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Abstract

If X is the Gromov-Hausdorff limit of a sequence of Riemannian manifolds
Mn
i with a uniform lower bound on Ricci curvature, Sormani and Wei have

shown that the universal cover X̃ of X exists [13, 14]. For the case where X
is compact, we provide a description of X̃ in terms of the universal covers M̃i

of the manifolds. More specifically we show that if X̄ is the pointed Gromov-
Hausdorff limit of the universal covers M̃i then there is a subgroup H of Iso(X̄)
such that X̃ = X̄/H.

1 Introduction

In 1981 Gromov proved that any finitely generated group has polynomial growth if
and only if it is almost nilpotent [7]. In his proof, Gromov introduced the Gromov-
Hausdorff distance between metric spaces [7, 8, 9]. This distance has proven to
be especially useful in the study of n-dimensional manifolds with Ricci curvature
uniformly bounded below since any sequence of such manifolds has a convergent
subsequence [10]. Hence we can follow an approach familiar to analysts, and consider
the closure of the class of all such manifolds. The limit spaces of this class have
path metrics, and one can study these limit spaces from a geometric or topological
perspective.

Much is known about the limit spaces of n-dimensional Riemannian manifolds with
a uniform lower bound on sectional curvature. These limit spaces are Alexandrov
spaces with the same curvature bound [1], and at all points have metric tangent
cones which are metric cones. Since Perelman has shown that Alexandrov spaces
are locally homeomorphic to their tangent cones [12], these limit spaces are locally
contractible. In this case, an argument of Tuschmann’s shows that there is eventually
a surjective map from the fundamental groups of the manifolds in the sequence onto
the fundamental group of the limit space [16].

We seek similar results when Ricci curvature is uniformly bounded from below.
Cheeger and Colding have made considerable progress studying the geometric and
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regularity properties of the limit spaces of this class [2, 3, 4], but the local topology
of the limit spaces could be very complicated. For instance, Menguy has shown that
the limit spaces can have infinite topology on arbitrarily small balls [11], even when
the sequence has nonnegative Ricci curvature. In addition, it is not known whether
the limit space is locally or even semilocally simply connected.

Sormani and Wei have shown that the limit space X of a sequence of manifolds
Mn

i with uniform Ricci curvature lower bound has a cover X̃ with a universal mapping
property [13, 14]. This cover is called the universal cover, and it is not assumed to
be simply connected.

In this note we use the notation Mi
GH

//X to mean that the manifoldsMi converge
to the space X in the Gromov-Hausdorff sense. For a compact limit space we describe
the universal cover X̃ in terms of the universal covers of the manifolds.

Theorem 1.1. Suppose Mn
i have RicMi

≥ (n− 1)H and diamMi
≤ D. Assume

Mi
GH

//X

and that

(M̃i, p̃i)
GH

//(X̄, x̄) .

Then there is a closed subgroup H ≤ Iso(X̄) such that X̄/H is the universal cover of
X.

We start by reviewing some results, then give an example to show that the uni-
versal cover of the limit space may not be the limit of the universal covers of the
manifolds. This example leads us to consider equivariant Hausdorff convergence, due
to Fukaya [5, 6], which extends Gromov-Hausdorff convergence to include group ac-
tions. We then combine results of Fukaya and Yamaguchi with results of Sormani
and Wei [13] to prove Theorem 1.1.

The authors thank Daryl Cooper for numerous helpful conversations.

2 Background

In this paper, a manifold is a complete Riemannian manifold without boundary. An
essential result in the study of Gromov-Hausdorff limits of manifolds with uniform
lower bound on curvature is the Gromov Precompactness Theorem.

Theorem 2.1 (Gromov Precompactness Theorem). Let R be the set of all
closed, connected, Riemannian n-manifolds with

diam ≤ D and Ric ≥ (n− 1)H,

and let M be the set of all isometry classes of compact metric spaces. Let dGH denote
the Gromov-Hausdorff distance, which is a metric on M. Then R ⊂ (M, dGH) is
precompact.
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The Gromov-Hausdorff limit of length spaces is a length space. An effective way
to study the coverings of these spaces is using δ-covers, which were introduced by
Sormani and Wei in [13]. Suppose X is a complete length space. For x ∈ X and
δ > 0, let π1(X, x, δ) be the subgroup of π1(X, x) generated by elements of the form
= [α ∗ β ∗ α−1], where α is a path from x to some y ∈ X and β is a loop contained
in some open δ-ball in X.

x

α

β

Open ball of

radius δ > 0

Figure 1: A typical generator for π1(X, x, δ)

Definition 2.2 (δ-cover). The δ-cover of a metric space X is the covering space

πδ : X̃δ → X

with
(πδ)∗(π1(X̃

δ, x̃)) = π1(X, x, δ).

Note that
(πδ)∗ : π1(X̃

δ, x̃) → π1(X, x)

is the map [γ] → [πδ(γ)].
Intuitively, a δ-cover is the result of unwrapping all but the loops generated by

small loops in X.

Remarks 2.3.

1. X̃δ′ covers X̃δ for δ′ ≤ δ.

2. δ-covers exist for connected, locally path connected spaces. See [15] for more
details.

Sormani and Wei have used δ-covers to show that when manifolds with a uniform
Ricci curvature lower bound and a uniform diameter upper bound converge in the
Gromov-Hausdorff sense to a limit space X, the universal cover of X exists [13].

Theorem 2.4 (Sormani-Wei). Suppose Mn
i have RicMi

≥ (n− 1)H, diamMi
≤ D,

and
Mi

GH
//X.

Then the universal cover X̃ exists, and there is δ = δ(X) > 0 such that

(X̃, x̃) = GH lim
i→∞

(M̃ δ
i , p̃i).
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Note that X̃ may not be the limit of the universal covers of the manifolds in the
sequence. The following example shows this need not be the case.

Example 2.5. Consider S3/Zp
GH

//S2 . Then

S3
GH

//

��

S3

−

��

S3/Zp
GH

// S2

Here the loops in the lens spaces S3/Zp shrink to points as p goes to infinity, so
S3/Zp collapses to S2. In this case the fundamental group Zp of S3/Zp fills up S1 as
p grows and we have

S3/Zp
GH

//S3/S1 = S2 .

Example 2.5 indicates the need for considering group actions as well as convergence
of spaces. For this reason we use equivariant Hausdorff convergence, introduced by
Fukaya [5, 6].

Consider pointed group metric spaces (X,G, x), where X is a complete metric
space, G is a group of isometries of X and x ∈ X. Set

G(R) = {g ∈ G| d(g(x), x) < R}

for each R > 0.

Definition 2.6 (Equivariant ǫ-Hausdorff Approximation). Suppose (X1, G1, x1)
and (X2, G2, x2) are pointed group metric spaces. Let d be a metric on

B1/ǫ(x1, X1) ∪B1/ǫ(x2, X2),

and let φ : G1(1/ǫ) → G2(1/ǫ) and ψ : G2(1/ǫ) → G1(1/ǫ) be maps. The triple
(d, φ, ψ) is said to be an equivariant ǫ-Hausdorff approximation if

1. d extends the original metrics on B1/ǫ(xi, Xi) for i = 1, 2.

2. For each y1 ∈ B1/ǫ(x1, X1) there is y2 ∈ B1/ǫ(x2, X2) such that

d(y1, y2) < ǫ,

and for each y′
2
∈ B1/ǫ(x2, X2) there is y′

1
∈ B1/ǫ(x1, X1) with

d(y′
1
, y′

2
) < ǫ.

3. d(x1, x2) < ǫ.
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4. For each yi ∈ B1/3ǫ(xi, Xi) with d(y1, y2) ≤ ǫ and gi ∈ Gi(1/3ǫ) we have

|d(y1, g1y1) − d(y2, φ(g1)(y2))| < ǫ, |d(y2, g2y2) − d(y1, ψ(g2)(y1))| < ǫ.

Definition 2.7 (Equivariant Hausdorff Convergence). The sequence (Xi, Gi, xi)
of pointed group metric spaces converges to the pointed group metric space (X,G, x) in
the equivariant Hausdorff sense if there are equivariant ǫi-Hausdorff approximations
between (Xi, Gi, xi) and (X,G, x), where ǫi → 0 as i→ ∞. We write

(Xi, Gi, xi)
eH

//(X,G, x) .

Note that equivariant Hausdorff convergence implies Gromov-Hausdorff conver-
gence.

Fukaya and Yamaguchi have given a constructive proof of the following important
theorem [6].

Theorem 2.8 (Fukaya-Yamaguchi). If

(Xi, pi)
GH

//(Y, q)

in the Gromov-Hausdorff sense, and Gi ≤ Iso(Xi) are closed subgroups then there is
G ≤ Iso(Y ) such that, after passing to a subsequence,

(Xi, Gi, pi)
eH

//(Y,G, q) .

In addition, Fukaya has shown a natural relationship between equivariant conver-
gence and Gromov-Hausdorff convergence [5].

Theorem 2.9 (Fukaya). If

(Xi, Gi, pi)
eH

//(Y,G, q)

then
(Xi/Gi, [pi])

GH
// (Y/G, [q]).

Remark 2.10. If
Gi = π1(Mi),

(Mi, pi)
GH

//(X, x)

and

(M̃i, π1(Mi), p̃i)
eH

//(X̄,G, x̄),

then Theorem 2.9 implies X = X̄/G.
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3 Description of Universal Cover

Suppose Mn
i is a sequence of manifolds with RicMi

≥ (n− 1)H and diamMi
≤ D. By

Theorem 2.1, there is a length space X such that, after passing to a subsequence we
have

Mi
GH

//X.

If we pick a sequence of points p̃i ∈ M̃i, where M̃i is the universal cover of Mi,
a further subsequence of (M̃i, p̃i) converges to a length space (X̄, x̄) in the pointed
Gromov-Hausdorff sense.

Since π1(Mi) is a discrete subgroup of Iso(M̃i), π1(Mi) is closed. Thus Theorem 2.8
implies that there is G ≤ Iso(X̄) such that, after passing to a subsequence,

(M̃i, π1(Mi), p̃i)
eH

// (X̄,G, x̄).

Set
Gi = π1(Mi, pi)

for each i. Then set

Gǫ
i =< g ∈ Gi| d(gq̃, q̃) ≤ ǫ for some q̃ ∈ M̃i >

for each ǫ > 0. Note that Gǫ
i is closed, since Gi is a discrete group, and is a normal

subgroup of Gi.
Thus we may consider the quotient Gi/G

ǫ
i , and its isometric action on M̃i/G

ǫ
i by

[g][q̃] = [gq̃].

Lemma 3.1. Gi/G
ǫ
i is a discrete group that acts freely on M̃i/G

ǫ
i .

Proof. If [g] ∈ Gi/G
ǫ
i is not trivial, then d([g][q̃], [q̃]) > ǫ for all [q̃] ∈ M̃i/G

ǫ
i . In

particular, Gi/G
ǫ
i acts freely on M̃i/G

ǫ
i .

Remark 3.2. Lemma 3.1 implies that M̃i/G
ǫ
i covers

(M̃i/G
ǫ
i)/(Gi/G

ǫ
i) = Mi.

Next we prove two lemmas relating the covering spaces M̃i/G
ǫ
i to the δ-covers M̃ δ

i .

Lemma 3.3. For 0 < ǫ/2 < δ, M̃i/G
ǫ
i covers M̃ δ

i .

Proof. We show that Gǫ
i ≤ π1(Mi, δ, pi). Suppose g is a generator for Gǫ

i . There is
q̃i ∈ M̃i with

d(q̃i, gq̃i) ≤ ǫ.

Connect q̃i to gq̃i by a distance minimizing path β̃, and connect p̃i to q̃i by a path α̃.
Note that the length of β̃, ℓ(β̃), is at most ǫ.
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M̃i

p̃i

α̃
q̃i β̃

gq̃i

gα̃

gp̃i

πi

Mi

pi

α

δ

qi

β

Figure 2: α ∗ β ∗ α−1 lifts to α̃ ∗ β̃ ∗ (gα̃)−1

Set α = πi(α̃) and β = πi(β̃). By uniqueness of path lifting, the lift of α ∗ β ∗ α−1

beginning at p̃i is α̃ ∗ β̃ ∗ (gα̃)−1.
Thus

[α ∗ β ∗ α−1]p̃i = gp̃i,

so g = [α ∗ β ∗ α−1]. Moreover, ℓ(β̃) ≤ ǫ implies that β is contained in B(β(0), ǫ/2),
which lies in the open δ-ball centered at β(0). Thus g ∈ π1(Mi, δ, pi), whence

Gǫ
i ≤ π1(Mi, δ, p1).

Lemma 3.4. For each 0 < δ < ǫ/5, M̃ δ
i covers M̃i/G

ǫ
i .

Proof. Here we show that π1(Mi, δ, pi) ≤ Gǫ
i . Suppose g is a generator for π1(Mi, δ, pi).

Then g = [α ∗ β ∗ α−1], where α is a path in Mi from pi to some qi and βδ is a loop
in B(qi, 2δ).

Let α̃ be the lift of α to M̃i beginning at p̃i, set q̃i = α̃(1) and let β̃ be the lift of
β to M̃i beginning at q̃i.

Observe that if ℓ(β) < ǫ,

d(q̃i, gq̃i) ≤ ℓ(β̃) = ℓ(β) < ǫ.

In this case, g = [α ∗ β ∗ α−1] ∈ Gǫ.
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replacemen

M̃i

p̃i

α̃
q̃i β̃

gq̃i

πi

Mi

pi

α

qi

β

Figure 3: Lemma 3.4

In general, if β ⊂ B(qi, 2δ) is a loop based at qi, we can find loops β1, . . . , βk based
at qi with ℓ(βj) < 5δ and

[β] = [β1][β2] · · · [βk].

qi

β1

β2

βk

β

Figure 4: Dividing β

For each j, [α ∗ βj ∗ α
−1] ∈ G5δ ≤ Gǫ. Then

g = [α ∗ β ∗ α−1] = [α ∗ β1 ∗ α
−1] · · · [α ∗ βk ∗ α

−1] ∈ Gǫ.

Now we show a key relationship between δ-covers and the group actions coming
from the sequence of manifolds.
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Lemma 3.5. Suppose

(M̃i, Gi, p̃i)
eH

//(X̄,G, x̄)

and that for δ > 0,
(Xδ, xδ) = GH lim

i→∞

(M̃ δ
i , p̃

δ
i ).

Then there is ǫ > 0 such that X̄/Hǫ is a covering space of X that also covers Xδ.

Proof. By Lemma 3.3 we may pick ǫ > 0 so that

φi : M̃i/G
ǫ
i → M̃ δ

i

are covering maps. In particular, each φi is distance nonincreasing. By Lemma 2.8
we may pass to a subsequence and obtain a closed subgroup Hǫ of G ≤ Iso(X̄) such
that

(M̃i, G
ǫ
i , p̃i)

eH
// (X̄,Hǫ, x̄) .

Note that by Theorem 2.9,

M̃i/G
ǫ
i
GH

//X̄/Hǫ.

Thus the Arzela-Ascoli lemma implies that some subsequence of {φi} converges to a
distance nonincreasing map φ : X̄/Hǫ → Xδ.

Set δ1 = ǫ/5. By Lemma 3.4, M̃ δ1
i covers M̃i/G

ǫ
i . As above, if

φ′

i : M̃ δ1
i →Mi

is a covering map, we may pass to a subsequence and obtain a distance nonincreasing
map

φ′ : Xδ1 → X.

We have

M̃ δ1
i

φ′
i

��

GH
//

��

Xδ1

φ′
i

��

��

M̃i/G
ǫ
i

φi

��

GH
// X̄/Hǫ

φ

��

ψ

��

M̃ δ
i

GH
//

��

Xδ

��

Mi
GH

// X

where we have chosen basepoints so the downward pointing arrows commute.
Now each φi is an isometry on balls of radius less than δ1, so φ = lim

i→∞

φi is an

isometry on balls of radius less than δ1. In particular, φ is a covering map. Thus
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X̄/Hǫ covers Xδ. To see that X̄/Hǫ covers X, observe that a similar argument as
above shows that φ′ is an isometry on balls of radius less than δ1. Since this map
factors through ψ : X̄/Hǫ → X, ψ is also an isometry on balls of radius less than δ1.
Thus ψ is a covering and the proof is complete.

Combining this result with Theorem 2.4, we obtain Theorem 1.1.
Proof of Theorem 1.1. By Theorem 2.4, there is δ > 0 such that the universal

cover of X is X̃ = Xδ = GH limi→∞(M̃ δ
i , p̃

δ
i ). By Lemma 3.5 we may choose H = Hǫ

so that X̄/H covers both X and Xδ. Thus X̄/H = X̃. 2
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10



1999. Based on the 1981 French original [MR 85e:53051], With appendices by
M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael
Bates.

[11] X. Menguy. Examples with bounded diameter growth and infinite topological
type. Duke Math. J., 102(3):403–412, 2000.

[12] G. Perelman. Elements of Morse theory on Aleksandrov spaces. St. Petersburg
Math. J., 5(1):205–213, 1994.

[13] Christina Sormani and Guofang Wei. Hausdorff convergence and universal covers.
Trans. Amer. Math. Soc., 353(9):3585–3602 (electronic), 2001.

[14] Christina Sormani and Guofang Wei. Universal covers for Hausdorff limits of
noncompact spaces. Trans. Amer. Math. Soc., 356(3):1233–1270 (electronic),
2004.

[15] Edwin H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[16] Wilderich Tuschmann. Hausdorff convergence and the fundamental group. Math.
Z., 218(2):207–211, 1995.

11


