =
1

2
vol(Brx(x) ∩ Ω).

Let d = diam(Ω). By above corollary,

(2.6) vol(Brx(x) ∩ Ω) ≤ 2n+2rxe
(n−1)

√
Kd vol(H ∩B2r(x)).

The domain Ω1 has a covering

Ω1 ⊂
⋃
x∈Ω1

B2rx(x).

By Vitali Covering Lemma, cf. [13, Section 1.3], we can choose a countable family
of disjoint balls Bi = B2rxi

(xi) such that ∪iB10rxi
(xi) ⊃ Ω1. Applying the relative
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volume comparison theorem and the convexity of Ω we have

vol(Ω1) ≤
∑
i

´ 10rxi
0

sinhn−1(
√
Kt)dt´ rxi

0
sinhn−1(

√
Kt)dt

vol
(
Brxi

(xi) ∩ Ω1

)
≤ 10

∑
i

sinhn−1(10
√
Krxi)

sinhn−1(
√
Krxi)

vol
(
Brxi

(xi) ∩ Ω1

)
≤ 10

sinhn−1(10
√
Kd)

sinhn−1(
√
Kd)

∑
i

vol
(
Brxi

(xi) ∩ Ω1

)
≤ 10ne9(n−1)

√
Kd
∑
i

vol
(
Brxi

(xi) ∩ Ω1

)
= 2−1 · 10n · e9(n−1)

√
Kd
∑
i

vol
(
Brxi

(xi) ∩ Ω
)
.

Moreover, since the balls Bi are disjoint, (2.6) gives,

vol(H) ≥
∑
i

vol(Bi ∩H) ≥ 2−n−2e−(n−1)
√
Kd
∑
i

r−1
xi

vol(Brxi
(xi) ∩ Ω).

These two estimates lead to

vol(Ω1)
n−1
n

vol(H)
≤ 2 · 20ne10(n−1)

√
Kd

(∑
i vol(Brxi

(xi) ∩ Ω)
)n−1

n∑
i r
−1
xi

vol(Brxi
(xi) ∩ Ω)

≤ 40ne10(n−1)
√
Kd

∑
i vol(Brxi

(xi) ∩ Ω)
n−1
n∑

i r
−1
xi

vol(Brxi
(xi) ∩ Ω)

≤ 40ne10(n−1)
√
Kd sup

i

vol(Brxi
(xi) ∩ Ω)

n−1
n

r−1
xi

vol(Brxi
(xi) ∩ Ω)

= 40ne10(n−1)
√
Kd sup

i

(
rnxi

vol(Brxi
(xi) ∩ Ω)

) 1
n

.

On the other hand, since vol(Ω1) ≤ vol(Ω2), we have rx ≤ d for any x ∈ Ω1. Thus,
by the relative volume comparison and convexity of Ω again, we have

vol(Ω) ≤
´ d

0
sinhn−1(

√
Kt)dt´ rx

0
sinhn−1(

√
Kt)dt

vol(Brx(x) ∩ Ω).

Therefore,

vol(Ω)
1
n · vol(Ω1)

n−1
n

vol(H)
≤ 40ne10(n−1)

√
Kd sup

0<r≤d

(
rn
´ d

0
sinhn−1(

√
Kt)dt´ r

0
sinhn−1(

√
Kt)dt

) 1
n

.

The last term on the right hand side has the estimate

rn
´ d

0
sinhn−1(

√
Kt)dt´ r

0
sinhn−1(

√
Kt)dt

≤ rn · d
r
· sinhn−1(

√
Kd)

sinhn−1(
√
Kr)

≤ dn · sinhn−1(
√
Kd)

(
√
Kd)n−1

≤ dne(n−1)
√
Kd.
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The required normalized Neumann isoperimetric constant estimate now follows. �
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