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ABSTRACT. In this paper we prove that the space M(n, v,D,Λ) := {(Mn, g) closed : Ric ≥ −(n−1), Vol(M) ≥
v > 0, diam(M) ≤ D and

∫
M
|Rm|n/2 ≤ Λ} has at most C(n, v,D,Λ) many diffeomorphism types. This removes

the upper Ricci curvature bound of Anderson-Cheeger’s finite diffeomorphism theorem in [AnCh91]. Further-
more, if M is Kähler surface, the Riemann curvature L2 bound could be replaced by the scalar curvature L2

bound.

1. Introduction

In studying the relation between geometry and topology, one of the important themes is sphere theo-
rems and finiteness theorems. In [Ch1] Cheeger obtained his famous finiteness theorem that Riemannian
manifolds Mn satisfying

|KM | ≤ K, Vol(M) ≥ v > 0, diam(M) ≤ D

have finitely many diffeomorphism types. Here KM is the sectional curvature of M. The key is showing
a positive uniform lower bound on the injectivity radius for the class. Later [GP] Grove-Petersen proved
finitely many homotopy types for above class without curvature upper bound by controlling the contractibil-
ity radius. The corresponding result replacing sectional curvature lower with Ricci lower bound is only true
when n = 3, [Zh93]. When n ≥ 4 counterexamples are given in [Pe97]. With additional integral curvature
assumption, Anderson-Cheeger [AnCh91] proved the following class of closed manifolds Mn

|Ric| ≤ n − 1, Vol(M) ≥ v > 0, diam(M) ≤ D and
∫

M
|Rm|n/2 ≤ Λ (1.1)

have finitely many diffeomorphism types. This finiteness result is new in the sense that its Gromov-
Hausdorff limit may not be a topological manifold. Hence it can not be proven by Ricci flow smoothing,
instead it is done by bubble decomposition.
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Note also that the class of manifolds satisfying |Ric| ≤ n−1, Vol(M) ≥ v > 0, diam(M) ≤ D automatically
has a L2 integral curvature bound [JN16]. Hence in dimension 4, no extra integral curvature is needed
[ChNa15].

Anderson-Cheeger’s finiteness result is extended recently in [Qi23], where the two sided Ricci curvature
bounds is replaced by an Lp bound on the Ricci curvature with p > n/2, but with all scale non-collapsing
condition. In this paper we extend Anderson-Cheeger’s finiteness result by removing the Ricci curvature
upper bound.

Let us denote

M(n, v,D,Λ) := {(Mn, g) closed : Ric ≥ −(n − 1), Vol(M) ≥ v > 0, diam(M) ≤ D and
∫

M
|Rm|n/2 ≤ Λ}.

We have

THEOREM 1.1. For any given n, v,D,Λ > 0, the space M(n, v,D,Λ) has at most C(n, v,D,Λ) many
diffeomorphism types.

Under the assumption that the Ln/2 curvature tensor is small depending n, v,D instead of boundedness in
above the finitely many homeomorphism types was obtained in [Jin]. Our result greatly improves the result
in [Jin], also generalizes the finiteness result in [Qi23], see Remark 1.1.

As we mentioned earlier without the integral bound on the curvature tensor, this is true [Zh93] when
n = 3, but it is false when n ≥ 4 [Pe97].

Note that the integral curvature
∫

M |Rm|n/2 is scale invariant, and the power n/2 is the critical case. With
Lp and p > n/2, one can obtains the finiteness for the class by Ricci flow smoothing, see e.g. [DPW00].
For p < n/2 the result is not true anymore.

REMARK 1.1. With the extension of the Cheeger-Colding theory for manifolds with Ricci curvature
lower bound to Ricci lower bound in Lp sense for p > n/2 [PW01, TZ16], Theorem 1.1 is true if we replace
the Ricci lower bound by, with p > n/2, the normalized Lp smallness of Ricci curvature below −(n − 1),
or by boundedness of Lp of negative part of Ricci curvature and replace global volume lower bound by all
scale volume noncollapsing, hence extending the finiteness result in [Qi23].

In the four dimensional Kähler case, we can replace L2 bound on the curvature tensor by L2 bound on the
scalar curvature.

THEOREM 1.2. Let (M4, g) be compact Kähler manifolds with Ric ≥ −3, Vol(M) ≥ v > 0, diam(M) ≤ D
and
∫

M |R|
2 ≤ Λ (Here R is the scalar curvature). Then (M4, g) have at most C(v,D,Λ) many diffeomorphism

types.

Here with the pointwise Ricci curvature lower bound, an L2 bound on the scalar curvature is equivalent
to an L2 bound on the Ricci curvature. In Theorem 1.2, without the Kähler condition, if we assume Lp-Ricci
with p > 2, then based on Cheeger-Naber’s argument in [ChNa15] one can prove the same finitely many
diffeomorphism types theorem [Ji21].
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In proving the finiteness in [AnCh91], one of the key tools is the ϵ-regularity result that for manifolds in
(1.1), when the Ln/2-curvature tensor of a ball is sufficiently small, then the harmonic radius of the ball is
uniformly positive. Similarly this is done in [Qi23]. This uses two sided Ricci curvature bound crucially and
can not be true with only Ricci curvature lower bound. Instead we use Reifenberg radius (see Definition 2.4)
to control the topology. Another important result in [AnCh91] is their neck theorem which provides control
over the geometry and topology of the transition regions.

To prove Theorem 1.1, our start point is [Ch3, Theorem 10.2], which gives that the tangent cone of any
limit of Mn

i ∈M(n, v,D,Λ) is unique and is the cone over some space form Sn−1/Γ with |Γ| ≤ C(n, v). This
provide the Reifenberg radius lower bound, see Lemma 3.1.

Under the condition of Theorem 1.2, we do not know whether every tangent cone of the limit space of
such sequence is unique and flat. Instead, we prove that every tangent cone is a cone with smooth cross
section and all cross sections have the same topology with uniform lower bound for the Reifenberg radius
(See Lemma 4.5). To see this, we introduce a new monotone quantity,

VRr(x) := Vr(x) +
∫

Br(x)
|R|2, x ∈ M, r > 0 (1.2)

where Vr(x) is the volume ratio (2.5). With additional deformation result we are able to glue local homeo-
morphisms to get a global homeomorphism on the neck region. To control the cross sections we derive an
ϵ-regularity for 4-dim Kähler manifolds when L2 Ricci curvature is small (see Proposition 4.4). By Cheeger-
Colding, we know that without any curvature integral condition the cross section may not be smooth. Re-
cently, it was proved in [BPS] that the cross section of every tangent cone is homeomorphic to S3/Γ without
the curvature integral condition, which solves a conjecture of Colding-Naber.

For both Theorems 1.1 1.2 we construct a decomposition as in [ChNa15]. For Theorems 1.1 we use the
monotonic quantity volume ratio (2.5), while for Theorems 1.2 we use the modified monotonic quantity
(1.2).

From Theorems 1.2, it is natural to ask if it is true without Kähler condition. Namely

QUESTION 1.1. For given D,Λ,V , does there exist C(D,Λ,V) > 0 such that the space M(D,Λ,V) :=
{(M4, g) closed : diam(M) ≤ D,Vol(M) ≥ V,Ric ≥ −3, and

∫
M |Ric|2 ≤ Λ } have at most C(D,Λ,V) many

diffeomorphism type?

From our proof, one only needs to prove that every tangent cone of the limit space of any sequence of
M(D,Λ,V) is a cone over smooth cross section with uniform lower bound for the Reifenberg radius. Once
this is true, by Chern-Gauss-Bonnet theorem, the manifold has bounded L2-curvature.

Acknowledgment: The authors would like to thank Jeff Cheeger for his interest, encouragement, and
valuable feedback. We also appreciate the referee for their careful reading and helpful comments.

2. Preliminary

In this section, we will recall some important results from Cheeger-Colding theory [ChCo1].
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2.1. Almost metric cone and almost splitting. The following two results of Cheeger-Colding play
crucial roles in the study of manifolds with Ricci curvature lower bound. We will use this several times in
our proof.

For noncollapsed manifold, almost metric cone structure is very important, which makes a great differ-
ence between collapsed and noncollapsed manifolds. Let us start from the following Cheeger-Colding’s
almost volume cone implies almost metric cone theorem.

THEOREM 2.1. [ChCo1], see also [Ch2, Theorem 9.45, Remark 9.66] For any n, ϵ > 0 there exists
δ = δ(n, ϵ) > 0 such that the following holds: Let (Mn, g, p) be a complete manifold with Ric ≥ −δ(n − 1).
If the volume ratio Vr(x) := − ln Vol(Br(x))

Vol−δ(Br) satisfies

|V2(p) − V1(p)| ≤ δ, (2.1)

then

dGH(B1(p), B1(xc)) ≤ ϵ, (2.2)

where B1(xc) is the ball of a metric cone (C(X), xc) with cone vertex xc, and Vol−δ(Br) is the r-ball volume
in the model spaceMn

−δ with constant sectional curvature −δ.

Let us remark that there is no volume lower bound assumption for Theorem 2.1(see [ChTi06] for a nice
application without volume assumption). If we further assume the volume lower bound, by Theorem 2.1 we
have the following

LEMMA 2.2. Let (Mn, g, p) be complete manifold satisfying Ric ≥ −(n − 1) and Vol(B1(p)) ≥ v > 0.
Then for any δ > 0, there exists 0 < κ = κ(n, v, δ) ≤ 1 such that for any r ≤ 1 and x ∈ B1(p), there exists
κr ≤ rx ≤ r such that

|Vrx/100(x) − Vrx(x)| ≤ δ. (2.3)

and

dGH(Brx(x), Brx(xc)) ≤ δrx, for a metric cone (C(X), xc)). (2.4)

Here and in the rest of the paper we denote

Vr(x) := − ln
Vol(Br(x))
Vol−1(Br)

, (2.5)

the volume ratio comparing to the model space Hn. Clearly V0(x) = 0 and it is monotonically increasing in
r.

PROOF. By Theorem 2.1 it suffices to prove (2.3). For any 0 < r < 1 and x ∈ B1(p), let ri = r100−i.
Denote Fi := |Vri(x) − Vri+1(x)|. Note that |V1(x)| ≤ C(n, v). If for all 0 ≤ i ≤ L := ⌊C(n, v)/δ⌋ + 1, we have
Fi > δ, then

C(n, v) < δL ≤
L−1∑
i=0

Fi =

L−1∑
i=0

|Vri(x) − Vri+1(x)| = |Vr(x) − VrL(x)| ≤ |Vr(x)| ≤ |V1(x)| ≤ C(n, v). (2.6)

This is a contradiction. Therefore, the lemma follows with k = 100−L+1. □
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The second result is Cheeger-Colding’s almost splitting theorem, which is an quantitative version of
Cheeger-Gromoll’s splitting theorem.

THEOREM 2.3 (Almost splitting, [ChCo1]). For any n, ϵ > 0 there exists δ = δ(n, ϵ) such that the
following holds: Let (Mn, g, p) be a complete manifold with Ric ≥ −δ(n − 1). If γ : [−δ−1, δ−1] → M is a
minimizing geodesic with γ(0) = p, then

dGH(B1(p), B1(0, x)) ≤ ϵ, (2.7)

where R × X is product space with (0, x) ∈ R × X.

Roughly, by Theorem 2.3 we see that if a ball B2(p) is close to a metric cone, then for any q ∈ B2(p) \
B̄1(p), definite size ball with center q would be close to a splitting space. Under volume noncollpased
condition, by combining Theorem 2.1, one can prove more. See more discussions and applications in
[CJN21, ChNa13, ChNa15, JN16]

2.2. Reifenberg Radius and finiteness theorem. Let us define the ϵ-Reifenberg radius for a metric
space (X, d).

DEFINITION 2.4. Let (X, d) be a metric space. For ϵ > 0, integer n > 0 and x ∈ X, define the Reifenberg
radius at x by

rRei,ϵ,n(x) := max{r ≥ 0 : dGH(Bs(y), Bs(0n)) ≤ ϵs, for all 0 ≤ s ≤ r and y ∈ Br(x)} (2.8)

and define the Reifenberg radius of X by

rRei,ϵ,n(X) := inf
x∈X

rRei,ϵ,n(x). (2.9)

REMARK 2.1. If X is a Riemannian manifold with dimension n, we will omit the index n in rRei,ϵ,n and
write it as rRei,ϵ .

Let us recall some results proved by Cheeger-Colding [ChCo1] under lower Reifenberg radius bound.

LEMMA 2.5. [Theorem A.1.4 in [ChCo1]] Given any r0 > 0, let M(n, ϵ, r0) be the isometry classes of
compact metric spaces (X, d) with ϵ-Reifenberg radius rRei,ϵ,n(X) > r0 diam(X, d) > 0. There exists ϵ(n) > 0
such that if the ϵ < ϵ(n), then M(n, ϵ, r0) has at most C(n, r0) many homeomorphism types. Moreover, if X is
Riemannian, then it has at most C(n, r0) many diffeomorphism types.

PROPOSITION 2.6. [Theorem A.1.3 in [ChCo1] ] Let (X, d1) and (Y, d2) be two compact metric spaces.
Assume the Reifenberg radius min{rRei,ϵ,n(X), rRei,ϵ,n(Y)} ≥ r0 > 0. There exists a constant ϵ(n) such that if
ϵ ≤ ϵ(n) and

dGH(X,Y) ≤ r0ϵ, (2.10)

then X is homeomorphic to Y. Moreover, if X,Y are Riemannian, then the homeomorphism is a diffeomor-
phism.

REMARK 2.2. ϵ in Proposition 2.6 is independent of r0. Actually, by scaling we can always assume
r0 ≥ 1.
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For manifolds with Ricci curvature lower bound, let us recall the following Reifenberg radius lower bound
estimate from [Co] [ChCo1].

LEMMA 2.7 ([Co] [ChCo1] ). Let (Mn, g, p) satisfy Ric ≥ −(n − 1). For any ϵ > 0, if δ ≤ δ(n, ϵ) and
dGH(B1(p), B1(0n)) ≤ δ, then the Reifenberg radius rRei,ϵ,n(x) ≥ 1/4 for any x ∈ B1/2(p).

2.3. Diffeomorphism of Body Region and Finite topology.

LEMMA 2.8. Let Mn
1 ,M

n
2 be two complete manifolds and Ui ⊂ Mi are open subsets with Reifenberg

radius rRei,ϵ(x) ≥ r > 0 for all x ∈ Ui, i = 1, 2. There exists ϵ(n) > 0 such that if

dGH(Br(U1), Br(U2)) ≤ rϵ, (2.11)

then there exists a diffeomorphism F : U′1 → U′2 with Br/2(Ui) ⊂ U′i ⊂ Br(Ui).

PROOF. The proof of Theorem A.1.2 in [ChCo1] can be used here. We will just sketch the proof. For
more detail, see [ChCo1].

By rescaling, without loss of generality, we can assume r = 30. For each i ≥ 0, we can choose finite
subsets Xαi ⊂ Br(Uα) such that Xαi is a minimal 2−i-dense subset of Br(Uα) and Xα0 ⊂ Xα1 ⊂ · · · . We can

rewrite Xαi =
⋃Nαi

j=1 Qαi, j as [ChCo1] with Nαi ≤ N(n). Following the same argument as [ChCo1] by con-
structing and suitably modifying the transition maps, if ϵ ≤ ϵ(n) we can construct a sequence of manifolds
Wαi and diffeomorphisms f αi : Wαi → Wαi+1, and for i0 sufficiently large, diffeomorphism f α : Wαi0 → U′α
with B10(Uα) ⊂ U′α ⊂ B20(Uα). Furthermore, as in [ChCo1] if ϵ ≤ ϵ(n), there exists a diffeomorphism
F0 : W1

0 → W2
0 . Therefore, the desired diffeomorphism F is produced by

F = f 2 ◦ f 2
i0−1 ◦ · · · f 2

0 ◦ F0 ◦ ( f 1
0 )−1 ◦ · · · ( f 1

i0−1)−1 ◦ ( f 1)−1 : U′1 → U′2.

Furthermore, from the construction in [ChCo1], the diffeomorphism F is sufficiently close to the GH map
if ϵ is small enough. Therefore, we finish the proof. □

THEOREM 2.9 (Finite topology). There exist C = C(n,D) and ϵ(n) with the following property. Let
(Mn, g) be a complete Riemannian manifold and U ⊂ M an open subset with rRei,ϵ(x) > r > 0 for all x ∈ U.
Assume further that diam(U) ≤ Dr. Then there exists an open set U′ with Br/2(U) ⊂ U′ ⊂ Br(U) such that
U′ has at most C(n,D) many diffeomorphism types.

REMARK 2.3. Basing on Theorem 2.9, sometimes we will omit the ϵ(n) in rRei,ϵ(n)(x) and write it as
rRei(x).

REMARK 2.4. If one assumes a lower Ricci curvature bound for the manifold M, then one may be
possible to prove the above finiteness by using Ricci flow where Perelman’s Pseudolocality would play a
key role in the proof. (See [ChLee][LS22][ST21][He])

PROOF. The proof follows directly from Gromov’s precompactness and Lemma 2.8. Actually, con-
sider the space M(ϵ, r,D, n) := {Br(U) ⊂ M : U,M as in the theorem}. Denote M(ϵ, r,D, n) to be the
closure of M(ϵ, r,D, n) under Gromov-Hausdorff topology. Since rRei,ϵ(x) ≥ r > 0 for each x ∈ U, by Gro-
mov’s precompactness theorem (see [Gro]), the set M(ϵ, r,D, n) is compact in Gromov-Hausdorff topology.
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Therefore, we can choose finitely many {U1,U2, · · · ,UN} ⊂ M(ϵ, r,D, n) with N ≤ N(n,D, ϵ(n)) such that
the ϵ(n)r/10-balls of Ui covers M(ϵ, r,D, n). For any two W,V ∈ Tϵr/10,dGH (Ui) ∩M(ϵ, r,D, n), by Lemma
2.8, there exist diffeomorphisms between V ′ and U′i , between W′ and U′′i with Br/2(V) ⊂ V ′ ⊂ Br(V),
Br/2(W) ⊂ W′ ⊂ Br(W) and Br/2(Ui) ⊂ U′i ⊂ Br(Ui), Br/2(Ui) ⊂ U′′i ⊂ Br(Ui), where Tϵr/10,dGH (Ui) is the
ϵr/10-ball of Ui in Gromov-Hausdorff topology. From the proof of Lemma 2.8, the subset U′i and U′′i could
be chosen the same for different V,W ∈ Tϵr/10,dGH (Ui) ∩M(ϵ, r,D, n). Due to the finiteness of Ui, we finish
the proof. □

3. Finite diffeomorphism with bounded Ln/2 of Riemannian curvature

In this section, we consider complete Riemannian manifolds (Mn, g, p) satisfying

Ric ≥ −(n − 1), Vol(B1(p)) ≥ v > 0,
∫

B8(p)
|Rm|n/2 ≤ Λ. (3.1)

We will first consider the regularity in a neck region and prove Proposition 3.2. Based on Cheeger-Naber
[ChNa15] we can then prove a decomposition theorem. The finite diffeomorphism type theorem follows by
the decomposition theorem.

3.1. Diffeomorphism of Neck Region.

LEMMA 3.1. Let (Mn, g, p) be a complete manifold satisfying (3.1). For any ϵ > 0 there exists δ(n, ϵ, v,Λ) >
0 such that if the volume ratio

|Vr/2(p) − V2(p)| ≤ δ (3.2)

for some r ≤ 1, then there exists a space form Sn−1/Γ with |Γ| ≤ C(n, v) such that for any r ≤ s ≤ 1

dGH(Bs(p), Bs( p̄)) ≤ ϵs, with cone vertex p̄ ∈ C(Sn−1/Γ) . (3.3)

REMARK 3.1. Assuming as Lemma 3.1, we have for any x ∈ B1(p) \ B1/2(p) the Reifenberg radius of x
has a definite lower bound. To see this, by Lemma 3.1, the ball Br0(x) is close to a ball Br0(x̄) ⊂ C(S n−1/Γ)
which is smooth, where the radius r0 > 0 depending on Γ and the ball Br0(x̄) is a Euclidean ball. Hence by
Lemma 2.7, we get the desired Reifenberg radius lower bound.

PROOF. For any ϵ, if |Vr/2(p) − V2(p)| ≤ δ < δ(n, ϵ, v), by Theorem 2.1, we have for any 3r/4 ≤ s ≤ 1
the ball Bs(p) is close to a cone C(Zs):

dGH(Bs(p), Bs( p̄s)) ≤ ϵs. (3.4)

Now we use Theorem 10.2 b) of Cheeger [Ch3] to show the cross section Zs is a space form Sn−1/Γs with
|Γs| ≤ C(n, v). We argue this by contradiction. Assume there exists an ϵ0 > 0, and a sequence of Mn

i and
ri ≤ si ≤ 1 satisfy |Vri/2(pi) − V2(pi)| ≤ δi → 0 and (3.1), but dGH(Zsi ,S

n−1/Γ) > ϵ0 for any Γ ≤ O(n),
where Zsi is the cross section in (3.4) with respect to (Mn

i , pi). By scaling, we may assume si = 1. Up to a
subsequence, let us denote X the limit of B1(pi). By (3.4) we know that the limit is the unit ball in a metric
cone with cross section Z = limi→∞ Zsi and pi → p̄ ∈ X the cone vertex. Since dGH(Zsi ,S

n−1/Γ) > ϵ0 we get
dGH(Z,Sn−1/Γ) ≥ ϵ0. By [Ch3, Theorem 10.2 b)], any tangent cone of X is a space form, which implies that
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the tangent cone at p̄ is a space form. On the other hand, noting that p̄ is the vertex of metric cone C(Z),
then we have C(Z) is a space form which contradicts to dGH(Z,Sn−1/Γ) ≥ ϵ0 for any Γ. Here the estimate
|Γ| ≤ C(n, v) follows directly from the volume lower bound Vol(B1(p)) ≥ v > 0 and volume convergence.

On the other hand, since the space of cross sections is connected in Gromov-Hausdorff topology, by the
rigidity of space form, we have that Γs = Γs′ = Γ for each 3r/4 ≤ s, s′ ≤ 1. Hence we finish the proof. □

Now we are ready to prove the following diffeomorphism theorem by slightly modifying Cheeger-
Colding’s proof (see [Ch1] [AnCh91] [ChCo1] ).

PROPOSITION 3.2. Let (Mn, g, p) be a complete manifold satisfying (3.1). There exists δ = δ(n, v,Λ)
such that if, for any r ≤ 1/20,

|Vr/2(p) − V2(p)| ≤ δ, (3.5)

then there exists a diffeomorphism F : Sn−1/Γ × (r/2, 1/2) → N where Γ ⊂ O(n) and A11r/20,9/20(p) ⊂ N ⊂

A9r/20,11/20(p) with |Γ| ≤ C(n, v).

PROOF. This proposition essentially follows from Theorem A.1.3 of Cheeger-Colding [ChCo1](see
also Remark A.1.47 of Cheeger-Colding [ChCo1]). We will just sketch the proof as the proof of Lemma
2.8. For more detail, see [ChCo1].

For any ϵ > 0 if δ ≤ δ(n, v, ϵ,Λ), by Lemma 3.1, there exists a space form Sn−1/Γ with |Γ| ≤ C(n, v) such
that for any r ≤ s ≤ 1

dGH(Bs(p), Bs( p̄)) ≤ ϵs, with cone vertex p̄ ∈ C(Sn−1/Γ) (3.6)

Now we can begin the outline for the construction of diffeomorphism. For each i ≥ 0, we can choose
finite subsets Xi ⊂ Ar/5,4/5(p) ⊂ M and Yi ⊂ Ar/5,4/5(p̄) ⊂ C(S n−1/Γ) such that Xi ∩ A2ℓ−1/3,2ℓ+4/3 (p) and
Yi∩A2ℓ−1/3,2ℓ+4/3 ( p̄) are 2ℓ−i-dense in A2ℓ−1/3,2ℓ+4/3 (p) and A2ℓ−1/3,2ℓ+4/3 ( p̄) respectively, for all integer ℓ satisfying
r/5 ≤ 2ℓ ≤ 4/5. Using such Xi and Yi, following the same argument as [ChCo1], by constructing and
suitably modifying the transition maps, if ϵ ≤ ϵ(n) we can construct a sequence of manifolds Wi,Zi and
diffeomorphism Fi : Wi → Wi+1 and Gi : Zi → Zi+1, and for i0 sufficiently large, diffeomorphism F′ :
Wi0 → N′ with A2r/5,3/5(p) ⊂ N′ ⊂ Ar/5,4/5(p), and diffeomorphism G′ : Zi0 → N′

Γ
with A2r/5,3/5( p̄) ⊂

N′
Γ
⊂ Ar/5,4/5( p̄).

Furthermore, as in [ChCo1] if ϵ ≤ ϵ(n), there exists a diffeomorphism H0 : W0 → Z0. Therefore, the
desired diffeomorphism F is produced by

F = G′ ◦Gi0−1 ◦ · · ·G0 ◦ H0 ◦ F−1
0 ◦ · · · F

−1
i0−1 ◦ (F′)−1 : N′ → N′Γ.

Furthermore, from the construction in [ChCo1], the diffeomorphism F is sufficiently close to the GH map
if ϵ is small enough. Therefore, by shrinking the domain N ⊂ N′ such that F(N) = Ar/2,1/2( p̄), we finish the
whole proof. □
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3.2. Decomposition theorem. Combining the results above and the argument in Cheeger-Naber [ChNa15]
(See also [AnCh91],[Ch1], [JN16], [NV17] ), we will prove the following decomposition theorem which
is the key to our main theorem.

THEOREM 3.3. Let (Mn, g) satisfy (3.1) and diam(M, g) ≤ D. Then we have the following decomposition

Mn = B1 ∪

N2⋃
j2=1

N2
j2 ∪

N2⋃
j2=1

B2
j2 ∪ · · · ∪

Nk⋃
jk=1

Nk
jk ∪

Nk⋃
jk=1

Bk
jk . (3.7)

such that each B and N are open and satisfy the following:

(1) If x ∈ Bℓj, then the Reifenberg radius rRei(x) ≥ r0(n, v,D,Λ)diam(Bℓj), where rRei(x) = rRei,ϵ(n)(x)
with ϵ(n) as in Theorem 2.9.

(2) Each neck Nℓj is diffeomorphic to R × Sn−1/Γℓj where |Γℓj| ≤ C(n, v).
(3) Nℓj ∩Bℓj is diffeomorphic to R × Sn−1/Γℓj.
(4) Bℓ−1

j ∩Nℓj are either empty or diffeomorphic to R × Sn−1/Γℓj.
(5) Nℓ ≤ N(n, v,D,Λ) and k ≤ k(v,D, n,Λ).

PROOF. For any given δ > 0, we have supx∈M |V0(x) − VD(x)| ≤ Lδ for some integer L = L(n, v, δ,D).
We will construct the decomposition inductively on L. Let us now begin the construction and reduce the
upper bound Lδ to (L − 1)δ.

By Lemma 2.2, we have that for any x ∈ M there exists 1 ≥ rx ≥ r(n, v, δ) that |Vrx/100(x) − Vrx(x)| ≤ δ.
Choose a Vitali covering {Br1

i
(x1

i )}N2
i=1 of M such that

(a1) M = ∪N2
i=1Br1

i
(x1

i ) with r1
i =

rx1
i

2 .
(a2) Br1

i /5
(x1

i ) ∩ Br1
j /5

(x1
j ) = ∅ for i , j.

(a3) N2 ≤ C(n, v, δ,D)

Define the singular scale for each y ∈ B̄r1
i /50(x1

i ) by

s1
y,i = inf{s ≤ r1

i : inf
x∈Bs/4(y)

|Vs(x) − V2r1
i
(x)| ≥ δ}. (3.8)

By the choice of x1
i and r1

i we have s1
x1

i ,i
≤ r1

i /50. Let y1
i ∈ B̄r1

i /50(x1
i ) such that

s1
y1

i ,i
= inf

y∈B̄r1
i /50(x1

i )
s1

y,i ≤ r1
i /50. (3.9)

Denote s1
i = s1

y1
i ,i

. By the definition of the singular scale, we have the following.

(b1) There exists z1
i ∈ B̄s1

i /4
(y1

i ) such that |Vs1
i
(z1

i ) − V2r1
i
(z1

i )| = δ
(b2) For any x ∈ B̄r1

i /50(x1
i ), we have |Vs1

i
(x) − V2r1

i
(x)| ≥ δ.

(b3) Br1
i /25(z1

i ) ⊂ Br1
i /10(x1

i ).
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Therefore, by (a2) and (b3), we have Br1
i /25(z1

i ) ∩ Br1
j /25(z1

j) = ∅. Define B1 = M \ ∪N2
i=1B̄2r1

i /25(z1
i ) and

N̂2
i = Br1

i /4
(z1

i ) \ B̄2s1
i
(z1

i ). Hence we arrive at the following decomposition:

Mn ⊂ B1 ∪

N2⋃
j2=1

N̂2
j2 ∪

N2⋃
j2=1

B3s1
j
(z1

i ), (3.10)

such that

(11) B1∩N̂2
i = Br1

i /4
(z1

i )\ B̄2r1
i /25(z1

i ) and for any x ∈ B1, there exists z1
i such that x ∈ Br1

i
(z1

i )\ B̄2r1
i /25(z1

i )
with |Vr1

i /50(z1
i ) − V2r1

i
(z1

i )| ≤ δ and r1
i ≥ r(n, v, δ,D)diam(B1).

(21) N̂2
i ⊂ B2r1

i
(z1

i ) \ B̄s1
i
(z1

i ) satisfies |Vs1
i
(z1

i ) − V2r1
i
(z1

i )| = δ.
(31) For any supx∈B2s1

i
(z1

i ) |V0(x) − Vs1
i
(x)| ≤ (L − 1)δ.

(41) N2 ≤ C(n, v, δ,D).

Let us now decompose the ball B2s1
i
(z1

i ) using similar argument as above. For any x ∈ B2s1
i
(z1

i ), by Lemma
2.2 there exists radius s1

i /4 ≥ r2
x ≥ r(n, v, δ)s1

i such that |Vr2
x/100(x) − Vr2

x
(x)| ≤ δ. Choose a Vitali covering

{Br2
α,i

(x2
α,i)}

N′2
α,i=1 of B2s1

i
(z1

i ) such that

(a1’) B2s1
i
(z1

i ) ⊂ ∪
N′2
α=1Br2

α,i
(x2
α,i) with r2

α,i :=
r2

x2
α,i
2 and x2

α,i ∈ B2s1
i
(z1

i ).

(a2’) Br2
α,i/5

(x2
α,i) ∩ Br2

β,i/5
(x2
β,i) = ∅ for α , β.

(a3’) N′2 ≤ C(n, v, δ,D)

Define the singular scale for each y ∈ B̄r2
α,i/50(x2

α,i) by

s2
y,α,i = inf{s ≤ r2

α,i : inf
x∈Bs/4(y)

|Vs(x) − V2r2
α,i

(x)| ≥ δ}. (3.11)

Using the same argument as above, we have y2
α,i, s

2
α,i, z

2
α,i satisfying

(b1’) y2
α,i ∈ B̄r2

α,i/50(x2
α,i), z2

α,i ∈ B̄s2
α,i/4

(y2
α,i) such that |Vs2

α,i
(z2
α,i) − V2r2

α,i
(z2
α,i)| = δ

(b2’) For any x ∈ B̄r2
α,i/50(x2

α,i), we have |Vs2
α,i

(x) − V2r2
α,i

(x)| ≥ δ.

(b3’) Br2
α,i/25(z2

α,i) ⊂ Br2
α,i/10(x2

α,i).

Therefore, by (a2’) and (b3’), we have Br2
α,i/25(z2

α,i)∩Br2
β,i/25(z2

β,i) = ∅. Define B2
i = B3s1

i
(z1

i )\∪
N′2
α,i=1B̄2r2

α,i/25(z2
α,i)

and N̂3
α,i = Br2

α,i/4
(z2
α,i) \ B̄2s2

α,i
(z2
α,i). Hence we arrive at the following decomposition:

Mn ⊂ B1 ∪

N2⋃
j2=1

N̂2
j2 ∪

N2⋃
j2=1

B2
j2 ∪

N2⋃
j2=1

N′2⋃
α=1

N̂3
α, j2 ∪

N2⋃
j2=1

N′2⋃
α=1

B3s2
α, j2

(z2
α, j2). (3.12)

Rewrite it as

Mn ⊂ B1 ∪

N2⋃
j2=1

N̂2
j2 ∪

N2⋃
j2=1

B2
j2 ∪

N3⋃
j3=1

N̂3
j3 ∪

N3⋃
j3=1

B3s2
j3

(z2
j3). (3.13)

Moreover, the decomposition satisfies
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(12) Bℓj ∩ N̂ℓ+1
i = Brℓi /4

(zℓi ) \ B̄2rℓi /25(zℓi ) or empty, for any x ∈ Bℓi there exists zℓi such that x ∈ Brℓi
(zℓi ) \

B̄2rℓi /25(zℓi ) with |Vrℓi /50(zℓi ) − V2rℓi
(zℓi )| ≤ δ and r(n, v, δ,D)diam(Bℓi ) ≤ rℓi for ℓ = 1, 2.

(22) N̂ℓi ⊂ B2rℓ−1
i

(zℓ−1
i )\B̄sℓ−1

i
(zℓ−1

i ), N̂ℓi∩B
ℓ
i = B3sℓ−1

i
(zℓ−1

i )\B̄2sℓ−1
i

(zℓ−1
i ) satisfies |Vsℓ−1

i
(zℓ−1

i )−V2rℓ−1
i

(zℓ−1
i )| =

δ for ℓ = 2, 3.
(33) supx∈B2s2

j
(z2

j )
|V0(x) − Vs2

j
(x)| ≤ (L − 2)δ.

(44) N2,N3 ≤ C(n, v, δ,D).

Proceeded inductively as above k ≤ L times, we will get

Mn = B1 ∪

N2⋃
j2=1

N̂2
j2 ∪

N2⋃
j2=1

B2
j2 ∪ · · · ∪

Nk⋃
jk=1

N̂k
jk ∪

Nk⋃
jk=1

Bk
jk . (3.14)

such that

(1k) Bℓj ∩ N̂ℓ+1
i = Brℓi /4

(zℓi ) \ B̄2rℓi /25(zℓi ) or empty, for any x ∈ Bℓi there exists zℓi such that x ∈ Brℓi
(zℓi ) \

B̄2rℓi /25(zℓi ) with |Vrℓi /50(zℓi ) − V2rℓi
(zℓi )| ≤ δ and r(n, v, δ,D)diam(Bℓi ) ≤ rℓi for ℓ = 1, 2, · · · , k − 1.

(2k) N̂ℓi ⊂ B2rℓ−1
i

(zℓ−1
i )\B̄sℓ−1

i
(zℓ−1

i ), N̂ℓi∩B
ℓ
i = B3sℓ−1

i
(zℓ−1

i )\B̄2sℓ−1
i

(zℓ−1
i ) satisfies |Vsℓ−1

i
(zℓ−1

i )−V2rℓ−1
i

(zℓ−1
i )| =

δ for ℓ = 2, 3, · · · , k.
(3k) supx∈Bk

jk
|V0(x) − Vsk

jk
(x)| ≤ δ where sk

jk
≥ diam(Bk

jk
)/10.

(4k) N2,N3, · · · ,Nk ≤ C(n, v, δ,D).
(5k) k ≤ L = L(n, v, δ,D).

Now the theorem follows directly from Lemma 2.7 and Proposition 3.2 by fixing small δ = δ(n, v,Λ) and
choosing Nℓi ⊂ N̂ℓi by Proposition 3.2 such that Nℓi is diffeomorphic to R × Sn−1/Γℓi . See also Remark 3.1
for the regularity on the neck. □

3.3. Proving Theorem 1.1. Let (Mn, g) ∈M(n, v,D,Λ). By Theorem 3.3, there exists a decomposition

Mn = B1 ∪

N2⋃
j2=1

N2
j2 ∪

N2⋃
j2=1

B2
j2 ∪ · · · ∪

Nk⋃
jk=1

Nk
jk ∪

Nk⋃
jk=1

Bk
jk . (3.15)

such that each B and N are open and satisfy the following:

(1) If x ∈ Bℓj, then the Reifenberg radius rRei(x) ≥ r0(n, v,D,Λ)diam(Bℓj).
(2) Each neck Nℓj is diffeomorphic to R × Sn−1/Γℓj where Γℓj ⊂ O(n) and |Γℓj| ≤ C(n, v).
(3) Nℓj ∩Bℓj is diffeomorphic to R × Sn−1/Γℓj.
(4) Bℓ−1

j ∩Nℓj are either empty or diffeomorphic to R × Sn−1/Γℓj.
(5) Nℓ ≤ N(n, v,D,Λ) and k ≤ k(v,D, n,Λ).

By Theorem 2.9, the body region Bℓj has at most C(v, n,D,Λ)-diffeomorphism types. By |Γℓj| ≤ C(n, v)
and Γℓj ⊂ O(n), the neck region has at most C(n, v)-diffeomorphism types. By (3), (4) and |Γℓj| ≤ C(n, v),
the intersection component of neck regions and body regions has at most C(n, v)-diffeomorphism types.
From the proof of Theorem 3.3 and the construction of diffeomorphism in Proposition 3.2, we can suppose
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that the induced attaching map between intersection components is sufficiently close to being an isometry
of space form Sn−1/Γℓj in pointwise sense. This implies that the induced attaching map is isotopic to such
an isometry. On the other hand, noting that the isometry group of a compact manifold is a Lie group with
finitely many component, hence there are only finitely many isotopy classes of such attaching maps for each
neck regions. Therefore, there are at most C(v, n,D,Λ) many ways attaching all the body regions and necks.
Hence we get at most C(v, n,D,Λ)-diffeomorphism types. This finishes the proof of the theorem. □

4. Diffeomorphism for Kähler manifold

In this section, we will prove the following finitely many homeomorphism types theorem (Theorem 4.1)
for Kähler surfaces. By using Chern-Gauss-Bonnet formula or Chern-Weil theory, we can get bounded
L2 Riemann curvature. Therefore Theorem 1.1 and Theorem 4.1 imply the finite diffeomorphism types,
Theorem 1.2.

THEOREM 4.1. Let (M4, g) be compact Kähler manifold with Ric ≥ −(n−1), Vol(M) ≥ v > 0, diam(M) ≤
D and

∫
M |R|

2 ≤ Λ. Then (M4, g) has at most C(v,D,Λ) many homeomorphism types. As a consequence,
we have

∫
M |Rm|2 ≤ C(v,D,Λ).

Under the condition of Theorem 4.1, we don’t know whether every tangent cone of the limit space of such
sequence is unique and flat. Instead, we can prove that every tangent cone is a cone with smooth cross section
and all cross sections have the same topology. This is good enough for us to glue local homeomorphisms to
get a global homeomorphism on the neck region.

In the proof of Theorem 4.1, comparing with Theorem 1.1, the main difference is the cross section Lemma
3.1 and neck diffeomorphism Proposition 3.2. Let us begin analogous lemmas for the proof of Theorem 4.1.

4.1. ϵ-regularity for Kähler manifolds. The following ϵ-regularity could be found in [Ch3] and
Lemma 5.2 of Tian-Wang [TW15]. Actually, by Cheeger-Colding-Tian’s splitting theorem in [CCT02]
for Kähler manifold, if a ball is close to a splitting ball with Euclidean fact Rn−3, then the ball must be close
to ball splitting Rn−2 and n − 2 is even. Hence we have

LEMMA 4.2 ([Ch3, TW15]). Let (Mn, g, p) be a Kähler manifold with real dimension n and Vol(B1(p)) ≥
v > 0. For any ϵ > 0 if δ ≤ δ(n, v, ϵ), Ric ≥ −δ,

>
B2(p) |Ric| ≤ δ and

dGH(B2(p), B2(0n−3, yc)) ≤ δ, (0n−3, yc) is a cone vertex of metric cone Rn−3 ×C(Y), (4.1)

then

dGH(B1(p), B1(0n)) ≤ ϵ. (4.2)

As a direct consequence, we have

COROLLARY 4.3. Let (M4, g, p) be a Kähler manifold with lower Ricci curvature Ric ≥ −δ and Vol(B1(p)) ≥
v > 0. For any ϵ > 0 if δ ≤ δ(v, ϵ) and

∫
B2(p) |R|

2 ≤ δ and

dGH(B2(p), B2( p̄)) ≤ δ, with metric cone (C(X), p̄) (4.3)
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then the Reifenberg radius rRei,ϵ(X) ≥ r0(v, ϵ) > 0, where the Reifenberg radius is defined in Definition 2.4.

PROOF. For any q ∈ ∂B1(p) and any ϵ′ > 0, by Lemma 2.2, there exists r > r̄(ϵ′, v) that Br(q) is ϵ′r-
close to a metric cone. Noting that there exists a ray from the cone vertex, by the almost splitting Theorem
2.3 if δ ≤ δ(ϵ′, v) we have that Br(q) is ϵ′r-close to a metric cone which splits a factor R. On the other

hand, noting that r2
>

Br(q) |R| ≤ C(v)
(∫

Br(q) |R|
2
)1/2
≤ C(v)

(∫
B2(p) |R|

2
)1/2
≤ C(v)δ1/2. For any ϵ′′ > 0 if

ϵ′ ≤ ϵ′(v, ϵ′′) and δ ≤ δ(v, ϵ′′) we have by Lemma 4.2 that Br/2(q) is ϵ′′r-close to Br/2(04). For any η > 0, if
δ ≤ δ(v, ϵ′, ϵ′′, η), this implies for some s ≥ s(v, r̄) > 0 and any x ∈ X,

dGH(Bs(x), Bs(03)) ≤ ηs, with 03 ∈ R3. (4.4)

From [Ke15] we know that RicX ≥ 2 in the sense of RCD. Thus by [DPG18] we have for each 0 < t < s that
Bt(x) ⊂ X is η′t-close to Bt(03) if η ≤ η(v, η′). Hence we have finished the proof by choosing η′ ≤ η′(v, ϵ)
and δ ≤ δ(v, ϵ). □

In the proof of Corollary 4.3, we only need the smallness of L2-Ric on the annulus but not on the whole
ball, hence we can directly get the following

PROPOSITION 4.4 (ϵ-regularity). Let (M4, g, p) be a Kähler manifold with Vol(B1(p)) ≥ v > 0. For any
ϵ > 0, there exists δ(v, ϵ) and r0(v, ϵ) > 0 such that if Ric ≥ −δ and

(1) dGH(B2(p), B2(xc)) ≤ δ, for some metric cone (C(X), xc)
(2)
∫

B2(p)\B̄1/4(p) |R|
2 ≤ δ,

then for any x ∈ B3/2(p) \ B̄1/2(p), we have

dGH(Br0(x), Br0(04)) ≤ ϵr0, (4.5)

and the Reifenberg radius rRei,ϵ(X) ≥ r0(v, ϵ) > 0,

4.2. Diffeomorphism of Neck Region. In this subsection, we prove the homeomorphism of neck re-
gion. In order to do this, we use the modified monotone quantity (1.2):

VRr(x) := Vr(x) +
∫

Br(x)
|R|2, x ∈ M, r > 0. (4.6)

where Vr(x) = − log Vol(Br(x))
Vol−1(Br) . Note that VRr(x) is monotone with respect to r for any fixed x ∈ M and

VR0(x) = 0 and VR1(x) ≤ C(v,Λ) for any x ∈ B1(p).

LEMMA 4.5. Let (M4, g, p) be a Kähler manifold with lower Ricci curvature Ric ≥ −3 and Vol(B1(p)) ≥
v > 0. For any ϵ > 0 there exists δ(ϵ, v) such that if

|VRr/2(p) − VR2(p)| ≤ δ (4.7)

for some r ≤ 1, then for any r ≤ s ≤ 1 there exists 3-smooth manifold (Zs, ds) such that

(a) dGH(Bs(p), Bs( p̄s)) ≤ ϵs, with cone vertex p̄s ∈ C(Zs) .
(b) rRei(Zs, ds) ≥ r0(n, v) > 0.
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(c) the cross section (Zs, ds) is diffeomorphic to each other and Zs has at most C(v) many diffeomor-
phism types.

(d) there exists diffeomorphism Fs : As/100,s( p̄s) ⊂ C(Zs) → M such that Fs is an ϵs-GH map to
As/100,s(p).

PROOF. For any ϵ, if |VRr/2(p) − VR2(p)| ≤ δ < δ(ϵ, v) we have by Cheeger-Colding’s almost metric
cone Theorem 2.1 that for any r/2 ≤ s ≤ 1 the ball Bs(p) is ϵs close to a cone C(Zs):

dGH(Bs(p), Bs( p̄s)) ≤ ϵs. (4.8)

Since
∫

Ar/2,2(p) |R|
2 ≤ δ, by Proposition 4.4 we can choose Zs to be smooth and the Reifenberg radius

rRei,ϵ(Zs) ≥ r0(ϵ, v) > 0. The Reifenberg radius lower bound implies that (Zs, ds) has at most C(ϵ, v) many
diffeomorphism types by Lemma 2.5.

For the diffeomorphism between Zs and Zs′ , note that if |s − s′| ≤ ϵ2s then dGH(Zs,Zs′) ≤ 10ϵ. Ap-
plying Proposition 2.6 we have that Zs is diffeomorphic to Zs′ . Therefore, for any 3r/4 ≤ s, s′ ≤ 1, Zs is
diffeomorphic to Zs′ . For any fixed s, the last statement (d) holds directly by Proposition 2.6. □

Let us first recall a deformation lemma from Theorem 5.4 of Siebenmann [Sie] or Lemma 4.7 of Kapovitch
[Ka].

LEMMA 4.6 (Deformation). Let (Xn−1, dX) be a closed topological manifold with metric dX satisfying
diam(X) ≤ D and Reifenberg radius rRei ≥ a > 0. For any ϵ > 0, there exists δ(n,D, a, ϵ) > 0 such that the
following D(X, δ, ϵ, 0, 3/4) property holds.

D(X, δ, ϵ, 0, 3/4): Let f : X × (−1, 1) → X × R be an embedding and δ-close to the inclusion X × (−1, 1) ⊂
X × R, then there exists deformation f̃ : X × (−1, 1)→ X × R such that

(1) f̃ is an embedding and ϵ-close to the inclusion.
(2) f̃ = Id in a neighborhood of X × {0}.
(3) f̃ = f in X × (−1,−3/4) and X × (3/4, 1).

PROOF. By Lemma 4.7 of [Ka] or Theorem 5.4 of Siebenmann [Sie], D(X, δX , ϵ, 0, 3/4) always holds
for X with some δX > 0. It suffices to show that δX only depends on n,D, a, ϵ. To see this, we will argue by
contradiction and use Gromov’s precompactness theorem. Assume there exists ϵ0 > 0 and (Xi, di) satisfies
diam(Xi) ≤ D, rRei(Xi) ≥ a > 0 such that D(Xi, i−1, ϵ0, 0, 3/4) fails. By Gromov’s precompactness theorem,
up to a subsequence, (Xi, di) → (X∞, d∞) which still satisfies diam(X∞) ≤ D, rRei(X∞) ≥ a > 0. For i
sufficiently large, by Proposition 2.6 there exists homeomorphism Φi : Xi → X∞ which is also an ηi-GH
map with ηi → 0. In X∞ by Lemma 4.7 of [Ka] there exists δ̄(X∞) such that D(X∞, δ̄, ϵ0/2, 0, 1/2) holds.
Let us show that D(Xi, δ̄/10, ϵ0, 0, 3/4) holds for i sufficiently large. Actually, let fi : Xi × (−1, 1) →
Xi × R be an embedding δ̄/10-close to the inclusion Xi × (−1, 1) ⊂ Xi × R. Thus for i large enough,
gi = (Φi, t) ◦ fi ◦ (Φ−1

i , t) : X∞ × (−1, 1) → X∞ × R is an embedding δ̄/2 close to the inclusion. Therefore,
there exists g̃i : X∞ × (−1, 1)→ X∞ × R such that

(1) g̃i is an embedding and ϵ0/2-close to the inclusion.
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(2) g̃i = Id in a neighborhood of X∞ × {0}.
(3) g̃i = gi in X∞ × (−1,−1/2) and X∞ × (1/2, 1).

The map f̃i = (Φ−1
i , t) ◦ g̃i ◦ (Φi, t) : Xi × (−1, 1) → Xi × R satisfies the properties of deformation. Thus the

property D(Xi, δ̄/10, ϵ0, 0, 3/4) holds which is a contradiction. Therefore, we have finished the proof. □

Based on the above deformation lemma, we can glue diffeomorphism of (d) in Lemma 4.5 of different
scales to get homeomorphism on the whole neck.

PROPOSITION 4.7. Let (M4, g, p) be a Kähler manifold with lower Ricci curvature Ric ≥ −3 and
Vol(B1(p)) ≥ v > 0. Then for any ϵ > 0 there exists δ = δ(v, ϵ) such that for any r ≤ 1/20 if

|VRr/2(p) − VR2(p)| ≤ δ (4.9)

then there exists a smooth manifold X which has at most C(v) many homeomoprhism types and a Riemannian
metric gr on X × (r, 1/2) such that

(a) there exists homeomorphism F : X × (r/10, 1)→ N where Ar/10,1/2(p) ⊂ N ⊂ Ar/20,6/10(p).
(b) F : (X × (s/10, s), gr)→ M is ϵs-GH map for each r ≤ s ≤ 1/2.

PROOF. The proposition follows by a standard gluing argument based on the deformation Lemma 4.6
and local diffeomorphism Lemma 4.5. By Lemma 4.5, for any δ′ > 0, if δ ≤ δ(n, δ′, v) for any r/2 ≤ s ≤ 2/3,
there exists diffeomorphism Fs : ((X × (s/100, s), gs) → M which is an δ′s-GH map to As/100,s(p) ⊂ M.
Let si = 10−i2/3 and Fi = Fsi . We will glue Fi to produce F by using Lemma 4.6. It suffices to build
a homeomorphism F̂i satisfying the following for each i such that r/2 ≤ si ≤ 2/3. We will build F̂i :
X × (si+1/100, s0)→ M inductively such that for any ϵ > 0 if δ ≤ δ(n, v, ϵ) we have

i.1 There exists metric ĝi on X × (si/100, s0) such that ĝi = gi on X × (si/100, si/10).
i.2 The map F̂i : (X × (s j/100, s j), ĝi)→ M is an ϵs j-GH map to As j/100,s j(p) for each j ≤ i.
i.3 F̂i = Fi on X × (si/100, si/10) up to a diffeomorphism on X which does not change the GH-

closeness.

Define F̂0 = F0. Assume F̂i has been built and let us construct F̂i+1. It suffices to define a metric
ĝi+1 and glue Fi+1 to F̂i such that ĝi+1 = ĝi on (si/10, s0). Actually, it suffices to glue Fi and Fi+1

on X × (si/100, si/10). By Lemma 4.5, we have diffeomorphism Ψsi,si+1 :
(
X × (si/80, si/20), gsi+1

)
→(

X × (si/80, si/20), gsi

)
. Since Fi, Fi+1 are δ′si-GH maps, the map Hi := F−1

i+1 ◦ Fi ◦ Ψsi,si+1 :
(
X ×

(si/80, si/20), gsi+1

)
→
(
X ×R, gsi+1

)
is well defined and C(n)δ′si close to the inclusion (X × (si/80, si/20) ⊂

X × R.

By Lemma 4.6, for any δ′′ if δ′ ≤ δ′(n, v, δ′′) there exists embedding H̃i : (X × (si/80, si/20) → X × R
such that

(1) H̃i is an embedding and δ′′si+1-close to the inclusion.
(2) H̃i = Id in a neighborhood of X × {si/50}.
(3) H̃i = Hi in X × (si/80, si/70) and X × (si/40, si/20).



16 WENSHUAI JIANG AND GUOFANG WEI

Let Ĥi = H̃i in X × (si/50, si/20) and Ĥi = Id in X × (si+1/100, si/50).

Let us now define the gluing map F̂i+1 : X × (si+1/100, s0)→ M by

F̂i+1 :=

 F̂i(z), z ∈ X × (si/80, s0)
Fi+1 ◦ Ĥi(z) ◦ Ψ−1

si,si+1
, z ∈ X × (si+1/100, si/70)

Consider the gluing metric ĝi+1 = φĝi+(1−φ)(Ψ−1
si,si+1

)∗gi+1 on X×(si+1/100, s0) where φ is a smooth cut-off
function such that φ ≡ 1 on X × (si/80, s0) and φ ≡ 0 on X × (si+1/100, si/70). It is easily check that the
map F̂i+1 and ĝi+1 satisfy (i + 1).1 − (i + 1).3 if δ′′ ≤ δ′′(ϵ). Thus we finish the proof. □

Proof of Theorem 4.1 The argument is similar with the proof of Theorem 1.1 by using the above lemmas.
Using the same argument as Theorem 3.3, we can deduce a decomposition theorem in the Kähler case. The
remaining argument is similar with the proof of Theorem 1.1. □
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