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Abstract

By Gromov’s precompactness theorem, any sequence of n-dimensional
manifolds with uniform Ricci curvature lower bound has a convergent
subsequence. The limit spaces are referred to as Ricci limit spaces.
Cheeger–Colding–Naber developed great regularity and geometric prop-
erties for Ricci limit spaces. However, unlike Alexandrov spaces, these
spaces could locally have infinite topological type. Sormani and Wei
[44, 46] gave the first topological result by showing that the universal
cover of any Ricci limit space exists. Here, the universal cover is in the
sense of the universal covering map (which does not need to be simply
connected). This is extended to RCD spaces by Mondino–Wei [35]. Re-
cently Pan–Wei [38] showed that the non-collapsing Ricci limit spaces
are semi-locally simply connected and therefore the universal covers are
simply connected. We give a survey of these results and pose some ques-
tions.

16.1 Introduction

In 1981 Gromov proved a precompactness result (see Theorem 16.2.3)
for Gromov–Hausdorff topology, which revolutionized the field of Rie-
mannian geometry. The Gromov–Hausdorff distance between two metric
spaces, roughly speaking, is a coarse measure of their alikeness (see Def-
inition 16.2.2). It provides a platform to study the set of all manifolds
with curvature bounds and other geometric conditions (for example,
diameter, volume) as a whole. For a Gromov–Hausdorff convergent se-
quence Mi

GH−→ X, understanding the structure of the limit space X and



Universal Covers of Ricci Limit and RCD Spaces 353

the links between the geometrical and topological structures of X and
Mi are crucial. When the sequence satisfies a lower sectional curvature
bound, the limit spaces are the so called Alexandrov spaces [7]. Alexan-
drov spaces are locally contractible. On the other hand, the Ricci limit
space may have infinite second homology even in the non-collapsing case,
see [33]. Around 2000, Cheeger and Colding developed a rich theory on
Ricci limit spaces [10, 11, 12, 13]. In recent years, Cheeger, Colding, and
Naber further deepened this theory [18, 14, 15]. These results offer pow-
erful tools in understanding Ricci curvature. On the other hand, very
little is known about the topology of the Ricci limit spaces. Since Ricci
curvature has control on the fundamental groups, it is natural to ask the
following question:

Question 16.1.1 Is any Ricci limit space always semi-locally simply
connected?

As a first step, Sormani and Wei proved the following.

Theorem 16.1.2 ([44, 46]) If X is the Gromov–Hausdorff limit of a
sequence of complete Riemannian manifolds Mn

i with Ricci curvature
≥ K, then X has a universal cover.

In [20, 21] descriptions of the universal cover in terms of the universal
covers of the sequence are also given for Ricci limit spaces. Recently
Theorem 16.1.2 has been generalized to RCD spaces.

Theorem 16.1.3 ([35]) Any RCD∗(K,N) space (X, d,m) admits a
universal cover (X̃, d̃, m̃), which is itself RCD∗(K,N), where K ∈ R,
N ∈ (1,+∞).

Note that the universal cover is not assumed to be simply connected,
see Definition 16.3.2. Very recently, the authors were able to answer
Question 16.1.1 positively in the non-collapsing case.

Theorem 16.1.4 ([38]) Any non-collapsing Ricci limit space is semi-
locally simply connected. Therefore the universal cover, is simply con-
nected.

With the existence of the universal cover, many results about the fun-
damental groups of manifolds with Ricci curvature bounded from below
can be extended to the deck transformation groups on the universal of
the Ricci limit and RCD spaces, see [44, 46, 35]. For the non-collapsing
Ricci limit spaces, the results are extended to the fundamental group
(see [38]).
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In this chapter we present the ideas of these developments. In Section
16.2, we review some basic properties of Ricci limit and RCD spaces. In
Section 16.3, we introduce the tools and sketch the ideas used in proving
Theorems 16.1.2 and 16.1.3. In Section 16.4, we sketch the idea of the
proof for Theorem 16.1.4.
Question 16.1.1 remains open for general Ricci limit spaces. One can

also ask the same question for RCD(K,N) spaces. Some more questions
are presented in Sections 16.3 and 16.4.

Acknowledgements J.-Y.P. was supported by an AMS-Simon travel
grant and G.-F.W. was supported by NSF Grant DMS 1811558.

16.2 Some Properties of Ricci Limit and RCD
Spaces

In this section we review some basic properties for Ricci limit spaces
developed by Cheeger–Colding [10, 11, 12, 13], many of which have been
extended to RCD spaces by various authors.
First we recall Hausdorff and Gromov–Hausdorff distance, see [40,

Chap. 11] for further details.

Definition 16.2.1 Let X and Y be two compact subsets in a metric
space Z. We define the Hausdorff distance between X and Y as

dH(X,Y ) = inf{ε > 0|X ⊂ Bε(Y ), Y ⊂ Bε(X)},

where Bε(X) is the ε-neighborhood of X in Z.

Definition 16.2.2 Let X and Y be two compact metric spaces. We
define

dGH(X,Y ) = infZ,f,g{dH(f(X), g(Y )) | f : X → Z and g : Y → Z
are isometric embeddings},

where the infimum is taken over all metric spaces Z and all isometric
embeddings f , g.

So, dGH defines a distance function on the set of all isometric classes
of compact metric spaces. We say that a sequence of compact metric
spaces Xi converges in the Gromov–Hausdorff topology to a limit space
X, denoted as Xi

GH−→ X, if dGH(Xi, X) → 0. For noncompact spaces,
we say that a sequence of pointed metric spaces (Xi, xi) converges to
(X,x) in the pointed Gromov–Hausdorff sense if B(xi, R)

GH−→ B(x,R)
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for all R > 0, where B(x,R) is the closed ball centered at x with radius
R with the restricted metric.
The starting point for this subject is Gromov’s precompactness theo-

rem (see [28]).

Theorem 16.2.3 Let {(Mi, xi)}i be a sequence of complete Rieman-
nian n-manifolds of

RicMi ≥ −(n− 1),

then {(Mi, xi)}i has a convergent subsequence with respect to the pointed
Gromov–Hausdorff distance.

The Gromov–Hausdorff limits, referred as Ricci limit spaces, are length
spaces. Recall that a length space is a metric space such that the dis-
tance between each pair of points equals the infimum of the length of
the curves joining the points.
The Ricci limit space has the same Ricci lower bound as in the se-

quence in a weak sense. In fact they are RCD(−(n − 1), n)-spaces (see
below for the definition). Note that the sequence may collapse and
that dvolMi

goes to zero. Considering the renormalized measure μi =
dvolMi

volB1(xi)
, this converges uniformly to a limit measure μ∞, called the

renormalized limit measure. See [10].
RCD∗(K,N)-spaces are the Ricci curvature analog of the celebrated

Alexandrov spaces – the generalization of manifolds with Ricci curvature
bounded from below by K and dimension bounded above by N to the
(Riemannian) metric measure space. In order to define the notion of
RCD∗(K,N)-space we first recall the curvature dimension condition, the
CD(K,N) condition, introduced in [49, 50, 31] using tools of optimal
transport.

Definition 16.2.4 Ametric measure space (X, d, μ) satisfies the (Ricci)
curvature dimension condition CD(K,N)(K,N ∈ R, N ≥ 1) if the Renyi
entropy HN is K-convex on the space of probability measures.

Here the Renyi entropy, HN,μ : P2(X,μ) = {ν|ν = ρμ} → R, is

HN,μ = −
∫
X

ρ1−1/Ndμ.

When K = 0, “K-convex” means the usual convex function.
There is also the notion of the CD∗(K,N) condition introduced in [4].

The CD∗(K,N) condition is a priori weaker than the CD(K,N) condi-
tion, and the two coincide for K = 0. The CD∗(K,N) condition is also
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equivalent to CDloc(K,N), and (non-branching) CD∗(K,N) satisfies the
local-to-global property. Recently, Cavalletti–Milman have shown the
equivalence of the CD and CD∗ conditions when the space is essentially
non-branching and has finite measure [8, Cor. 13.6].
A natural version of the Bishop–Gromov volume growth estimate

holds on CD∗(K,N)-spaces (see [4, Thm. 6.2] and [9]). Here we only
state a weaker version, which is enough for most applications:

Theorem 16.2.5 Let K ∈ R, N ≥ 1, be fixed. Then there exists
a function ΛK,N (·, ·) : R>0 × R>0 → R>0 such that if (X, d,m) is a
CD∗(K,N)-space, for some K ∈ R, N ≥ 1, the following holds:

m(Br(x))

m(BR(x))
≥ ΛK,N (r,R), ∀0 < r ≤ R < ∞. (16.1)

For K = 0 the following more explicit bound holds:

m(Br(x))

m(BR(x))
≥
( r
R

)N
, ∀0 < r ≤ R < ∞. (16.2)

Key features of both the CD and CD∗ conditions are the compatibility
with the smooth Riemannian case and the stability under measured
Gromov–Hausdorff convergence of metric measure space. In particular,
these classes include Ricci limit spaces. On the other hand, they also
include Finsler manifolds. In order to rule out Finsler structures while
retaining the crucial stability properties of Lott–Sturm–Villani spaces,
the following stricter condition is introduced in [24].

Definition 16.2.6 For a metric measure space (X, d,m) one says that
the RCD(K,N) condition (RCD∗(K,N) condition) holds if it satisfies
the CD(K,N) condition (CD∗(K,N) condition) and the Sobolev space
W 1,2(X,m) is a Hilbert space.

The RCD∗(K,N) condition is also stable under convergence (see also
[2], [26], and [22] for other important properties); therefore the class of
RCD∗(K,N)-spaces includes Ricci limit spaces (whether they are col-
lapsed or not). Moreover, the class of RCD∗(K,N)-spaces contains
weighted manifolds satisfying Bakry–Émery lower curvature bounds as
well as their non-smooth limits, cones, warped products, and Alexandrov
spaces.
As RCD∗(K,N)-spaces are essentially non-branching (see [41, Cor.

1.2], in particular under the assumption of finite measure, RCD(K,N) is
equivalent to RCD∗(K,N). It is expected that RCD(K,N) is equivalent



Universal Covers of Ricci Limit and RCD Spaces 357

to RCD∗(K,N) without any further assumptions. As a result we some-
times abuse notation and do not distinguish between writing RCD and
RCD∗.
The subject has been developed tremendously in the last few years.

The Bochner inequality holds in a weak sense for RCD(K,N). As a
result, many geometric and analytical results for manifolds with Ricci
curvature bounded below, and Cheeger–Colding theory for Ricci limit
spaces, have been generalized to RCD∗(K,N)-spaces. Here we state a
few fundamental properties of RCD∗(K,N)-spaces.
A fundamental property of RCD∗(0, N)-spaces is the extension of the

celebrated Cheeger–Gromoll splitting theorem proved in [23]. For Ricci
limit spaces, the splitting theorem was established in [10].

Theorem 16.2.7 (Splitting) Let (X, d,m) be an RCD∗(0, N)-space
with 1 ≤ N < ∞. Suppose that X contains a line. Then (X, d,m) is iso-
morphic to (X ′×R, d′×dE ,m

′×L1), where dE is the Euclidean distance,
L1 is the Lebesgue measure, and (X ′, d′,m′) is an RCD∗(0, N − 1)-space
if N ≥ 2 and a singleton if N < 2.

Definition 16.2.8 x ∈ X is called a k-regular point if there exists
an integer k = k(x) ∈ [1, N ] ∩ N such that, for any sequence ri → ∞,
the rescaled pointed metric spaces (X, rid, x) converge in the pointed
Gromov–Hausdorff sense to the pointed Euclidean space (Rk, dE , 0).
Otherwise x is called a singular point. We denote Rk as the set of k-
regular points in X, and R = ∪kRk as the set of all regular points.

Note that the singular set could be dense in X.

Theorem 16.2.9 (Infinitesimal regularity of RCD∗(K,N)-spaces, [34])
Let (X, d,m) be an RCD∗(K,N)-space for some K ∈ R, N ∈ (1,∞).
Then m-almost everywhere x ∈ X is a regular point. In fact (X,μ) is
μ-rectifiable; namely, up to measure zero, it is the union of sets which
are bi-Lipschitz equivalent to subsets of Euclidean spaces.

Some further regularity properties that follow include the existence of
a unique integer k such that m(R\Rk) = 0, which gives m(X \Rk) = 0;
see [18] for Ricci limit spaces, [6] for RCD spaces. The isometry group
of X is a Lie group. For Riemannian manifolds this goes back to [36];
for Ricci limit spaces, see [12, 18], and see [47] for RCD spaces.
A natural version of the Abresch–Gromoll inequality [1] holds on

RCD∗(K,N)-spaces (see [25]), which plays an important role in proving
Theorems 16.1.2 and 16.1.3. This Abresch–Gromoll estimate has been
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recently improved by Mondino–Naber [34]. We will use the following
simpler version, which is a particular case of [34, Cor. 3.8].

Theorem 16.2.10 (Abresch–Gromoll inequality) Given K ∈ R and
N ∈ (1,+∞) there exist α(N) ∈ (0, 1) and C(K,N) > 0 with the follow-
ing properties. Given (X, d,m) an RCD∗(K,N)-space, fix p, q ∈ X with
dp,q := d(p, q) ≤ 1 and let γ be a constant speed minimizing geodesic
from p to q. Then

ep,q(x) ≤ C(K,N)r1+α(N)dp,q, ∀x ∈ Br dp,q (γ(1/2)), (16.3)

where ep,q(x) := d(p, x)+d(x, q)−d(p, q) is the so called excess function
associated to p, q.

For non-collapsing Ricci limit spaces, we need the following volume
convergence result to prove Theorem 16.1.4.

Theorem 16.2.11 [17, 11] Let (Mi, pi) be a sequence of complete n-
manifolds converging to (X, p) in the pointed Gromov–Hausdorff topol-
ogy. Suppose that

Ric ≥ −(n− 1), vol(B1(pi)) ≥ v > 0.

Then, for a sequence qi ∈ Mi converging to q ∈ X and any r > 0, we
have

vol(Br(qi)) → Hn(Br(q)),

where Hn is the n-dimensional Hausdorff measure of X.

A non-collapsing Ricci limit space (X, d, μ) has more regularity. For
example, μ is a multiple of Hn, the n-dim Hausdorff measure; the set
of singular points has dimS ≤ n − 2; every tangent cone of X is a
metric cone C(Y ), Y is a length space with diam (Y ) ≤ π, see [10, 11].
Non-collapsing RCD spaces are introduced in [19], and these results are
mostly extended.

Definition 16.2.12 (Non-collapsed RCD spaces) For K ∈ R and N ∈
(1,+∞), (X, d,m) is called a non-collapsed RCD(K,N)-space if it is an
RCD(K,N)-space and m = HN .

See [14, 16] for more structures on the singular set of non-collapsing
Ricci limit spaces, and [15, 30] for the wonderful structure when the
sequence is non-collapsing and has a two-sided Ricci curvature bound.



Universal Covers of Ricci Limit and RCD Spaces 359

16.3 Universal and δ-Covers

In this section we first recall the definitions for various covering spaces
and then indicate the proof of the existence of the universal covers for
RCD spaces, namely Theorem 16.1.3.

Definition 16.3.1 We say that X̄ is a covering space of X if there is
a continuous map π : X̄ → X such that for all x ∈ X there is an open
neighborhood U such that π−1(U) is a disjoint union of open subsets of
X̄, each of which is mapped homeomorphically onto U by π (we say U

is evenly covered by π).

When (X, d) is a locally compact length space, there is a unique length
metric on any covering space X̄ such that the covering map π : X̄ → X

is distance nonincreasing and a local isometry. This is done by lifting the
length structure on X to X̄. See [42] for the study of the geometry and
topology of length spaces. When X has a measure, we can also equip
the covering space with a measure so that the covering map is locally
measure preserving.
The universal cover is often defined as the simply connected cover.

Here we do not assume it is simply connected, rather that the cover is
universal in the sense of being the cover of all covers.

Definition 16.3.2 ([48, p. 82]) We say that X̃ is a universal cover of
a path connected space X if X̃ is a cover of X such that, for any other
cover X̄ of X, there is a commutative triangle formed by a covering map
f : X̃ → X̄ and the two covering projections:

X̃
f−→ X̄

↘ ↙
X

The universal cover may not exist, as can be seen by the Hawaiian ear-
ring (Figure 16.1). However, if it exists, then it is unique. Furthermore,
if a space is locally path connected and semi-locally simply connected,
then it has a universal cover and that cover is simply connected. On
the other hand, the universal covering space of a locally path connected
space may not be simply connected, as shown by the Griffiths twin cone
(Figure 16.2) [27].1

1 Figures reprinted with permission from J. Brazas’ blog “Wild Topology”
https://wildtopology.wordpress.com/2014/06/28/the-griffiths-twin-cone.

https://wildtopology.wordpress.com/2014/06/28/the-griffiths-twin-cone
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Figure 16.1 Hawaiian earring.

Figure 16.2 Griffiths twin cone.

Given x ∈ X, we denote the fundamental group of X based at x by
π1(X,x). Recall that a locally path connected topological space X is
said to be semi-locally simply connected (or semi-locally one connected)
if for all x ∈ X there is a neighborhood Ux of x such that any curve in Ux

is contractible in X, i.e. π1(Ux, x) → π1(X,x) is trivial (see [48, p. 78],
[32, p. 142]). This is weaker than saying that Ux is simply connected.
Let U be any open covering of X. For any x ∈ X, by [48, p. 81], there

is a covering space X̃U of X with covering group π1(X,U , p), where
π1(X,U , x) is a normal subgroup of π1(X, p) generated by homotopy
classes of closed paths having a representative of the form α−1 ◦ β ◦ α,
where β is a closed path lying in some element of U and α is a path from
x to β(0).
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Now we recall the notion of δ-covers introduced in [44], which plays
an important role in studying the existence of the universal cover.

Definition 16.3.3 Given δ > 0, the δ-cover, denoted X̃δ, of a length
space X is defined to be X̃Uδ

, where Uδ is the open covering of X con-
sisting of all balls of radius δ.

Intuitively, a δ-cover is the result of unwrapping all but the loops
generated by small loops in X. Clearly X̃δ1 covers X̃δ2 when δ1 ≤ δ2.
Note that the δ-cover is a regular or Galois cover. That is, the lift

of any closed loop in X is either always closed or always open in the
δ-cover.

Example 16.3.4 Let T 2 = S1
1 × S1

1/2, the product of circles with radius
1 and 1

2 . Then the δ-cover of T 2 is the cylinder when π ≤ δ < 2π and is
R2 when δ < π.

The basic properties of the δ-cover are well studied in the series of
joint works of Sormani and Wei [44, 46, 45]. First we focus on the com-
pact length spaces. The following theorem [44, Thm. 3.7] gives a way of
proving the existence of the universal cover without showing that the
space is semi-locally simply connected. We need only to show that the
δ-covers eventually stabilize for sufficiently small δ.

Theorem 16.3.5 For a compact metric space X, if there exists δ0 > 0

sufficiently small such that the covering map from X̃δ maps isometrically
to X̃δ0 for all 0 < δ ≤ δ0, then X̃δ0 is the universal cover of X.

Unlike universal covers, δ-covers behave very well under the Gromov–
Hausdorff convergence. The following are proved in [44, Thm. 3.6] and
[45, Prop. 7.3].

• If a sequence of compact length spaces Xi converge to a compact
length space X in the Gromov–Hausdorff topology, then for any δ > 0

there is a subsequence of Xi such that their δ-covers also converge in
the pointed Gromov–Hausdorff topology.

• If compact length spaces Xi converge in the Gromov–Hausdorff topol-
ogy to a compact space X, and the δ-covering of Xi, (X̃δ

i , p̃i), con-
verges in the pointed Gromov–Hausdorff topology to (Xδ, p̃∞), then
(Xδ, p̃∞) is a covering space of X, which is almost the δ-cover of X.
Namely, for all δ1 > δ we have the covering mapping

X̃δ → Xδ → X̃δ1 → X.

(Both results are not true in general for universal covers.)
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Remark 16.3.6 Xδ may not be the δ-cover: take a sequence of flat
tori of side lengths 1 by (n − 1)/(2n). Let δ = 1/2. Then, δ-covers of
these tori are cylinders since all loops of length < δ are not unraveled.
However, they converge to a torus of side lengths 1 by 1/2, whose δ-cover
is Euclidean space.

Now we sketch the proof of Theorem 16.1.3 in the compact case. The
proof is divided into two steps. The first step is to prove the stability of
δ-covers for small balls at good points.

Theorem 16.3.7 If X is an RCD∗(K,N)-space and x ∈ X is a regular
point, then there exists rx > 0 such that B(x, rx) lifts isometrically to
X̃δ for all δ > 0.

Intuitively, if this is not true, there are shorter and shorter closed based
geodesic loops in X shrinking towards x, so we can find corresponding
closed curves in the tangent cone Rk which are “almost closed based
geodesic loops.” However, since Rk has no closed based geodesic loops,
we get a contradiction. In order to make a rigorous proof, quantitative
estimates are needed. Assuming the statement of Theorem 16.3.7 is false,
then the orbit of x̃ is getting closer and closer to x̃ as δ → 0, where x̃

in the δ-cover projects to x ∈ X. On each δ-cover, the segment between
x̃ and the closed orbit point projects to a geodesic loop based at x. The
midpoint m of this geodesic loop is a cut point of x. In particular, for
y ∈ X with d(x, y) > D, where D = d(x,m), we have

D + d(y,m) > d(x, y).

Using the Abresch–Gromoll inequality Theorem 16.2.10 on δ-covers, one
can establish a quantitative version of this inequality: for all D ≤ 1

2 , y
with d(x, y) ≥ D + SnD, we have

D + d(y,m)− SnD ≥ d(x, y),

where Sn > 0 is a small constant. This estimate is called the uniform
cut lemma [43]. Recall that there is a sequence of these geodesic loops
based at x, thus we can pass the distance estimate to the tangent cone
at x, which is Rk. However, the uniform distance gap fails on Rk, and
this leads to a contradiction.
Theorem 16.2.9 states that the regular points have full measure. We

need only one regular point. Then the second step is to use Theorem
16.3.7 at one regular point combined with Bishop–Gromov’s relative vol-
ume comparison theorem on X̃δ and a packing argument to show that
the X̃δ stabilizes everywhere.
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WhenX is not compact, Theorem 16.3.5 is not true. A simple example
is a cylinder with one side pinched to a cusp. For the noncompact case, a
natural way is to consider bigger and bigger balls. In fact when (X, d) is
semi-locally simply connected, the universal cover of X can be obtained
as the Gromov–Hausdorff limit of the universal cover of larger and larger
balls, see [21, Prop. 1.2]. Since we do not have this extra hypothesis, a
different argument is required. Also, the universal cover of a ball may
not exist, even if the universal cover of the whole space exists, and one
would prefer to avoid the boundaries of balls. For this purpose, Wei and
Sormani introduced the relative δ-covers in [46].
We use the following convention: open balls are denoted BR(x) and

closed balls are denoted B(x,R), all with intrinsic metric.

Definition 16.3.8 (Relative δ-cover) Suppose X is a length space,
x ∈ X and 0 < r < R. Let

πδ : B̃R(x)
δ → BR(x)

be the δ-cover of the open ball BR(x). A connected component of

(πδ)−1(B(x, r)),

where B(x, r) is a closed ball, is called a relative δ-cover of B(x, r) and
is denoted B̃(x, r, R)δ.

Instead of Theorem 16.3.5, which was the key to proving the existence
of the universal cover for a compact length space, for noncompact spaces
the key role will be played by the following result [46, Thm. 2.5].

Theorem 16.3.9 Let (X, d) be a length space and assume that there
is x ∈ X with the following property: for all r > 0, there exists R ≥ r,
such that B̃(x, r, R)δ stabilizes for all δ sufficiently small. Then (X, d)

admits a universal cover X̃.

The two steps in the proof of stabilizing the δ-cover for the compact
case can be adapted to prove the stabilization of the relative δ-cover for
the noncompact case. One subtle thing to note is that relative δ-covers
are no longer RCD spaces, but volume comparison still holds on balls of
controlled size. See [35] for details.
With the existence of the universal cover, results concerning the fun-

damental group of manifolds with Ricci curvature bounded from below
can now be extended to the revised fundamental group for RCD spaces.
Here the revised fundamental group is the group of deck transformations
of the universal cover.
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Note that the Abresch–Gromoll inequality (Theorem 16.2.10) plays
an important role in the proof of the existence of universal cover here.
The Abresch–Gromoll inequality does not hold for CD(K,N)-spaces.
Therefore it is natural to ask the following question:

Question 16.3.10 Does the universal cover of a CD(K,N)-space always
exist?

16.4 Non-Collapsing Ricci Limit Spaces

We outline a very recent work by the authors in this section, proving
that non-collapsing Ricci limit spaces are semi-locally simply connected
(Theorem 16.1.4). We point out that the techniques needed to prove
Theorem 16.1.4 are independent of the material in Section 16.3.
Note that, by the regularity theory of non-collapsing Ricci limit spaces,

local semi-simple connectedness holds at almost all points. In fact, any
regular point has almost maximal local volume and the regular points
form a subset of full measure in X; by the proof in [39], for a regular
point x ∈ X there exists r > 0 such that Br(x) is contractible in B2r(x).
In particular, loops in Br(x) are contractible in B2r(x). However, this
is far from the goal that X is semi-locally simply connected, since it is
possible for a loop to go through or even be contained entirely in the
singular set.
To attack the problem we quantify the points and make the following

definition:

Definition 16.4.1 Let X be a metric space and let x ∈ X. We define
the 1-contractibility radius at x as

ρ(t, x) = inf{∞, ρ ≥ t| any loop in Bt(x) is contractible in Bρ(x)}.

Note that X is semi-locally simply connected if for any x ∈ X there
is T > 0 such that ρ(T, x) < ∞; X is locally simply connected if for any
x ∈ X there is ti → 0 such that ρ(ti, x) = ti. For a Riemannian manifold
M and x ∈ M , ρ(t, x) = t for t smaller than the injective radius at x.
We state the local version of Theorem 16.1.4 with an estimate on the

1-contractibility radius.

Theorem 16.4.2 Let (Mi, pi) be a sequence of Riemannian n-mani-
folds (not necessarily complete) converging to (X, p) such that, for all i,

(1) B2(pi) ∩ ∂Mi = ∅ and the closure of B2(pi) is compact;
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(2) Ric ≥ −(n− 1) on B2(pi), vol(B1(pi)) ≥ v > 0.

Then lim
t→0

ρ(t, x)/t = 1 holds for any x ∈ B1(p).

The key step in proving Theorem 16.4.2 is showing that lim ρ(t, x) = 0,
which is sometimes called essentially locally simply connected. After ob-
taining this, we can further improve the result to lim ρ(t, x)/t = 1 by
using the structure of tangent cones and Sormani’s uniform cut tech-
niques.
We classify the points in X according to the local 1-contractibility

radius on manifolds:

Definition 16.4.3 For x ∈ X, let xi in Mi converge to x. We say

• x is of type I if there exists r > 0 such that the family of functions
{ρ(q, t)|q ∈ Br(xi), i ∈ N} is equi-continuous at t = 0;

• x is of type II if {ρ(xi, t)}i∈N is not equi-continuous at t = 0;
• x is of type III if it is neither of type I nor type II.

Definition 16.4.3 is well defined: the type of x does not depend on the
choice of xi. Type I requires control at every point around xi, not just at
xi. Type II points may exist due to a positive Ricci curvature example
by Otsu [37, p. 262, Rem. 2] (see also the Eguchi–Hanson metric on the
tangent bundle of RP 2 for a Ricci flat example). By definition, x being
of type III implies that {ρ(xi, t)}i is equi-continuous at t = 0.
For a family of functions {ρα(t)}α∈A with ρα(0) = 0, the family is

equi-continuous at t = 0 if and only if there is a continuous function λ(t)

defined on [0, T ] with λ(0) = 0 such that ρα(t) ≤ λ(t) for all t ∈ [0, T ]

and all α ∈ A. For type I points, we can pass the local 1-contractibility
control on local balls around xi to that around x in the limit space:

Theorem 16.4.4 Let (Xi, xi) be a sequence of length spaces converging
to (X,x) satisfying the following conditions:

(1) the closure of B1(xi) is compact;
(2) there exists a continuous function λ on [0, T ) with λ(0) = 0 such

that, for all i and all q ∈ B2(xi), ρ(t, q) ≤ λ(t) < 1/2 holds on
[0, T ).

Then ρ(t, q) ≤ λ(t) for all t ∈ [0, T ) and all q ∈ B1/2(x). In particular,
limt→0 ρ(t, q) = 0.

Note that Theorem 16.4.4 does not require any curvature conditions
(Xi may not even be manifolds). We briefly explain two different proofs
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of Theorem 16.4.4. For a loop c in the limit space, we can find a sequence
of loops ci in Mi that converges uniformly to c. For c in a sufficiently
small ball, we can contract ci for all sufficiently large i. The first proof
is related to the method given in [5]: we transfer the null homotopy of ci
along the sequence and pass it to the limit space by uniform convergence;
in this method, we need to control the distance between null homotopies
to assure uniform convergence. The second proof constructs the null
homotopy gradually in the limit space through a sequence of refining
skeletons (see Figure 16.3). By controlling the extensions on the new
skeletons at each step, these maps on the skeletons converge uniformly
to a continuous map defined on the disk.

Figure 16.3 Constructing a null homotopy by refining 1-skeletons.

For a type II point x, there are ε > 0 and ti → 0 such that ρ(ti, xi) ≥ ε.
Let Ui be a small ball centered at yi (πi(yi) = xi) in the universal
covering space of Bε(xi). The local fundamental group Γi has a subgroup
generated by these non-contractible short loops Hi. By a result of [3],
each Hi is a finite group whose order is controlled by some constant
C(n, v). We consider the equivariant Gromov–Hausdorff convergence:

(Ui, yi,Γi, Hi)
GH−−−−−→ (Y, y,G,H)⏐⏐'πi

⏐⏐'π

(Bε(xi), xi)
GH−−−−−→ (Bε(x) = Y/G, x),

Figure 16.4 Equivariant Gromov–Hausdorff convergence.
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Roughly speaking, the covering group Hi increases the volume around
yi when compared with the volume around xi. Together with volume
convergence (see Theorem 16.2.11) the local volume around y is at least
twice of that around x: Hn(Bs(y)) ≥ 2 · Hn(Bs(x)). Recall that volume
comparison states that Hn(Bs(y)) ≤ vol(Bn

s (−1)), where Bn
s (−1) is

the s-ball in the n-dimensional space form of constant curvature −1.
Therefore, if x hasHn(Bs(x)) > vol(Bn

s (−1))/2, then Figure 16.4 cannot
occur. In fact, this implies that such a point x must be of type I, and
we have a linear estimate of the 1-contractibility radius at these points.

Theorem 16.4.5 Given n ≥ 2, κ ≥ 0, and ω > 1/2, there exist
positive constants ε(n, κ, ω) and C(n, κ, ω) such that the following holds.

Let (M,p) be a complete n-manifold satisfying

Ric ≥ −(n− 1)κ, vol(B1(p)) ≥ ω · vol(Bn
1 (−κ)).

Then every loop in Br(p) is contractible in BCr(p), where r ∈ [0, ε).

Note that by Otsu’s example [37], the half volume lower bound cannot
be weakened to a non-collapsing condition. One may compare the 1-
contractibility radius estimate with Theorem 16.4.6 below on sectional
curvature and volume lower bounds from [29]:

Theorem 16.4.6 (Grove–Petersen) Given n ≥ 2, κ ≥ 0, and v > 0,
there exist positive constants ε(n, κ, v) and C(n, κ, v) such that, for any
complete n-manifold (M,p) of

secM ≥ −κ, vol(B1(p)) ≥ v,

Br(p) is contractible in BCr(p), where r ∈ [0, ε).

If Bs(x) does not have a half volume lower bound, then the volume
of Bs(y) in Y will be doubled. This inspires us to use an induction
argument on the local volume.
We define ω(x) = limr→0

Hn(Br(x))
vol(Bn

r (0)) . Note that, by relative volume
comparison, the limit always exists and 0 < ω(x) ≤ 1; the equality holds
if and only if x is a regular point. Also, ω(x) has a uniform lower bound
for all x ∈ B1(p).
If ω(x) > 1/2 for all x ∈ B1(p), then every point x ∈ B1(p) is of

type I and we can apply Theorem 16.4.4 directly. Next we consider the
case that ω(x) > 1/4 for all x ∈ B1(p). If x is type I, then we again
apply Theorem 16.4.4. If x is of type II, we can take the convergence of
the local universal covers (Ui, yi), then the corresponding limit point y
has ω(y) > 1/2. For s small, we can lift the loop in Bs(x) to a loop in
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Bs(y), which we know is contractible. Projecting the homotopy down,
we obtain the desired homotopy in X. We need the following technical
result for type III points.

Theorem 16.4.7 Let (Xi, xi) be a sequence of length spaces converging
to (X,x) with the closure of each B2(xi) being compact. Suppose that
lim
t→0

ρ(t, y) = 0 holds for all points y of type II in B3/2(x), then it holds

for all points of type III in B1(x). Consequently, lim
t→0

ρ(t, y) = 0 holds for

all y ∈ B1(x).

Similar to the statement of Theorem 16.4.4, Theorem 16.4.7 does not
require any curvature conditions. Assuming Theorem 16.4.7, we clear
the step ω(x) > 1/4 and continue the induction argument.
We briefly illustrate the proof of Theorem 16.4.7. We observe that,

with the assumptions of Theorem 16.4.7, for any y ∈ B1(x), either
{ρ(t, yi)} is equi-continuous at t = 0 (case y is type I or III), or lim ρ(t, y) =

0 (case y is type I or II). The starting step is the same as the second proof
of Theorem 16.4.4, using the homotopy on a manifold from the sequence
Mi to extend the loop on a 1-skeleton. Then we apply two different
procedures to the sub-triangles. Roughly speaking, if a sub-triangle is
displaced from a point of type III, we can directly contract this sub-
triangle; if not, we will use the local 1-contractibility from the sequence
to extend the map on a finer 1-skeleton (see Figure 16.5). The actual
proof is quite technical since we need to assure uniform convergence and
control the size of the eventual null homotopy.

Unlike Theorem 16.1.2, which is generalized to RCD spaces, a gen-
eralization of Theorem 16.1.4 to RCD spaces seems very difficult. Note
that the proof relies heavily on the sequence, which consists of mani-
folds. More specifically, investigating the convergence of universal covers
of local balls Bε(xi) is a key step in the study of type II points. On the
other hand, if we are assuming that a space is locally essentially simply
connected, then we can always take the universal cover of any local ball.
Using the same arguments, it can be shown that for a convergent se-
quence of uniformly non-collapsing RCD spaces (see Definition 16.2.12),
if each space of the sequence is essentially locally simply connected, then
the limit space is as well.
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Figure 16.5 Refining 1-skeletons with partial extensions.

In closing, we ask a question about the stability of fundamental groups.

Question 16.4.8 Is the following statement true?
Given n,D, v > 0, there is a constant ε(n,D, v) > 0 such that for any

two compact Riemannian n-manifolds Mi (i = 1, 2) satisfying:

RicMi
≥ −(n−1), diam(Mi) ≤ D, vol(Mi) ≥ v, dGH(M1,M2) ≤ ε,

then π1(M1) and π1(M2) must be isomorphic.

From [3] it is known that the fundamental groups of the spaces in the
class above have only finitely many isomorphism types. It is known that
the fundamental group of X may be different from that of Mi for all
i: in Otsu’s example, a sequence of Riemannian metrics on S3 × RP 2

converges to a simply connected Ricci limit space.
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